

Reference number
ISO/PAS 14306:2011(E)

© ISO 2011

PUBLICLY
AVAILABLE
SPECIFICATION

ISO/PAS
14306

First edition
2011-12-15

Industrial automation systems and
integration — JT file format specification
for 3D visualization

Systèmes d'automatisation industrielle et intégration — Spécification de
format de fichier JT pour visualisation 3D

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO 2011

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO 2011 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved iii

Contents Page

Foreword ... x

Introduction .. xi

1 Scope .. 1

2 References and Additional Information... 2

3 Definitions .. 3
3.1 Terms .. 3
3.2 Coordinate Systems .. 5

4 Acronyms and Abbreviations ... 5

5 Notational Conventions .. 6
5.1 Diagrams and Field Descriptions .. 6
5.2 Data Types ... 9

6 File Format .. 11
6.1 File Structure ... 12
6.1.1 File Header ... 12
6.1.2 TOC Segment ... 13
6.1.3 Data Segment ... 14
6.1.3.1 Segment Header ... 15
6.1.3.2 Data 16
6.2 Data Segments ... 19
6.2.1 LSG Segment ... 19
6.2.1.1 Graph Elements ... 19
6.2.1.1.1 Node Elements ... 20
6.2.1.1.1.1 Base Node Element .. 20
6.2.1.1.1.2 Partition Node Element .. 21
6.2.1.1.1.3 Group Node Element .. 24
6.2.1.1.1.4 Instance Node Element .. 25
6.2.1.1.1.5 Part Node Element .. 25
6.2.1.1.1.6 Meta Data Node Element ... 26
6.2.1.1.1.7 LOD Node Element ... 26
6.2.1.1.1.8 Range LOD Node Element ... 27
6.2.1.1.1.9 Switch Node Element ... 28
6.2.1.1.1.10 Shape Node Elements .. 29
6.2.1.1.2 Attribute Elements ... 39
6.2.1.1.2.1 Base Attribute Element .. 39
6.2.1.1.2.2 Material Attribute Element ... 41
6.2.1.1.2.3 Texture Image Attribute Element .. 44
6.2.1.1.2.4 Draw Style Attribute Element .. 58
6.2.1.1.2.5 Light Set Attribute Element ... 60
6.2.1.1.2.6 Infinite Light Attribute Element ... 61
6.2.1.1.2.7 Point Light Attribute Element .. 63
6.2.1.1.2.8 Linestyle Attribute Element ... 66
6.2.1.1.2.9 Pointstyle Attribute Element ... 67
6.2.1.1.2.10 Geometric Transform Attribute Element .. 68
6.2.1.1.2.11 Shader Effects Attribute Element ... 69
6.2.1.1.2.12 Vertex Shader Attribute Element .. 71
6.2.1.1.2.13 Fragment Shader Attribute Element ... 76
6.2.1.2 Property Atom Elements ... 77
6.2.1.2.1 Base Property Atom Element ... 77
6.2.1.2.2 String Property Atom Element ... 78

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

iv © ISO 2011 – All rights reserved

6.2.1.2.3 Integer Property Atom Element ..78
6.2.1.2.4 Floating Point Property Atom Element ..79
6.2.1.2.5 JT Object Reference Property Atom Element ...79
6.2.1.2.6 Date Property Atom Element ..80
6.2.1.2.7 Late Loaded Property Atom Element ...81
6.2.1.3 Property Table ..82
6.2.1.3.1 Node Property Table ..82
6.2.2 Shape LOD Segment ...83
6.2.2.1 Shape LOD Element ...83
6.2.2.1.1 Vertex Shape LOD Element ...84
6.2.2.1.2 Tri-Strip Set Shape LOD Element ...85
6.2.2.1.3 Polyline Set Shape LOD Element ...86
6.2.2.1.4 Point Set Shape LOD Element ..86
6.2.2.1.5 Polygon Set Shape LOD Element ...87
6.2.2.1.6 Null Shape LOD Element ...88
6.2.2.2 Primitive Set Shape Element ...89
6.2.2.3 Wire Harness Set Shape Element ...95
6.2.3 JT B-Rep Segment .. 108
6.2.3.1 JT B-Rep Element.. 109
6.2.4 XT B-Rep Segment.. 131
6.2.4.1 XT B-Rep Element ... 131
6.2.5 Wireframe Segment .. 132
6.2.5.1 Wireframe Rep Element .. 132
6.2.6 Meta Data Segment ... 134
6.2.6.1 Property Proxy Meta Data Element ... 135
6.2.6.2 PMI Manager Meta Data Element ... 137
6.2.6.2.1 PMI Entities .. 139
6.2.6.2.1.1 PMI Dimension Entities ... 139
6.2.6.2.1.2 PMI Note Entities ... 147
6.2.6.2.1.3 PMI Datum Feature Symbol Entities .. 148
6.2.6.2.1.4 PMI Datum Target Entities .. 148
6.2.6.2.1.5 PMI Feature Control Frame Entities ... 148
6.2.6.2.1.6 PMI Line Weld Entities .. 149
6.2.6.2.1.7 PMI Spot Weld Entities .. 149
6.2.6.2.1.8 PMI Surface Finish Entities ... 151
6.2.6.2.1.9 PMI Measurement Point Entities .. 152
6.2.6.2.1.10 PMI Locator Entities .. 153
6.2.6.2.1.11 PMI Reference Geometry Entities .. 154
6.2.6.2.1.12 PMI Design Group Entities .. 154
6.2.6.2.1.13 PMI Coordinate System Entities ... 157
6.2.6.2.2 PMI Associations... 157
6.2.6.2.3 PMI User Attributes ... 160
6.2.6.2.4 PMI String Table .. 160
6.2.6.2.5 PMI Model Views ... 161
6.2.6.2.6 Generic PMI Entities ... 163
6.2.6.2.7 PMI CAD Tag Data ... 168
6.2.7 PMI Data Segment... 168

7 Data Compression and Encoding.. 168
7.1 Common Compression Data Collection Formats .. 169
7.1.1 Int32 Compressed Data Packet ... 169
7.1.2 Float64 Compressed Data Packet ... 173
7.1.3 Vertex Based Shape Compressed Rep Data .. 176
7.1.4 Point Quantizer Data .. 184
7.1.5 Texture Quantizer Data .. 185
7.1.6 Color Quantizer Data .. 185
7.1.7 Uniform Quantizer Data .. 186
7.1.8 Compressed Entity List for Non-Trivial Knot Vector .. 187
7.1.9 Compressed Control Point Weights Data .. 189
7.1.10 Compressed Curve Data .. 189

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved v

7.1.11 Compressed CAD Tag Data .. 192
7.2 Encoding Algorithms .. 194
7.2.1 Uniform Data Quantization ... 194
7.2.2 Bitlength CODEC ... 195
7.2.3 Huffman CODEC .. 196
7.2.4 Arithmetic CODEC ... 198
7.2.5 Deering Normal CODEC .. 202
7.3 ZLIB Compression ... 203

8 Usage Guide ... 204
8.1 Late-Loading Data ... 204
8.2 Bit Fields .. 204
8.3 Reserved Field ... 204
8.4 Metadata Conventions .. 204
8.4.1 CAD Properties .. 205
8.4.2 Tessellation Properties ... 206
8.4.3 Miscellaneous Properties ... 207
8.5 LSG Attribute Accumulation Semantics ... 208
8.6 LSG Part Structure .. 208
8.7 Range LOD Node Alternative Rep Selection .. 209

Annex A: Object Type Identifiers ... 210

Annex B: Semantic Value Class Shader Parameter Values .. 212

Annex C: Decoding Algorithms – An Implementation ... 216

Annex D: Parasolid XT Format Reference .. 236

Introduction to the Parasolid XT Format .. 241

Types of File Documented ... 241

Text and Binary Formats ... 242

Logical Layout .. 243

Schema .. 244

Physical Layout .. 250

Model Structure .. 255

Schema Definition .. 261

Node Types ... 329

Node Classes .. 332

System Attribute Definitions ... 333

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

vi © ISO 2011 – All rights reserved

Tables

Table 1: Basic Data Types ..9
Table 2: Composite Data Types ...10
Table 3: Segment Types ...15
Table 4: Object Base Types ...17
Table 5: Primitive Set Primitive Data Elements ..91
Table 6: Primitive Set “params#” Data Fields Interpretation ...91
Table 7: Common Property Keys and Their Value Encoding formats ... 166
Table 8: CAD Property Conventions .. 205
Table 9: CAD Optional Property Units ... 206
Table 10: Object Type Identifiers ... 211
Table 11: Semantic Value Class Shader Parameter Values ... 212

Figures

Figure 1: File Structure ...12
Figure 2: File Header data collection ..12
Figure 3: TOC Segment data collection ..14
Figure 4: TOC Entry data collection ..14
Figure 5: Data Segment data collection ..15
Figure 6: Segment Header data collection ...15
Figure 7: Data data collection ...17
Figure 8: Element Header data collection ..17
Figure 9: Element Header ZLIB data collection ..18
Figure 10: LSG Segment data collection ..19
Figure 11: Base Node Element data collection ..20
Figure 12: Base Node Data data collection ..20
Figure 13: Partition Node Element data collection ...22
Figure 14: Vertex Count Range data collection ..23
Figure 15: Group Node Element data collection ...24
Figure 16: Group Node Data data collection ..24
Figure 17: Instance Node Element data collection ...25
Figure 18: Part Node Element data collection ..25
Figure 19: Meta Data Node Element data collection ..26
Figure 20: Meta Data Node Data data collection ..26
Figure 21: LOD Node Element data collection ...27
Figure 22: LOD Node Data data collection ...27
Figure 23: Range LOD Node Element data collection ..28
Figure 24: Switch Node Element data collection ..29
Figure 25: Base Shape Node Element data collection ...30
Figure 26: Base Shape Data data collection ..30
Figure 27: Vertex Count Range data collection ..31
Figure 28: Vertex Shape Node Element data collection ...32
Figure 29: Vertex Shape Data data collection ..33
Figure 30: Quantization Parameters data collection ...34
Figure 31: Tri-Strip Set Shape Node Element data collection ..34
Figure 32: Polyline Set Shape Node Element data collection ..35
Figure 33: Point Set Shape Node Element data collection ...35
Figure 34: Polygon Set Shape Node Element data collection ..36
Figure 35: NULL Shape Node Element data collection ..36
Figure 36: Primitive Set Shape Node Element data collection ...37
Figure 37: Primitive Set Quantization Parameters data collection ...38
Figure 38: Wire Harness Set Shape Node Element data collection ...39
Figure 39: Base Attribute Element data collection ..40
Figure 40: Base Attribute Data data collection ...40
Figure 41: Material Attribute Element data collection ...42
Figure 42: Texture Image Attribute Element data collection ...45
Figure 43: Texture Vers-1 Data data collection ..46
Figure 44: Vers-1 Image Format Description data collection ...47

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved vii

Figure 45: Vers-1 Texture Environment data collection ... 49
Figure 46: Texture Vers-2 Data data collection .. 51
Figure 47: Vers-2 Texture Environment data collection ... 53
Figure 48: Texture Coord Generation Parameters data collection ... 55
Figure 49: Inline Texture Image Data data collection ... 56
Figure 50: Vers-2 Image Format Description data collection ... 57
Figure 51: Draw Style Attribute Element data collection .. 59
Figure 52: Light Set Attribute Element data collection ... 61
Figure 53: Infinite Light Attribute Element data collection .. 62
Figure 54: Base Light Data data collection ... 63
Figure 55: Point Light Attribute Element data collection .. 64
Figure 56: Spread Angle value with respect to the light cone .. 65
Figure 57: Attenuation Coefficients data collection .. 65
Figure 58: Linestyle Attribute Element data collection ... 66
Figure 59: Pointstyle Attribute Element data collection .. 67
Figure 60: Geometric Transform Attribute Element data collection ... 68
Figure 61: Shader Effects Attribute Element data collection .. 70
Figure 62: Vertex Shader Attribute Element data collection .. 72
Figure 63: Base Shader Data data collection ... 72
Figure 64: Shader Parameter data collection ... 74
Figure 65: Fragment Shader Attribute Element data collection ... 77
Figure 66: Base Property Atom Element data collection .. 77
Figure 67: Base Property Atom Data data collection ... 78
Figure 68: String Property Atom Element data collection .. 78
Figure 69: Integer Property Atom Element data collection ... 79
Figure 70: Floating Point Property Atom Element data collection .. 79
Figure 71: JT Object Reference Property Atom Element data collection ... 80
Figure 72: Date Property Atom Element data collection .. 80
Figure 73: Late Loaded Property Atom Element data collection .. 81
Figure 74: Property Table data collection ... 82
Figure 75: Node Property Table data collection ... 83
Figure 76: Shape LOD Segment data collection .. 83
Figure 77: Vertex Shape LOD Element data collection .. 84
Figure 78: Vertex Shape LOD Data data collection ... 84
Figure 79: Tri-Strip Set Shape LOD Element data collection ... 85
Figure 80: Polyline Set Shape LOD Element data collection ... 86
Figure 81: Point Set Shape LOD Element data collection ... 87
Figure 82: Polygon Set Shape LOD Element data collection ... 88
Figure 83: Null Shape LOD Element data collection .. 88
Figure 84: Primitive Set Shape Element data collection .. 89
Figure 85: Lossless Compressed Primitive Set Data data collection ... 90
Figure 86: Lossy Quantized Primitive Set Data data collection ... 92
Figure 87: Compressed params1 data collection ... 94
Figure 88: Wire Harness Set Shape Element data collection .. 96
Figure 89: Wire Harness Set data collection .. 97
Figure 90: Entity Counts data collection ... 98
Figure 91: Topological Entities data collection ... 99
Figure 92: Harness data collection ... 100
Figure 93: Bundle data collection ... 101
Figure 94: Wire data collection ... 103
Figure 95: Wire Segment data collection ... 104
Figure 96: Branch Node data collection ... 105
Figure 97: Geometric data collection ... 105
Figure 98: Bundle Spine Curve data collection .. 106
Figure 99: NURBS XYZ Curve data collection ... 107
Figure 100: Entity Tag Counters data collection .. 108
Figure 101: JT B-Rep Segment data collection .. 109
Figure 102: JT B-Rep Element data collection ... 110
Figure 103: Topological Entity Counts data collection ... 111
Figure 104: Geometric Entity Counts data collection ... 112

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

viii © ISO 2011 – All rights reserved

Figure 105: Topology Data data collection .. 113
Figure 106: Regions Topology Data data collection .. 114
Figure 107: Shells Topology Data data collection ... 114
Figure 108: Trim Loop example in parameter Space - One Face with 2 Holes .. 116
Figure 109: Faces Topology Data data collection ... 116
Figure 110: Loops Topology Data data collection ... 118
Figure 111: CoEdges Topology Data data collection .. 119
Figure 112: Edges Topology Data data collection ... 120
Figure 113: Vertices Topology Data data collection .. 120
Figure 114: Geometric Data data collection .. 121
Figure 115: Surfaces Geometric Data data collection ... 122
Figure 116: Non-Trivial Knot Vector NURBS Surface Indices data collection ... 123
Figure 117: NURBS Surface Degree data collection ... 123
Figure 118: NURBS Surface Control Point Counts data collection ... 124
Figure 119: NURBS Surface Control Point Weights data collection ... 124
Figure 120: NURBS Surface Control Points data collection .. 125
Figure 121: NURBS Surface Knot Vectors data collection .. 125
Figure 122: PCS Curves Geometric Data data collection ... 126
Figure 123: Trivial PCS Curves data collection ... 127
Figure 124: MCS Curves Geometric Data data collection ... 129
Figure 125: Point Geometric Data data collection ... 129
Figure 126: Topological Entity Tag Counters data collection .. 130
Figure 127: B-Rep CAD Tag Data data collection ... 131
Figure 128: XT B-Rep Element data collection ... 131
Figure 129: Wireframe Segment data collection ... 132
Figure 130: Wireframe Rep Element data collection ... 133
Figure 131: Wireframe MCS Curves Geometric Data data collection ... 134
Figure 132: Meta Data Segment data collection ... 134
Figure 133: Property Proxy Meta Data Element data collection .. 135
Figure 134: Date Property Value data collection ... 136
Figure 135: PMI Manager Meta Data Element data collection .. 138
Figure 136: PMI Entities data collection .. 139
Figure 137: PMI Dimension Entities data collection .. 140
Figure 138: PMI 2D Data data collection ... 140
Figure 139: PMI Base Data data collection ... 141
Figure 140: 2D-Reference Frame data collection .. 142
Figure 141: 2D Text Data data collection .. 142
Figure 142: Text Box data collection ... 143
Figure 143: Constructing Text Polylines from data arrays ... 144
Figure 144: Text Polyline Data data collection .. 145
Figure 145: Constructing Non-Text Polylines from packed 2D data arrays .. 146
Figure 146: Non-Text Polyline Data data collection .. 146
Figure 147: PMI Note Entities data collection .. 147
Figure 148: PMI Datum Feature Symbol Entities data collection .. 148
Figure 149: PMI Datum Target Entities data collection ... 148
Figure 150: PMI Feature Control Frame Entities data collection ... 149
Figure 151: PMI Line Weld Entities data collection ... 149
Figure 152: PMI Spot Weld Entities data collection ... 150
Figure 153: PMI 3D Data data collection ... 151
Figure 154: PMI Surface Finish Entities data collection .. 152
Figure 155: PMI Measurement Point Entities data collection .. 153
Figure 156: PMI Locator Entities data collection ... 154
Figure 157: PMI Reference Geometry Entities data collection .. 154
Figure 158: PMI Design Group Entities data collection ... 155
Figure 159: Design Group Attribute data collection ... 156
Figure 160: PMI Coordinate System Entities data collection ... 157
Figure 161: PMI Associations data collection .. 158
Figure 162: PMI User Attributes data collection .. 160
Figure 163: PMI String Table data collection ... 161
Figure 164: PMI Model Views data collection .. 162

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved ix

Figure 165: Generic PMI Entities data collection ... 164
Figure 166: PMI Property data collection ... 166
Figure 167: PMI Property Atom data collection .. 167
Figure 168: PMI CAD Tag Data data collection ... 168
Figure 169: Int32 Compressed Data Packet data collection .. 170
Figure 170: Int32 Probability Contexts data collection ... 171
Figure 171: Int32 Probability Context Table Entry data collection ... 172
Figure 172: Float64 Compressed Data Packet data collection .. 174
Figure 173: Float64 Probability Contexts data collection ... 175
Figure 174: Float64 Probability Context Table Entry data collection ... 176
Figure 175: Vertex Based Shape Compressed Rep Data data collection ... 177
Figure 176: Lossless Compressed Raw Vertex Data data collection .. 178
Figure 177: Lossy Quantized Raw Vertex Data data collection ... 179
Figure 178: Quantized Vertex Coord Array data collection .. 180
Figure 179: Quantized Vertex Normal Array data collection .. 181
Figure 180: Quantized Vertex Texture Coord Array data collection... 182
Figure 181: Quantized Vertex Color Array data collection ... 183
Figure 182: Point Quantizer Data data collection ... 184
Figure 183: Texture Quantizer Data data collection ... 185
Figure 184: Color Quantizer Data data collection .. 186
Figure 185: Uniform Quantizer Data data collection .. 187
Figure 186: Compressed Entity List for Non-Trivial Knot Vector data collection ... 188
Figure 187: Compressed Control Point Weights Data data collection ... 189
Figure 188: Compressed Curve Data data collection .. 190
Figure 189: Non-Trivial Knot Vector NURBS Curve Indices data collection .. 192
Figure 190: NURBS Curve Control Point Weights data collection ... 192
Figure 191: NURBS Curve Control Points data collection ... 192
Figure 192: Compressed CAD Tag Data data collection ... 193
Figure 193: Compressed CAD Tag Type-2 Data data collection ... 194
Figure 194: Huffman Tree .. 197
Figure 195: Sphere divided into eight octants and octant divided into six sextants with each sextant assigned

an identifying three bit code. ... 203
Figure 196: JT Format Convention for Modeling each Part in LSG ... 208

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

x © ISO 2011 – All rights reserved

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.

In other circumstances, particularly when there is an urgent market requirement for such documents, a
technical committee may decide to publish other types of document:

— an ISO Publicly Available Specification (ISO/PAS) represents an agreement between technical experts in
an ISO working group and is accepted for publication if it is approved by more than 50 % of the members
of the parent committee casting a vote;

— an ISO Technical Specification (ISO/TS) represents an agreement between the members of a technical
committee and is accepted for publication if it is approved by 2/3 of the members of the committee casting
a vote.

An ISO/PAS or ISO/TS is reviewed after three years in order to decide whether it will be confirmed for a
further three years, revised to become an International Standard, or withdrawn. If the ISO/PAS or ISO/TS is
confirmed, it is reviewed again after a further three years, at which time it must either be transformed into an
International Standard or be withdrawn.

ISO/PAS 14306 was prepared by Technical Committee ISO/TC 184, Automation systems and integration,
Subcommittee SC 4, Industrial data.

ISO/PAS 14306 is based on Siemens JT File Format Reference Version 8.1 Rev-C.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved xi

Introduction

This Publicly Available Specification was transposed by an ad hoc committee focused on industrial
requirements for 3D product data visualization under the ISO/TC 184/SC 4 Harvesting Process, as defined in
SC4 Standing Document (SC4N1198), Procedures for Transposing Externally Developed Specifications into
ISO Deliverables.

The ad hoc committee was formed by members of ISO/TC 184/SC 4 in response to requests from the global
industrial community for information on visualization formats. The group assessed several 3D visualization
formats including COLLADA, JT, U3D and X3D against a list of 36 requirements. The final results concluded
that these candidate formats are complementary to the ISO 10303 “STEP” series of standards concerning
visualization data exchange. These formats are not intended for use for CAx data exchange or product data
exchange.

The JT file format presented in this Publicly Available Specification is intended to provide data that can be
used for further engineering activities in a PLM domain. The other formats were found to support product
documentation (U3D) and visualisation data exchange based on XML (COLLADA, X3D) in a similar domain.

The International Organization for Standardization (ISO) draws attention to the fact that it is claimed that
compliance with this document may involve the use of patent USA 20110199382.

ISO takes no position concerning the evidence, validity and scope of this patent right.

The holder of this patent right has assured ISO that he is willing to negotiate licences under reasonable and
non-discriminatory terms and conditions with applicants throughout the world. In this respect, the statement of
the holder of this patent right is registered with ISO. Information may be obtained from:

Siemens PLM Software Product Development
345 Woodcliff Drive
Fairport
NY 14450
USA

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights other than those identified above. ISO shall not be held responsible for identifying any or all such patent
rights.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

PUBLICLY AVAILABLE SPECIFICATION ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 1

Industrial automation systems and integration — JT file format
specification for 3D visualization

1 Scope
This Publicly Available Specification defines the syntax and semantics of the JT Version 8.1 file format.

The JT format is an industry focused, high-performance, lightweight, flexible file format for capturing and repurposing
3D Product Definition data that enables collaboration, validation and visualization throughout the extended enterprise.
JT format is the de-facto standard 3D Visualization format in the automotive industry, and the single most dominant 3D
visualization format in Aerospace, Heavy Equipment and other mechanical CAD domains.

The JT format is both robust, and streamable, and contains best-in-class compression for compact and efficient
representation. The JT format was designed to be easily integrated into enterprise translation solutions, producing a
single set of 3D digital assets that support a full range of downstream processes from lightweight web-based viewing to
full product digital mockups.

At its core the JT format is a scene graph with CAD specific node and attributes support. Facet information (triangles), is
stored with sophisticated geometry compression techniques. Visual attributes such as lights, textures, materials and
shaders (Cg and OGLSL) are supported. Product and Manufacturing Information (PMI), Precise Part definitions (B-Rep)
and Metadata as well as a variety of representation configurations are supported by the format. The JT format is also
structured to enable support for various delivery methods including asynchronous streaming of content.

Some of the highlights of the JT format include:

 Built-in support for assemblies, sub-assemblies and part constructs
 Flexible partitioning scheme, supporting single or multiple files
 B-Rep, including integrated support for industry standard Parasolid® (XT) format
 Product Manufacturing Information in support of paperless manufacturing initiatives
 Precise and imprecise wireframe
 Discrete purpose-built Levels of Detail
 Wire harness information
 Triangle sets, Polygon sets, Point sets, Line sets and Implicit Primitive sets (cylinder, cone, sphere, etc…)
 Full array of visual attributes: Materials, Textures, Lights, Shaders
 Hierarchical Bounding Box and Bounding Spheres
 Advanced data compression that allows producers of JT files to fine tune the trade off between compression ratio

and fidelity of the data.

Beyond the data contents description of the JT Format, the overall physical structure/organization of the format is also
designed to support operations such as:

 Offline optimizations of the data contents
 File granularity and flexibility optimized to meet the needs of Enterprise Data Translation Solutions
 Asynchronous streaming of content
 Viewing optimizations such as view frustum and occlusion culling and fixed-framerate display modes.
 Layers, and Layer Filters.

Along with the pure syntactical definition of the JT Format, there is also series of conventions which although not
required to have a reference compliant JT file, have become commonplace within JT format translators. These
conventions have been documented in the “Best Practices” section of this JT format reference.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

2 © ISO 2011 – All rights reserved

This JT format reference does not specifically address implementation of, nor define, a run-time architecture for viewing
and/or processing JT data. This is because although the JT format is closely aligned with a run-time data representation
for fast and efficient loading/unloading of data, no interaction behavior is defined within the format itself, either in the
form of specific viewer controls, viewport information, animation behavior or other event-based interactivity. This
exclusion of interaction behavior from the JT format makes the format more easily reusable for dissimilar application
interoperation and also facilitates incremental update, without losing downstream authored data, as the original CAD
asset revises.

2 References and Additional Information
[1] JT Open Program (http://www.jtopen.com) --- A program to help members leverage the benefits of open

collaboration across the extended enterprise through the adoption of the JT format, a technology that makes it
possible to view and share product information throughout the product lifecycle. Membership in the JT Open
Program provides access to the JT Open Toolkit library, which among other things, provides read and write
access to JT data and enforces certain JT conventions to ensure data compatibility with other JT-enabled
applications.

[2] JT2Go download (http://www.jt2go.com) --- JT2Go is the no-charge 3D JT viewer from Siemens. JT2Go puts
3D data at your fingertips by allowing anyone to download the no-charge viewer. JT2Go also allows anyone to
embed 3D JT data directly into Microsoft Office documents. JT2Go offers full 3D interactivity on parts,
assemblies, and even 2D drawings (CGM & TIF).

[3] Siemens: PLM Components: Parasolid: XT Pipeline
(http://www.ugs.com/products/open/parasolid/pipeline.shtml) --- This web page provides information on the
Parasolid precise boundary representation format (XT) and how this XT format fits within the Siemens vision
of seamless exchange of digital product models across enterprises, between different disciplines, using their
PLM applications of choice.

[4] OpenGL Programming Guide : the official guide to learning OpenGL Version 2, Fifth Edition, by OpenGL
Architecture Review Board, Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis (Addison-Wesley
2005) --- This book gives in-depth explanation of the OpenGL Specification and will provide further insight
into the significance of some of the data (e.g. Materials, Textures) that can exist in a JT file. Information in
this book may also serve as a guide for how one could process the data contained in a JT file to produce/render
an image on the screen.

[5] Michael Deering, Geometry Compression, Computer Graphics, Proceedings SIGGRAPH ‘95, August 1995,
pp. 13-20.

[6] Michael Deering, Craig Gotsman, Stefan Gumhold, Jarek Rossignac, and Gabriel Taubin, 3D Geometry

Compression, Course Notes for SIGGRAPH 2000, July 25, 2000.

[7] OpenGL Shading Language Specification (http://www.opengl.org/documentation/glsl/) --- OpenGL Shading
Language (GLSL) as defined by the OpenGL Architectural Review Board, the governing body of OpenGL.

[8] Cg Toolkit Users Manual (http://developer.nvidia.com/object/cg_users_manual.html) --- Explains everything

you need to learn and use the Cg language as well as the Cg runtime library.

[9] The Cg Tutorial: The Definitive Guide to Programmable Real-Time Graphics, Randima Fernando and Mark J.
Kilgard, nVIDIA Corporation, Addison Wesley Publishing Company, April 2003

[10] K. Weiler. Topological Structures for Geometric Modeling, PhD thesis, Rensselaer Polytechnic Institute, Troy,

NY, 1986.

[11] C. M. Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann Publishers, Inc., San
Mateo, California, 1989.

[12] Planetmath.org - Huffman Coding (http://planetmath.org/encyclopedia/HuffmanCoding.html) --- This web

page provides a technical overview of Huffman coding which is one form of data encoding used within the JT
format.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

http://www.jtopen.com/
http://www.jt2go.com/
http://www.ugs.com/products/open/parasolid/pipeline.shtml
http://www.opengl.org/documentation/glsl/
http://developer.nvidia.com/object/cg_users_manual.html
http://planetmath.org/encyclopedia/HuffmanCoding.html
https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 3

[13] Michael Schindler, Practical Huffman Coding (http://www.compressconsult.com/huffman/#encoding) --- This

web page provides some coding hints for implementing Huffman coding which is one form of data encoding
used within the JT format.

[14] Glen G. Langdon Jr., An Introduction to Arithmetic Coding, IBM Journal of Research and Development,
Volume 28, Number 2, March 1984, pp. 135-149.

[15] Paul G. Howard and Jeffrey Scott Vitter, Practical Implementation of Arithmetic Coding. Image and Text

Compression, ed. J. A. Storer, Kluwer Academic Publishers, April 1992, pp. 85-112.

[16] zlib.net (http://www.zlib.net/) --- This web page provides (either directly or through links) complete detailed
information on ZLIB compression including frequently asked questions, technical documentation, source code
downloads, etc.

3 Definitions

3.1 Terms
It is assumed that readers of this document are familiar with concepts in the area of computer graphics and solid
modeling. The intention of this section is not to provide comprehensive definitions, but is to provide a short introduction
and clarification of the usage of terms within this document.

Assembly − A related collection of model parts, represented in a JT format

logical scene graph as a logical graph branch

Attribute − Objects associated with nodes in a logical scene graph and
specifying one of several appearances, positioning, or rendering
characteristics of a shape

.
Boundary Representation − A solid model representation where the solid volume is specified

by its surface boundary (both its geometric and topological
boundaries).

CodeText − A collection of data in encoded form.

Directed Acyclic Graph − A graph is a set of nodes, and a set of edges connecting the nodes
in a tree like structure. A directed graph is one in which every
edge has a direction such that edge (u,v), connecting node-u with
node-v, is different from edge (v,u). A Directed Acyclic Graph is a
directed graph with no cycles; where a cycle is a path (sequence of
edges) from a node to itself. So with a Directed Acyclic Graph
there is no path that can be followed within the graph such that the
first node in the path is the same as the last node in the path.

JT Enabled Application − Application which supports reading and/or writing reference
compliant JT Format files.

Level of Detail − One alternative graphical representation for some model

component (e.g. part).

Logical Scene Graph − A scene graph representing the logical organization of a model.
Contains shapes and attributes representing the model’s physical
components, properties identifying arbitrary metadata (e.g. names,
semantic roles) of those components, and a hierarchical structure
expressing the component relationships.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

http://www.compressconsult.com/huffman/#encoding
http://www.zlib.net/
https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

4 © ISO 2011 – All rights reserved

Mipmap − A reduced resolution version of a texture map. Mipmaps are used
to texture a geometric primitive whose screen resolution differs
from the resolution of the source texture map originally applied to
the primitive.

Model − Representation, in JT format, of a physical or virtual product, part,

assembly; or collections of such objects.

Parasolid XT Format − Parasolid boundary representation format

Product and Manufacturing Information − Collection of information created on a 3D/2D CAD Model to
completely document the product with respect to design,
manufacturing, inspection, etc. This may includes data such as:
• Dimensions (tolerances for each dimension)
• Geometric tolerances of feature (datums, feature control frames)
• Manufacturing information (surface finish, welding notations)
• Inspection information (key locations points)
• Assembly instructions
• Product information (materials, suppliers, part numbers)

Property − An object associated with a logical scene graph node and

identifying arbitrary application or enterprise specific information
(meta-data) related to that node

Quantize − Constrain something to a discrete set of values, such as an integer

or integral multiplier of a common factor, rather than a continuous
set of values, such as a real number.

Scene Graph − In the context of the JT format, a scene graph is a directed acyclic

graph that arranges the logical and often (but not necessarily)
spatial representation of a graphical scene.

Shader − A user-definable program, expressed directly in a target assembly

language, or in high-level form to be compiled. A shader program
replaces a portion of the otherwise fixed-functionality graphics
pipeline with some user-defined function. At present, hardware
manufacturers have made it possible to run a shader for each
vertex that is processed or each pixel that is rendered.

Streaming − In the context of the JT format, streaming refers to both:
o Loading from disk based medium only the portions of data

that are required by the user to perform the tasks at hand.
The motivation being to more efficiently manage system
memory.

o Transfer of data in a stream of packets, over the internet
on an on-demand basis, where the data is interpreted in
real-time by the application as the data packets arrive. The
motivation being that the user can begin using or
interacting with the data almost immediately - no waiting
for the entire data file(s) to be transferred before beginning

The desired end result of both being to deliver only the JT data
that the user needs, where the user needs it, when the user needs
it. A “just-in-time” approach to delivering JT format product
data.

Shape − A logical scene graph leaf node containing or referencing the
geometric shape definition data (e.g. vertices, polygons, normals,
etc.) of a model component.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 5

Texture Channel − A Texture Unit plus the texture environment. In OpenGL® terms,

Texture Channel basically controls “glActiveTexture” [4]

Texture Object − JT format meaning is the same as in OpenGL [4] “A named cache
that stores texture data, such as the image array, associated
mipmaps, and associated texture parameter values: width, height,
border width, internal format, resolution of components,
minification and magnification filters, wrapping modes, border
color, and texture priority.”

Texture Unit − JT format meaning is the same as in OpenGL [4], with the

connotation that texture parameters go with the Texture Unit
(through binding of a texture object) but texture environment
(texturing function) does not.

3.2 Coordinate Systems
The data contained within a JT file is defined within one of the following coordinate systems. If not otherwise specified
in a data field’s description, it should be assumed that the data is defined in Local Coordinate System.

• Local Coordinate System (LCS). The coordinate system in which shape geometry is specified. It is the

coordinate system used to specify the “raw” data with no transforms applied.

• Node Coordinate System (NCS). Local coordinates transformed by any transforms specified as attributes at

the node. The NCS is also often referred to as Model Coordinate System (MCS).

• World Coordinate System (WCS). Node coordinates transformed by transforms inherited from a node’s

parent (i.e. the coordinate system at the root of the graph).

• View Coordinate System (VCS). World coordinates transformed by a view matrix.

4 Acronyms and Abbreviations

Abs Absolute Value
BBox Bounding Box
B-Rep Boundary Representation
CAE Computer Aided Engineering
Cg C for Graphics
CODEC Coder-Decoder
GD&T Geometric Dimensioning and Tolerancing
GLSL OpenGL Shader Language
GPU Graphics Processing Unit
GUID Globally Unique Identifier
HSV Hue, Saturation, Value
HSVA Hue, Saturation, Value, Alpha
LCS Local Coordinate System
LOD Level of Detail
LsbFirst Least Significant Byte First
LSG Logical Scene Graph
Max Maximum
MCS Model Coordinate System
Min Minimum
MsbFirst Most Significant Byte First

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

6 © ISO 2011 – All rights reserved

N/A Not Applicable
NCS Node Coordinate System
PCS Parameter Coordinate Space
PLM Product Lifecycle Management
PMI Product and Manufacturing Information
RGB Red, Green, Blue
RGBA Red, Green, Blue, Alpha
TOC Table of Contents.
VPCS Viewpoint Coordinate System
URL Uniform Resource Locator
WCS World Coordinate System

5 Notational Conventions

5.1 Diagrams and Field Descriptions
Symbolic diagrams are used to describe the structure of the JT file. The symbols used in these diagrams have the
following meaning:

The format used to title the diagram symbols is dependent upon the symbol type as follows:

• Diagram “rectangle box” (i.e. standard data types) symbols are titled using a format of “Data_Type : Field_Name.”

The Data_Type is an abbreviated data type symbol as defined in 5.2 Data Types. In the example below the
Data_Type is “I32” (a signed 32 bit integer) and Field_Name is “Count.”

• Diagram “folder” (i.e. logical data collections) symbols are simply titled with a collection name. In the example

below the collection name is “Graph Elements.”

• Diagram “rectangle box with clipped right side corners” (i.e. compressed/encoded data fields) are titled using one of

the following three formats:

1. Data Type; followed by open brace “{“, number of bits used to store value, closed brace “}”, and a colon “:”;
followed by the Field Name. This format for titling the diagram symbol indicates that the data is compressed
but not encoded. The compression is achieved by using only a portion of the total bit range of the data type to
store the value (e.g. if a count value can never be larger than the value “63” then only 6 bits are needed to store
all possible count values). In the example below the Data Type is “U32”, “6” bits are used to store the value,
and Field Name is “Count”

Rectangles represent a data field of one of the standard data types.

Arrows convey the ordering of the information.

Rectangles with the right side corners clipped off represent information that has been
compressed.

Folders represent a logical collection of one or more of the standard data types.
This information is grouped for clarity and the basic data types that compose the
group are detailed in following sections of the document.

I32 : Count

Graph Elements STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 7

2. Data Type followed by open brace “{“, compressed data packet type, “,”, Predictor Type, closed brace “}”, and
a colon “:”; followed by the field name. This format for titling the diagram indicates that a vector of “Data
Type” data (i.e. primal values) is ran through “Predictor Type” algorithm and the resulting output array of
residual values is then compressed and encoded into a series of symbols using one of the two supported
compressed data packet types.

The two supported compressed data packet types are:

o Int32CDP – The Int32CDP (i.e. Int32 Compressed Data Packet) represents the format used to

encode/compress a collection of data into a series of Int32 based symbols. A complete description for
Int32 Compressed Data Packet can be found in 7.1.1 Int32 Compressed Data Packet.

o Float64CDP – The Float64CDP (i.e. Float64 Compressed Data Packet) represents the format used to

encode/compress a collection of data into a series of Float64 based symbols. A complete description
for Float64 Compressed Data Packet can be found in 7.1.2 Float64 Compressed Data Packet.

The Int32 Compressed Data Packet type is used for compressing/encoding both “integer” and “float” (through
quantization) data. While the Float64 Compressed Data Packet type is used for compressing/encoding “double”
data.

In the example below the Data Type is “VecU32”, Int32 Compressed Data Packet type is used, Lag1 Predictor
Type is used, and Field Name is “First Shell Index.”

As mentioned above (with Predictor Type algorithm), the primal input data values are NOT always what is
encoded/compressed. This is because the primal input data is first run through a Predictor Type algorithm,
which produces an output array of residual values (i.e. difference from the predicted value), and this resulting
output array of residual values is the data which is actually encoded/compressed. The JT format supports
several Predictor Type algorithms and each use of Int32CDP or Float64CDP specifies, using the above
described notation format, what Predictor Type algorithm is being used on the data. The JT format supported
Predictor Type algorithms are as follows (note that a sample implementation of decoding the predictor residual
values back into the primal values can be found in Annex C:Decoding Algorithms – An Implementation):

Predictor Type Description
Lag1 Predicts as last value
Lag2 Predicts as value before last
Stride1 Predicts using stride from last two values
Stride2 Predicts using stride from values 2 and 4 back
StripIndex This is a completely empirical predictor. Looks at the values two

back and four back in the stream, and uses the stride between these
two values to predict the current value if and only if the stride lays
between -8 and 8 noninclusive, else it predicts the value as the one
two back plus two. In pseudo-code form the predicted values is
computed as follows:

 if(val2back - val4back < 8 && val2back - val4back > -8)
 iPredicted = val2back + (val2back - val4back);
 else
 iPredicted = val2back + 2;

VecU32{Int32CDP, Lag1} : First Shell

U32{6} : Count

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

8 © ISO 2011 – All rights reserved

Predictor Type Description
Ramp Predict value “i” as values “i’s” index
Xor1 Predict as last, but use XOR instead of subtract to compute

residual
Xor2 Predict as value before last, but use XOR instead of subtract to

compute residual
NULL No prediction applied

3. “Data Type : Field Name” . This format for titling the diagram symbol indicates that the data is both

compressed and encoded. The Data_Type is an abbreviated data type symbol as defined in 5.2 Data Types and
usually represent a vector/array of data. How the data is compressed and encoded into the Data Type is
indicated by a CODEC type and other information stored before the particular data in the file. In the example
below the Data_Type is “VecU32” and Field_Name is “CodeText.”

Note that for some JT file Segment Types there is ZLIB compression also applied to all bytes of element data stored
in the segment. This ZLIB compression applied to all the segment’s data is not indicated in the diagrams through the
use of “rectangle box with clipped right side corners”. Instead, one must examine information stored with the first
Element in the file segment to determine if ZLIB compression is applied to all data in the segment. A complete
description of the JT format data compression and encoding can be found in 6.1.3 Data Segment and 7 Data
Compression.

Following each data collection diagram is detailed descriptions for each entry in the data diagram.

• For rectangles this detail includes the abbreviated data type symbol, field name, verbal data description, and
compression technique/algorithm where appropriate. If the data field is documented as a collection of flags,
then the field is to be treated as a bit mask where the bit mask is formed by combining the flags using the binary
OR operator. Each bits usage is documented, and bit ON indicates flag value is TRUE and bit OFF indicates
flag value is FALSE. Any undocumented bits are reserved.

• For folders (i.e. data collections), if the collection is not detailed under a sub-section of the particular document

section referencing the data collection, then a comment is included following the diagram indicating where in
the document the particular data collection is detailed.

If an arrow appears with a branch in its shaft, then there are two or more options for data to be stored in the file. Which
data is stored will depend on information previously read from the file. The following example shows data field A
followed by (depending on value of A) either data field B, C, or D.

VecU32 : CodeText

A = = 1 A = = 2

U8 : B

U16 : C U32 : D

I32 : A STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 9

In cases where the same data type repeats, a loop construct is used where the number of iterations appears next to the
loop line. There are two forms of this loop construct. The first form is used when the number of iterations is not
controlled by some previous read count value. Instead the number of iterations is either a hard coded count (e.g. always
80 characters) or is indicated by some end-of-list marker in the data itself (thus the count is always minimum of 1). This
first form of the loop construct looks as follows:

The second form of this loop construct is used when the number of iterations is based on data (e.g. count) previously read
from the file. In this case it is valid for there to be zero data iterations (zero count). This second from of the loop
construct looks as follows (data field D is repeated C value times).

5.2 Data Types
The data types that can occur in the JT binary files are listed in the following two tables.

Table 1: Basic Data Types lists the basic/standard data types which can occur in JT file.

Table 1: Basic Data Types
Type Description

UChar An unsigned 8-bit byte.
U8 An unsigned 8-bit integer value.
U16 An unsigned 16-bit integer value.
U32 An unsigned 32-bit integer value.

I16 A signed two’s complement 16-bit integer value.
I32 A signed two’s complement 32-bit integer value.

F32 An IEEE 32-bit floating point number.
F64 An IEEE 64-bit double precision floating point number

Table 2: Composite Data Types lists some composite data types which are used to represent some frequently occurring
groupings of the basic data types (e.g. Vector, RGBA color). The composite data types are defined in this reference
simply for convenience/brevity in describing the JT file contents.

U8 : D
C

I32 : C

U8 : B

I32 : A

80

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

10 © ISO 2011 – All rights reserved

Table 2: Composite Data Types
Type Description Symbolic Diagram

BBoxF32 The BBoxF32 type defines a bounding box using two
CoordF32 types to store the XYZ coordinates for the
bounding box minimum and maximum corner points.

CoordF32 The CoordF32 type defines X, Y, Z coordinate values. So a

CoordF32 is made up of three F32 base types.

CoordF64 The CoordF64 type defines X, Y, Z coordinate values. So a

CoordF64 is made up of three F64 base types.

DirF32 The DirF32 type defines X, Y, Z components of a direction

vector. So a DirF32 is made up of three F32 base types.

GUID The GUID type is a 16 byte (128-bit) number. GUID is

stored/written to the JT file using a four-byte word (U32), 2
two-byte words (U16), and 8 one-byte words (U8) such as:

{3F2504E0-4F89-11D3-9A-0C-03-05-E8-2C-33-01}
In the JT format GUIDs are used as unique identifiers (e.g.
Data Segment ID, Object Type ID, etc.)

HCoordF32 The HCoordF32 type defines X, Y, Z, W homogeneous

coordinate values. So an HCoordF32 is made up of four F32
base types.

HCoordF64 The HCoordF64 type defines X, Y, Z, W homogeneous

coordinate values. So an HCoordF64 is made up of four F64
base types

MbString The MbString type starts with an I32 that defines the number

of characters (NumChar) the string contains. The number of
bytes of character data is “2 * NumChar” (i.e. the strings are
written out as multi-byte characters where each character is
U16 size).

Mx4F32 Defines a 4-by-4 matrix of F32 values for a total of 16 F32

values. The values are stored in row major order (right most
subscript, column varies fastest), that is, the first 4 elements
form the first row of the matrix.

PlaneF32 The PlaneF32 type defines a geometric Plane using the
General Form of the plane equation (Ax + By + Cz + D = 0).
The PlaneF32 type is made up of four F32 base types where
the first three F32 define the plane unit normal vector (A, B,
C) and the last F32 defines the negated perpendicular distance
(D), along normal vector, from the origin to the plane.

Quaternion The Quaternion type defines a 3-dimensional orientation (no

F32 : Data 4

F32 : Data 16

I32 : Count

U16 : Char
Count

F64 : Data 4

F32 : Data 4

U32

U16

U8

2

8

F32 : Data 3

F64 : Data 3

F32 : Data 3

CoordF32 : Min Corner

CoordF32 : Max Corner

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 11

Type Description Symbolic Diagram
translation) in quaternion linear combination form (a + bi + cj
+ dk) where the four scalar values (a, b, c, d) are associated
with the 4 dimensions of a quaternion (1 real dimension, and 3
imaginary dimensions). So the Quaternion type is made up of
four F32 base types.

RGB The RGB type defines a color composed of Red, Green, Blue
components, each of which is a F32. So a RGB type is made
up of three F32 base types. The Red, Green, Blue color
values typically range from 0.0 to 1.0.

RGBA The RGBA type defines a color composed of Red, Green,
Blue, Alpha components, each of which is a F32. So a RGBA
type is made up of four F32 base types. The Red, Green, Blue
color values typically range from 0.0 to 1.0. The Alpha value
ranges from 0.0 to 1.0 where 1.0 indicates completely opaque.

String The String type starts with an I32 that defines the number of
characters (NumChar) the string contains. The number of
bytes of character data is “NumChar” (i.e. the strings are
written out as single-byte characters where each character is
U8 size).

VecF32 The VecF32 type defines a vector/array of F32 base type. The

type starts with an I32 that defines the count of following F32
base type data. So a VecF32 is made up of one I32 followed
by that number of F32. Note that it is valid for the I32 count
number to be equal to “0”, indicating no following F32.

VecF64 The VecF64 type defines a vector/array of F64 base type. The

type starts with an I32 that defines the count of following F64
base type data. So a VecF64 is made up of one I32 followed
by that number of F64. Note that it is valid for the I32 count
number to be equal to “0”, indicating no following F64.

VecI32 The VecI32 type defines a vector/array of I32 base type. The

type starts with an I32 that defines the count of following I32
base type data. So a VecI32 is made up of one I32 followed
by that number of I32. Note that it is valid for the I32 count
number to be equal to “0”, indicating no following I32.

VecU32 The VecU32 type defines a vector/array of U32 base type.

The type starts with an I32 that defines the count of following
U32 base type data. So a VecU32 is made up of one I32
followed by that number of U32. Note that it is valid for the
I32 count number to be equal to “0”, indicating no following
U32.

6 File Format
All objects represented in the JT format are assigned an “object identifier” (e.g. see 6.2.1.1.1.1.1 Base Node Data, or
6.2.1.1.2.1.1 Base Attribute Data) and all references from one object to another object are represented in the JT format
using the referenced object’s “object identifier”. It is the responsibility of JT format readers/writers to maintain the
integrity of these object references by doing appropriate pointer unswizzling/swizzling as JT format data is read into
memory or written out to disk. Where “pointer swizzling” refers to the process of converting references based on object
identifiers into direct memory pointer references and “pointer unswizzling” is the reverse operation (i.e. replacing
references based on memory pointers with object identifier references).

I32 : Count

U32 : Data
Count

I32 : Count

I32 : Data
Count

I32 : Count

F64 : Data
Count

I32 : Count

F32 : Data
Count

I32 : Count

U8 : Char
Count

F32 : Data 4

F32 : Data 3

F32 : Data 4

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

12 © ISO 2011 – All rights reserved

6.1 File Structure
A JT file is structured as a sequence of blocks/segments. The File Header block is always the first block of data in the
file. The File Header is followed (in no particular order) by a TOC Segment and a series of other Data Segments. The
one Data Segment which must always exist to have a reference compliant JT file is the 6.2.1 LSG Segment.

The TOC Segment is located within the file using data stored in the File Header. Within the TOC Segment is
information that locates all other Data Segments within the file. Although there are no JT format compliance rules about
where the TOC Segment must be located within the file, in practice the TOC Segment is typically located either
immediately following the File header (as shown in the below Figure) or at the very end of the file following all other
Data Segments.

Figure 1: File Structure

6.1.1 File Header
The File Header is always the first block of data in a JT file. The File Header contains information about the JT file
version and TOC location, which Loaders use to determine how to read the file. The exact contents of the File Header
are as follows:

Figure 2: File Header data collection

UChar : Version
An 80-character version string defining the version of the file format used to write this file. The Version string has the
following format:

UChar : Version

UChar : Byte Order

I32 : File Attributes

I32 : TOC Offset

80

GUID : LSG Segment ID

File Header

Data Segment

TOC Segment

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 13

Version M.n Comment

Where M is replaced by the major version number, n is replaced by the minor version number, and Comment provides
other unspecified information. The version string is padded with spaces to a length of 75 ASCII characters and then the
final five characters must be filled with the following linefeed and carriage return character combination (shown using c-
style syntax):

Version[75] = ‘ ‘
Version[76] = ‘\n‘
Version[77] = ‘\r‘
Version[78] = ‘\n‘
Version[79] = ‘ ‘

These final 5 characters (shown above and referred to as ASCII/binary translation detection bytes) can be used by JT file
readers to validate that the JT files has not been corrupted by ASCII mode FTP transfers.

So for a JT Version 8.1 file this string will look as follows:

“Version 8.1 JT \n\r\n “

UChar : Byte Order
Defines the file byte order and thus can be used by the loader to determine if there is a mismatch (thus byte swapping
required) between the file byte order and the machine (on which the loader is being run) byte order. Valid values for
Byte Order are:

0 – Least Significant byte first (LsbFirst)
1 – Most Significant byte first (MsbFirst)

I32 : File Attributes
All bits in this field are reserved

I32 : TOC Offset
Defines the byte offset from the top of the file to the start of the TOC Segment.

GUID : LSG Segment ID
LSG Segment ID specifies the globally unique identifier for the Logical Scene Graph Data Segment in the file. This ID
along with the information in the TOC Segment can be used to locate the start of LSG Data Segment in the file. This ID
is needed because without it a loader would have no way of knowing the location of the root LSG Data Segment. All
other Data Segments must be accessible from the root LSG Data Segment.

6.1.2 TOC Segment
The TOC Segment contains information identifying and locating all individually addressable Data Segments within the
file. A TOC Segment is always required to exist somewhere within a JT file. The actual location of the TOC Segment
within the file is specified by the File Header segment’s “TOC Offset” field. The TOC Segment contains one TOC Entry
for each individually addressable Data Segment in the file.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

14 © ISO 2011 – All rights reserved

Figure 3: TOC Segment data collection

I32 : Entry Count
Entry Count is the number of entries in the TOC.

6.1.2.1 TOC Entry
Each TOC Entry represents a Data Segment within the JT File. The essential function of a TOC Entry is to map a
Segment ID to an absolute byte offset within the file.

Figure 4: TOC Entry data collection

GUID : Segment ID
Segment ID is the globally unique identifier for the segment.

I32 : Segment Offset
Segment Offset defines the byte offset from the top of the file to start of the segment.

I32 : Segment Length
Segment Length is the total size of the segment in bytes.

U32 : Segment Attributes
Segment Attributes is a collection of segment information encoded within a single U32 using the following bit allocation.

Bits 0 - 23 Reserved for future use.
Bits 24 - 31 Segment type. Complete list of Segment types can be found in Table 3: Segment

Types.

6.1.3 Data Segment
All data stored in a JT file must be defined within a Data Segment. Data Segments are “typed” based on the general
classification of data they contain. See Segment Type field description below for a complete list of the segment types.

I32 : Segment Offset

I32 : Segment Length

U32 : Segment Attributes

GUID : Segment ID

I32 : Entry Count

TOC Entry
Entry Count

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 15

Beyond specific data field compression/encoding, some Data Segment types also have a ZLIB compression conditionally
applied to all the Data bytes of information persisted within the segment. Whether ZLIB compression is conditionally
applied to a segment’s Data bytes of information is indicated by information stored with the first “Element” in the
segment. Also Table 3: Segment Types has a column indicating whether the Segment Type may have ZLIB
compression applied to its Data bytes.

All Data Segments have the same basic structure.

Figure 5: Data Segment data collection

6.1.3.1 Segment Header
Segment Header contains information that determines how the remainder of the Segment is interpreted by the loader.

Figure 6: Segment Header data collection

GUID : Segment ID
Global Unique Identifier for the segment.

I32 : Segment Type
Segment Type defines a broad classification of the segment contents. For example, a Segment Type of “1” denotes that
the segment contains Logical Scene Graph material; “2” denotes contents of a B-Rep, etc.

The complete list of segment types is as follows:

Table 3: Segment Types

Type Data Contents
ZLIB Compression Conditionally

Applied to all of the Segment’s
Element Data

1 Logical Scene Graph Yes
2 JT B-Rep Yes
3 PMI Data Yes
4 Meta Data Yes
6 Shape No
7 Shape LOD0 No
8 Shape LOD1 No
9 Shape LOD2 No
10 Shape LOD3 No

I32 : Segment Type

I32 : Segment Length

GUID : Segment ID

Segment Header

Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

16 © ISO 2011 – All rights reserved

Type Data Contents
ZLIB Compression Conditionally

Applied to all of the Segment’s
Element Data

11 Shape LOD4 No
12 Shape LOD5 No
13 Shape LOD6 No
14 Shape LOD7 No
15 Shape LOD8 No
16 Shape LOD9 No
17 XT B-Rep Yes
18 Wireframe Representation Yes

Note: Segment Types 7-16 all identify the contents as LOD Shape data, where the increasing type number is

intended to convey some notion of how high an LOD the specific shape segment represents. The lower the
type in this 7-16 range the more detailed the Shape LOD (i.e. Segment Type “7” is the most detailed Shape
LOD Segment). For the rare case when there are more than 10 LODs, LOD9 and greater are all assigned
Segment Type “16”.

Note: The more generic Shape Segment type (i.e. Segment Type “6”) is used when the Shape Segment has one

or more of the following characteristics:

1. Not a descendant of an LOD node.
2. Is referenced by (i.e. is a child of) more than one LOD node.
3. Shape has its own built-in LODs
4. No way to determine what LOD a Shape Segment represents.

I32 : Segment Length
Segment Length is the total size of the segment in bytes. This length value includes all segment Data bytes plus the
Segment Header bytes (i.e. it is the size of the complete segment) and should be equal to the length value stored with this
segment’s TOC Entry.

6.1.3.2 Data
The interpretation of the Data section depends on the Segment Type. See 6.2 Data Segments for complete description for
all Data Segment that may be contained in a JT file.

Although the Data section is Segment Type dependent there is a common structure which often occurs within the Data
section. This structure is a list or multiple lists of Elements where each Element has the same basic structure which
consists of some fixed length header information describing the type of object contained in the Element, followed by
some variable length object type specific data.

Individual data fields of an Element data collection (and its children data collections) may have advanced
compression/encoding applied to them as indicated through compression related data values stored as part of the
particular Element’s storage format. In addition, another level of compression (i.e. ZLIB compression) may be
conditionally applied to all bytes of information stored for all Elements within a particular Segment. Not all Segment
types support ZLIB compression on all Segment data as indicated in Table 3: Segment Types. If a particular file
Segment is of the type which supports ZLIB compression on all the Segment data, whether this compression is applied or
not is indicated by data values stored in the Element Header ZLIB data collection of the first Element within the
Segment. An in-depth description of JT file compression/encoding techniques can be found in 7 Data Compression.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 17

Figure 7: Data data collection

6.1.3.2.1 Element Header
Element Header contains data defining the length in bytes of the Element along with information describing the object
type contained in the Element.

Figure 8: Element Header data collection

I32 : Element Length
Element Length is the total length in bytes of the element Object Data.

GUID : Object Type ID
Object Type ID is the globally unique identifier for the object type. A complete list of the assigned GUID for all object
types stored in a JT file can be found in Annex A: Object Type Identifiers.

UChar : Object Base Type
Object Base Type identifies the base object type. This is useful when an unknown element type is encountered and thus
the best the loader can do is to read the known Object Base Type data bytes (base type object data is always written first)
and then skip (read pass) the bytes of unknown data using knowledge of number of bytes encompassing the Object Base
Type data and the unknown types Length field. If the Object Base Type is unknown then the loader should simply skip
(read pass) Element Length number of bytes.

Valid Object Base Types include the following:

Table 4: Object Base Types
Object
Base
Type

Description Object Base Type’s Data
Format

255 Unknown Graph Node Object none
0 Base Graph Node Object 6.2.1.1.1.1.1 Base Node Data
1 Group Graph Node Object 6.2.1.1.1.3.1Group Node Data
2 Shape Graph Node Object 6.2.1.1.1.10.1.1 Base Shape Data
3 Base Attribute Object 6.2.1.1.2.1.1 Base Attribute Data
4 Shape LOD none
5 Base Property Object 6.2.1.2.1.1 Base Property Atom Data

I32 : Element Length

GUID : Object Type ID

UChar : Object Base Type

Object Data

Element Header

Object Data

Element Header ZLIB

For Segment Types that do NOT support
ZLIB compression on all Segment Data.

(see Table 3: Segment Types.)

For Segment Types that support ZLIB
compression on all Segment Data

(see Table 3: Segment Types.)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

18 © ISO 2011 – All rights reserved

Object
Base
Type

Description Object Base Type’s Data
Format

6 JT Object Reference Object 6.2.1.2.5 JT Object Reference Property
Atom Element without the Element
Header ZLIB data collection.

8 JT Late Loaded Property Object 6.2.1.2.7 Late Loaded Property Atom
Element without the Element Header
ZLIB data collection.

9 JtBase (none) none

6.1.3.2.2 Element Header ZLIB
Element Header ZLIB data collection is the format of Element Header data used by all Elements within Segment Types
that support ZLIB compression on all data in the Segment. See Table 3: Segment Types for information on whether a
particular Segment Type supports ZLIB compression on all data in the Segment.

Figure 9: Element Header ZLIB data collection

Complete description for Element Header can be found in 6.1.3.2.1Element Header. Note that if Compression Flag
indicates that ZLIB compression is ON for all element data in the Segment, then the Element Header data collection is
also compressed accordingly.

U32 : Compression Flag
Compression Flag is a flag indicating whether ZLIB compression is ON/OFF for all data elements in the file Segment.
Valid values include the following:

 = 2 − ZLIB compression is ON
!= 2 − ZLIB compression is OFF.

I32 : Compressed Data Length
Compressed Data Length specifies the compressed data length in number of bytes. Note that data field Compression
Algorithm is included in this count.

U8 : Compression Algorithm
Compression Algorithm specifies the compression algorithm applied to all data in the Segment. Valid values include the
following:

Element Header

If first Element
within file Segment

I32 : Compressed Data Length

U8 : Compression Algorithm

U32 : Compression Flag

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 19

= 1 − No compression
= 2 − ZLIB compression

6.1.3.2.3 Object Data
The interpretation of the Object Data section depends upon the Object Type ID stored in the Element Header (see
6.1.3.2.1 Element Header).

6.2 Data Segments

6.2.1 LSG Segment
LSG Segment contains a collection of objects (i.e. Elements) connected through directed references to form a directed
acyclic graph structure (i.e. the LSG). The LSG is the graphical description of the model and contains graphics shapes
and attributes representing the model’s physical components, properties identifying arbitrary metadata (e.g. names,
semantic roles) of those components, and a hierarchical structure expressing the component relationships. The “directed”
nature of the LSG references implies that there is by default “state/attribute” inheritance from ancestor to descendant (i.e.
predecessor to successor). It is the responsibility of the loader to insure that the acyclic property of the resulting LSG is
maintained.

The first Graph Element in a LSG Segment should always be a Partition Node. The LSG Segment type supports ZLIB
compression on all element data, so all elements in LSG Segment use the Element Header ZLIB form of element header
data.

Figure 10: LSG Segment data collection

Complete description for Segment Header can be found in 6.1.3.1Segment Header.

6.2.1.1 Graph Elements
Graph Elements form the backbone of the LSG directed acyclic graph structure and in doing so serve as the JT model’s
fundamental description. There are two general classifications of Graph elements, Node Elements and Attribute
Elements.

Node Elements are nodes in the LSG and in general can be categorized as either an internal or leaf node. The leaf nodes
are typically shape nodes used to represent a model’s physical components and as such either contain or reference some
graphical representation or geometry. The internal nodes define the hierarchical organization of the leaf nodes, forming

Segment Header

Graph Elements Until End-Of-Elements marker
reached. See Table 10: Object
Type Identifiers for marker ID.

Property Atom
Elements

Property Table

Until End-Of-Elements marker
reached. See Table 10: Object
Type Identifiers for marker ID.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

20 © ISO 2011 – All rights reserved

both spatial and logical model relationships, and often contain or reference information (e.g. Attribute Elements) that is
inherited down the LSG to all descendant nodes.

Attribute Elements represent graphical data (like appearance characteristics (e.g. color), or positional transformations)
that can be attached to a node, and inherit down the LSG.

Each of these general Graph Element classifications (i.e. Node/Attribute Elements) is sub-typed into specific/concrete
types based on data content and implied specialized behavior. The following sub-sections describe each of the Node and
Attribute Element types.

6.2.1.1.1 Node Elements
Node Elements represent the relationships of a model’s components. The model’s component hierarchy is formed via
certain types of Node Elements containing collections of references to other Node Elements who in turn may reference
other collections of Node Elements. Node Elements are also the holders (either directly or indirectly) of geometric
shape, properties, and other information defining a model’s components and representations.

6.2.1.1.1.1 Base Node Element
Object Type ID: 0x10dd1035, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Base Node Element represents the simplest form of a node that can exist within the LSG. The Base Node Element has no
implied LSG semantic behavior nor can it contain any children nodes.

Figure 11: Base Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

6.2.1.1.1.1.1 Base Node Data

Figure 12: Base Node Data data collection

I32 : Object ID

U32 : Node Flags

I32 : Attribute Count

I32 : Attribute Object ID
Attribute Count

Base Node Data

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 21

I32 : Object ID
Object ID is the identifier for this Object. Other objects referencing this particular object do so using the Object ID.

U32 : Node Flags
Node Flags is a collection of flags. The flags are combined using the binary OR operator. These flags store various state
information of the node object. All undocumented bits are reserved.

0x00000001 − Ignore Flag
= 0 – Algorithms traversing the LSG structure should include/process this node.
= 1 – Algorithms traversing the LSG structure should skip the whole subgraph rooted

at this node. Essentially the traversal should be pruned.

I32 : Attribute Count
Attribute Count indicates the number of Attribute Objects referenced by this Node Object. A node may have zero
Attribute Object references.

I32 : Attribute Object ID
Attribute Object ID is the identifier for a referenced Attribute Object.

6.2.1.1.1.2 Partition Node Element
Object Type ID: 0x10dd103e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

A Partition Node represents an external JT file reference and provides a means to partition a model into multiple physical
JT files (e.g. separate JT file per part in an assembly). When the referenced JT file is opened, the Partition Node’s
children are really the children of the LSG root node for the underlying JT file. Usage of Partition Nodes in LSG also
aids in supporting JT file loader/reader “best practice” of late loading data (i.e. can delay opening and loading the
externally referenced JT file until the data is needed).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

22 © ISO 2011 – All rights reserved

Figure 13: Partition Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Group Node Data can be found in 6.2.1.1.1.3.1Group Node Data.

I32 : Partition Flags
Partition Flags is a collection of flags. The flags are combined using the binary OR operator. These flags store various
state information of the Partition Node Object such as indicating the presence of optional data. All undocumented bits
are reserved.

0x00000001 − Untransformed bounding box is written.

MbString : File Name
File Name is the relative path portion of the Partition’s file location. Where “relative path” should be interpreted to mean
the string contains the file name along with any additional path information that locates the partition JT file relative to the
location of the referencing JT file

Complete

I32 : Partition Flags

MbString : File Name

F32 : Area

Vertex Count Range

Node Count Range

Polygon Count Range

BBoxF32 : Transformed BBox

BBoxF32 : Untransformed BBox

Element Header ZLIB

(Partition Flags & 0x00000001) != 0

(Partition Flags & 0x00000001) = = 0

BBoxF32 : Reserved Field

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 23

BBoxF32 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion

BBoxF32 : Transformed BBox
The Transformed BBox is an NCS axis aligned bounding box and represents the transformed geometry extents for all
geometry contained in the Partition Node. This bounding box information may be used by a renderer of JT data to
determine whether to load the data contained within the Partition node (i.e. is any part of the bounding box within the
view frustum).

F32 : Area
Area is the total surface area for this node and all of its descendents. This value is store in NCS coordinate space (i.e.
values scaled by NCS scaling).

BBoxF32 : Untransformed BBox
The Untransformed BBox is only present if Bit 0x00000001 of Partition Flags data field is ON. The Untransformed
BBox is an LCS axis-aligned bounding box and represents the untransformed geometry extents for all geometry
contained in the Partition Node. This bounding box information may be used by a renderer of JT data to determine
whether to load the data contained within the Partition node (i.e. is any part of the bounding box within the view
frustum).

6.2.1.1.1.2.1 Vertex Count Range
Vertex Count Range is the aggregate minimum and maximum vertex count for all descendants of the Partition Node.
There is a minimum and maximum value to accommodate descendant branches having LOD nodes, which encompass a
range of count values within the branch, and to accommodate nodes that can themselves generate varying
representations. The minimum value represents the least vertex count that can be achieved by the Partition Node’s
descendants. The maximum value represents the greatest vertex count that can be achieved by the Partition Node’s
descendants.

Figure 14: Vertex Count Range data collection

I32 : Min Count
Min Count is the least vertex count that can be achieved by the Partition Node’s descendants.

I32 : Max Count
Max Count is the maximum vertex count that can be achieved by the Partition Node’s descendants.

6.2.1.1.1.2.2 Node Count Range
Node Count Range is the aggregate minimum and maximum count of all node descendants of the Partition Node. There
is a minimum and maximum value to accommodate descendant branches having LOD nodes, which encompass a range
of descendant node count values within the branch. The minimum value represents the least node count that can be
achieved by the Partition Node’s descendants. The maximum value represents the greatest node count that can be
achieved by the Partition Node’s descendants.

The data format for Node Count Range is the same as that described in 6.2.1.1.1.2.1Vertex Count Range.

I32 : Min Count

I32 : Max Count

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

24 © ISO 2011 – All rights reserved

6.2.1.1.1.2.3 Polygon Count Range
Polygon Count Range is the aggregate minimum and maximum polygon count for all descendants of the Partition Node.
There is a minimum and maximum value to accommodate descendant branches having LOD nodes, which encompass a
range of count values within the branch, and to accommodate nodes that can themselves generate varying
representations. The minimum value represents the least polygon count that can be achieved by the Partition Node’s
descendants. The maximum value represents the greatest polygon count that can be achieved by the Partition Node’s
descendants.

The data format for Polygon Count Range is the same as that described in 6.2.1.1.1.2.1Vertex Count Range.

6.2.1.1.1.3 Group Node Element
Object Type ID: 0x10dd101b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Group Nodes contain an ordered list of references to other nodes, called the group’s children. Group nodes may contain
zero or more children; the children may be of any node type. Group nodes may not contain references to themselves or
their ancestors.

Figure 15: Group Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

6.2.1.1.1.3.1 Group Node Data

Figure 16: Group Node Data data collection

Complete description for Base Node Data can be found in 6.2.1.1.1.1.1Base Node Data.

I32 : Child Count
Child Count indicates the number of child nodes for this Group Node Object. A node may have zero children.

I32 : Child Node Object ID
Child Node Object ID is the identifier for the referenced Node Object.

Base Node Data

I32 : Child Count

I32 : Child Node Object ID
 Child Count

Group Node Data

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 25

6.2.1.1.1.4 Instance Node Element
Object Type ID: 0x10dd102a, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

An Instance Node contains a single reference to another node. Their purpose is to allow sharing of nodes and assignment
of instance-specific attributes for the instanced node. Instance Nodes may not contain references to themselves or their
ancestors.

For example, a Group Node could use Instance Nodes to instance the same Shape Node several times, applying different
material properties and matrix transformations to each instance. Note that this could also be done by using Group Nodes
instead of Instance Nodes, but Instance Nodes require fewer resources.

Figure 17: Instance Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Node Data can be found in 6.2.1.1.1.1.1Base Node Data.

I32 : Child Node Object ID
Child Node Object ID is the identifier for the instanced Node Object.

6.2.1.1.1.5 Part Node Element
Object Type ID: 0xce357244, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1

A Part Node Element represents the root node for a particular Part within a LSG structure. Every unique Part represented
within a LSG structure should have a corresponding Part Node Element. A Part Node Element typically references
(using Late Loaded Property Atoms) additional Part specific geometric data and/or properties (e.g. B-Rep data, PMI
data).

Figure 18: Part Node Element data collection

Meta Data Node Data

I16 : Version Number

I32: Reserved Field

Element Header ZLIB

Base Node Data

I32 : Child Node Object ID

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

26 © ISO 2011 – All rights reserved

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Meta Data Node Data can be found in 6.2.1.1.1.6.1Meta Data Node Data.

I16 : Version Number
Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for
Part nodes.

I32: Reserved Field
Reserved Field is a data field reserved for future JT format expansion

6.2.1.1.1.6 Meta Data Node Element
Object Type ID: 0xce357245, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1

The Meta Data Node Element is a node type used for storing references to specific “late loaded” meta-data (e.g.
properties, PMI). The referenced meta-data is stored in a separate addressable segment of the JT File (see 6.2.6 Meta
Data Segment) and thus the use of this Meta Data Node Element is in support of the JT file loader/reader “best practice”
of late loading data (i.e. storing the referenced meta-data in separate addressable segment of the JT file allows a JT file
loader/reader to ignore this node’s meta-data on initial load and instead late-load the node’s meta-data upon demand so
that the associated meta-data does not consume memory until needed).

Figure 19: Meta Data Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

6.2.1.1.1.6.1 Meta Data Node Data

Figure 20: Meta Data Node Data data collection

Complete description for Group Node Data can be found in 6.2.1.1.1.3.1Group Node Data.

I16 : Version Number
Version Number is the version identifier for this data. Version number “0x0001” is currently the only valid value.

6.2.1.1.1.7 LOD Node Element
Object Type ID: 0x10dd102c, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Complete

I16 : Version Number

Meta Data Node Data

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 27

An LOD Node holds a list of alternate representations. The list is represented as the children of a base group node,
however, there are no implicit semantics associated with the ordering. Traversers of LSG may apply semantics to the
ordering as part of alternative representation selection.

Each alternative representation could be a sub-assembly where the alternative representation is a group node with an
assembly of children.

Figure 21: LOD Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

6.2.1.1.1.7.1 LOD Node Data

Figure 22: LOD Node Data data collection

Complete description for Group Node Data can be found in 6.2.1.1.1.3.1Group Node Data.

VecF32 : Reserved Field
Reserved Field is a vector data field reserved for future JT format expansion.

I32 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

6.2.1.1.1.8 Range LOD Node Element
Object Type ID: 0x10dd104c, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Range LOD Nodes hold a list of alternate representations and the ranges over which those representations are
appropriate. Range Limits indicate the distance between a specified center point and the eye point, within which the
corresponding alternate representation is appropriate. Traversers of LSG consult these range limit values when making
an alternative representation selection.

Complete

VecF32 : Reserved Field

I32 : Reserved Field

LOD Node Data

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

28 © ISO 2011 – All rights reserved

Figure 23: Range LOD Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for LOD Node Data can be found in 6.2.1.1.1.7.1 LOD Node Data

VecF32 : Range Limits
Range Limits indicate the WCS distance between a specified center point and the eye point, within which the
corresponding alternate representation is appropriate. It is not required that the count of range limits is equivalent to the
number of alternative representations. These values are considered “soft values” in that loaders/viewers of JT data are
free to throw these values away and compute new values based on their desired LOD selection semantics.

 Best practices suggest that LSG traversers apply the following strategy, at Range LOD Nodes, when making alternative
representation selection decisions based on Range Limits: The first alternate representation is valid when the distance
between the center and the eye point is less than or equal to the first range limit (and when no range limits are specified).
The second alternate representation is valid when the distance is greater than the first limit and less than or equal to the
second limit, and so on. The last alternate representation is valid for all distances greater than the last specified limit.

CoordF32 : Center
Center specifies the X,Y,Z coordinates for the NCS center point upon which alternative representation selection eye
distance computations are based. Typically this location is the center of the highest-detail alternative representation.
These values are considered “soft values” in that loaders/viewers of JT data are free to throw these values away and
compute new values based on their desired LOD selection semantics

6.2.1.1.1.9 Switch Node Element
Object Type ID: 0x10dd10f3, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

The Switch Node is very much like a Group Node in that it contains an ordered list of references to other nodes, called
the children nodes. The difference is that a Switch Node also contains additional data indicating which child (one or
none) a LSG traverser should process/traverse.

LOD Node Data

VecF32 : Range Limits

CoordF32 : Center

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 29

Figure 24: Switch Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Group Node Data can be found in 6.2.1.1.1.3.1Group Node Data.

I16 : Version Number
Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for
Switch nodes.

I32 : Selected Child
Selected Child is the index for the selected child node. Valid Selected Child values reside within the following range: “-1
< Selected Child < Child Count”. Where “-1” indicates that no child is to be selected and “Child Count” is the data field
value from 6.2.1.1.1.3.1Group Node Data.

6.2.1.1.1.10 Shape Node Elements
Shape Node Elements are “leaf” nodes within the LSG structure and contain or reference the geometric shape definition
data (e.g. vertices, polygons, normals, etc.).

Typically Shape Node Elements do not directly contain the actual geometric shape definition data, but instead reference
(using Late Loaded Property Atoms) Shape LOD Segments within the file for the actual geometric shape definition data.
Storing the geometric shape definition data within separate independently addressable data segments in the JT file, allows
a JT file reader to be structured to support the “best practice” of delaying the loading/reading of associated data until it is
actually needed. Complete descriptions for Late Loaded Property Atom Elements and Shape LOD Segments can be
found in 6.2.1.2.7 Late Loaded Property Atom Element and 6.2.2 Shape LOD Segment respectively.

There are several types of Shape Node Elements which the JT format supports. The following sub-sections document the
various Shape Node Element types.

6.2.1.1.1.10.1 Base Shape Node Element
Object Type ID: 0x10dd1059, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Base Shape Node Element represents the simplest form of a shape node that can exist within the LSG.

Complete

I16 : Version Number

I32 : Selected Child

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

30 © ISO 2011 – All rights reserved

Figure 25: Base Shape Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

6.2.1.1.1.10.1.1 Base Shape Data

Figure 26: Base Shape Data data collection

Complete description for Base Node Data can be found in 6.2.1.1.1.1.1Base Node Data

BBoxF32 : Transformed BBox
The Transformed BBox is an axis-aligned NCS bounding box and represents the transformed geometry extents for all
geometry contained in the Shape Node.

F32 : Compression Level

I32 : Size

Base Node Data

BBoxF32 : Transformed BBox

BBoxF32 : Untransformed BBox

F32 : Area

Vertex Count Range

Polygon Count Range

Node Count Range

Base Shape Data

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 31

BBoxF32 : Untransformed BBox
The Untransformed BBox is an axis-aligned LCS bounding box and represents the untransformed geometry extents for
all geometry contained in the Shape Node.

F32 : Area
Area is the total surface area for this node and all of its descendents. This value is stored in NCS coordinate space (i.e.
values scaled by NCS scaling).

I32 : Size
Size specifies the in memory length in bytes of the associated/referenced Shape LOD Element. This Size value has no
relevancy to the on-disk (JT File) size of the associated/referenced Shape LOD Element. A value of zero indicates that
the in memory size is unknown. See 6.2.2.1Shape LOD Element for complete description of Shape LOD Elements. JT
file loaders/readers can leverage this Size value during late load processing to help pre-determine if there is sufficient
memory to load the Shape LOD Element.

F32 : Compression Level
Compression Level specifies the qualitative compression level applied to the associated/referenced Shape LOD Element.
See 6.2.2.1Shape LOD Element for complete description of Shape LOD Elements. This compression level value is a
qualitative representation of the compression applied to the Shape LOD Element. The absolute compression (derived
from this qualitative level) applied to the Shape LOD Element is physically represented in the JT format by other data
stored with both the Shape Node and the Shape LOD Element (e.g. 6.2.1.1.1.10.2.1.1Quantization Parameters), and thus
its not necessary to understand how to map this qualitative value to absolute compression values in order to
uncompress/decode the data

= 0.0 − “Lossless” compression used.

= 0.1 − “Minimally Lossy” compression used. This setting generally results in modest
compression ratios with little if any visual difference when compared to the same
images rendered from “Lossless” compressed Shape LOD Element.

= 0.5 − “Moderate Lossy” compression used. The setting results in more data loss than

“Minimally Lossy” and thus higher compression ratio is obtained. Some visual
difference will likely be noticeable when compared to the same images rendered from
“Lossless” compressed Shape LOD Element.

= 1.0 − “Aggressive Lossy” compression used. With this setting as much data as possible will

be thrown away, resulting in highest compression ratio, while still maintaining a
modestly useable representation of the underlying data. Visual differences may be
evident when compared to the same images rendered from “Lossless” compressed
Shape LOD Element.

6.2.1.1.1.10.1.1.1 Vertex Count Range
Vertex Count Range is the aggregate minimum and maximum vertex count for this Shape Node. There is a minimum and
maximum value to accommodate shape types that can themselves generate varying representations. The minimum value
represents the least vertex count that can be achieved by the Shape Node. The maximum value represents the greatest
vertex count that can be achieved by the Shape Node.

Figure 27: Vertex Count Range data collection

I32 : Min Count

I32 : Max Count

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

32 © ISO 2011 – All rights reserved

I32 : Min Count
Min Count is the least vertex count that can be achieved by this Shape Node.

I32 : Max Count
Max Count is the maximum vertex count that can be achieved by this Shape Node. A value of “-1” indicates maximum
vertex count is unknown.

6.2.1.1.1.10.1.1.2 Node Count Range
Node Count Range is the aggregate minimum and maximum count of all node descendants of the Shape Node. The
minimum value represents the least node count that can be achieved by the Shape Node’s descendants. The maximum
value represents the greatest node count that can be achieved by Shape Node’s descendants. For Shape Nodes the
minimum and maximum count values should always be equal to “1”.

The data format for Node Count Range is the same as that described in 6.2.1.1.1.10.1.1.1Vertex Count Range.

6.2.1.1.1.10.1.1.3 Polygon Count Range
Polygon Count Range is the aggregate minimum and maximum polygon count for this Shape Node. There is a minimum
and maximum value to accommodate shape types that can themselves generate varying representations. The minimum
value represents the least polygon count that can be achieved by the Shape Node. The maximum value represents the
greatest polygon count that can be achieved by the Shape Node.

The data format for Polygon Count Range is the same as that described in 6.2.1.1.1.10.1.1.1Vertex Count Range.

6.2.1.1.1.10.2 Vertex Shape Node Element
Object Type ID: 0x10dd107f, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Vertex Shape Node Element represents shapes defined by collections of vertices.

Figure 28: Vertex Shape Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Vertex Shape Data

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 33

6.2.1.1.1.10.2.1 Vertex Shape Data

Figure 29: Vertex Shape Data data collection

Complete description for Base Shape Data can be found in 6.2.1.1.1.10.1.1 Base Shape Data.

I32 : Normal Binding
Normal Binding specifies how (at what granularity) normal vector data is supplied (“bound”) for the shape in the
associated/referenced Shape LOD Element. See 6.2.2.1Shape LOD Element for complete description of Shape LOD
Elements.

= 0 − None. Shape has no normal data.
= 1 − Per Vertex. Shape has a normal vector for every vertex.
= 2 − Per Facet. Shape has a normal vector for every face/polygon.
= 3 − Per Primitive. Shape has a normal vector for each shape primitive (e.g. a normal for each

tri-strip in a tri-strip set).

I32 : Texture Coord Binding
Texture Coord Binding specifies how (at what granularity) texture coordinate data is supplied (“bound”) for the shape in
the associated/referenced Shape LOD Element. Valid values are the same as documented for I32 : Normal Binding data
field.

I32 : Color Binding
Color Binding specifies how (at what granularity) color data is supplied (“bound”) for the shape in the
associated/referenced Shape LOD Element. Valid values are the same as documented for I32 : Normal Binding data
field.

6.2.1.1.1.10.2.1.1 Quantization Parameters
Quantization Parameters specifies for each shape data type grouping (i.e. Vertex, Normal, Texture Coordinates, Color)
the number of quantization bits used for given qualitative compression level. Although these Quantization Parameters
values are saved in the associated/referenced Shape LOD Element, they are also saved here so that a JT File loader/reader
does not have to load the Shape LOD Element in order to determine the Shape quantization level. See 6.2.2.1Shape LOD
Element for complete description of Shape LOD Elements.

Base Shape Data

I32 : Normal Binding

I32 : Texture Coord Binding

I32 : Color Binding

Quantization Parameters

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

34 © ISO 2011 – All rights reserved

Figure 30: Quantization Parameters data collection

U8 : Bits Per Vertex
Bits Per Vertex specifies the number of quantization bits per vertex coordinate component. Value must be within range
[0:24] inclusive.

U8 : Normal Bits Factor
Normal Bits Factor is a parameter used to calculate the number of quantization bits for normal vectors. Value must be
within range [0:13] inclusive . The actual number of quantization bits per normal is computed using this factor and the
following formula: “BitsPerNormal = 6 + 2 * Normal Bits Factor”

U8 : Bits Per Texture Coord
Bits Per Texture Coord specifies the number of quantization bits per texture coordinate component. Value must be
within range [0:24] inclusive.

U8 : Bits Per Color
Bits Per Color specifies the number of quantization bits per color component. Value must be within range [0:24]
inclusive.

6.2.1.1.1.10.3 Tri-Strip Set Shape Node Element
Object Type ID: 0x10dd1077, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

A Tri-Strip Set Shape Node Element defines a collection of independent and unconnected triangle strips. Each strip
constitutes one primitive of the set and is defined by one list of vertex coordinates.

Figure 31: Tri-Strip Set Shape Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Vertex Shape Data can be found in 6.2.1.1.1.10.2.1Vertex Shape Data.

6.2.1.1.1.10.4 Polyline Set Shape Node Element
Object Type ID: 0x10dd1046, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Vertex Shape Data

Element Header ZLIB

U8 : Bits Per Vertex

U8 : Normal Bits Factor

U8 : Bits Per Texture Coord

U8 : Bits Per Color

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 35

A Polyline Set Shape Node Element defines a collection of independent and unconnected polylines. Each polyline
constitutes one primitive of the set and is defined by one list of vertex coordinates.

Figure 32: Polyline Set Shape Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Vertex Shape Data can be found in 6.2.1.1.1.10.2.1Vertex Shape Data.

F32 : Area Factor
Area Factor specifies a multiplier factor applied to a Polyline Set computed surface area. In JT data viewer applications
there may be LOD selection semantics that are based on screen coverage calculations. The so-called ”surface area” of a
polyline is computed as if each line segment were a square. This Area Factor turns each edge into a narrow rectangle.
Valid Area Factor values lie in the range (0,1].

6.2.1.1.1.10.5 Point Set Shape Node Element
Object Type ID: 0x98134716, 0x0010, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83, 0x5d, 0x5a

A Point Set Shape Node Element defines a collection of independent and unconnected points. Each point constitutes one
primitive of the set and is defined by one vertex coordinate.

Figure 33: Point Set Shape Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Vertex Shape Data can be found in 6.2.1.1.1.10.2.1Vertex Shape Data.

Vertex Shape Data

F32 : Area Factor

Element Header ZLIB

Vertex Shape Data

F32 : Area Factor

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

36 © ISO 2011 – All rights reserved

F32 : Area Factor
Area Factor specifies a multiplier factor applied to the Point Set computed surface area. In JT data viewer applications
there may be LOD selection semantics that are based on screen coverage calculations. The computed “surface area” of a
Point Set is equal to the larger (i.e. whichever is greater) of either the area of the Point Set’s bounding box, or “1.0”.
Area Factor scales the result of this “surface area” computation..

6.2.1.1.1.10.6 Polygon Set Shape Node Element
Object Type ID: 0x10dd1048, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

A Polygon Set Shape Node Element defines a collection of independent and unconnected polygons. Each polygon
constitutes one primitive of the set and is defined by one list of vertex coordinates.

Figure 34: Polygon Set Shape Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Vertex Shape Data can be found in 6.2.1.1.1.10.2.1Vertex Shape Data.

6.2.1.1.1.10.7 NULL Shape Node Element
Object Type ID: 0xd239e7b6, 0xdd77, 0x4289, 0xa0, 0x7d, 0xb0, 0xee, 0x79, 0xf7, 0x94, 0x94

A NULL Shape Node Element defines a shape which has no direct geometric primitive representation (i.e. it is
empty/NULL). NULL Shape Node Elements are often used as “proxy/placeholder” nodes within the serialized LSG
when the actual Shape LOD data is run time generated (i.e. not persisted).

Figure 35: NULL Shape Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Shape Data can be found in 6.2.1.1.1.10.1.1 Base Shape Data.

I16 : Version Number
Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for
NULL Shape Node Element.

I16 : Version Number

Element Header ZLIB

Base Shape Data

Vertex Shape Data

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 37

6.2.1.1.1.10.8 Primitive Set Shape Node Element
Object Type ID: 0xe40373c1, 0x1ad9, 0x11d3, 0x9d, 0xaf, 0x0, 0xa0, 0xc9, 0xc7, 0xdd, 0xc2

A Primitive Set Shape Node Element represents a list/set of primitive shapes (e.g. box, cylinder, sphere, etc.) who’s
LODs can be procedurally generated. “Procedurally generate” means that the raw geometric shape definition data (e.g.
vertices, polygons, normals, etc) for LODs is not directly stored; instead some basic shape information is stored (e.g.
sphere center and radius) from which LODs can be generated.

Primitive Set Shape Node Elements actually do not even directly contain this basic shape definition data, but instead
reference (using Late Loaded Property Atoms) Primitive Set Shape Elements within the file for the actual basic shape
definition data. Storing the basic shape definition data within separate independently addressable data segments in the JT
file, allows a JT file reader to be structured to support the “best practice” of delaying the loading/reading of associated
data until it is actually needed. Complete descriptions for Late Loaded Property Atom Elements and Primitive Set Shape
Element can be found in 6.2.1.2.7 Late Loaded Property Atom Element and 6.2.2.2 Primitive Set Shape Element
respectively.

Figure 36: Primitive Set Shape Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Shape Data can be found in 6.2.1.1.1.10.1.1 Base Shape Data.

I32 : Texture Coord Binding
Texture Coord Binding specifies how (at what granularity) texture coordinate data is supplied (“bound”) for the shape in
the associated/referenced Shape LOD Element. Valid values are as follows:

Element Header ZLIB

Base Shape Data

I32 : Texture Coord Binding

I32 : Color Binding

Primitive Set
Quantization Parameters

I16 : Version Number

Version Number = = 1

I32 : Texture Coord Gen Type

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

38 © ISO 2011 – All rights reserved

= 0 − None. Shape has no texture coordinate data.
= 1 − Per Vertex. Shape has texture coordinates for every vertex.

I32 : Color Binding
Color Binding specifies how (at what granularity) color data is supplied (“bound”) for the shape in the
associated/referenced Shape LOD Element. Valid values are the same as documented for Texture Coord Binding data
field.

I16 : Version Number
Version Number is the version identifier for this element. The value of this Version Number indicates the format of data
fields to follow.

= 0 − Version 0 Format
= 1 − Version 1 Format

I32 : Texture Coord Gen Type
Texture Coord Gen Type specifies how texture coordinates are to be generated.

= 0 − Single Tile…Indicates that a single copy of a texture image will be applied to significant
primitive features (i.e. cube face, cylinder wall, end cap) no matter how eccentrically
shaped.

= 1 − Isotropic…Implies that multiple copies of a texture image may be mapped onto eccentric
surfaces such that a mapped texel stays approximately square.

6.2.1.1.1.10.8.1 Primitive Set Quantization Parameters
Primitive Set Quantization Parameters specifies for the two shape data type grouping (i.e. Vertex, Color) the number of
quantization bits used for given qualitative compression level. Although these Quantization Parameters values are saved
in the associated/referenced Shape LOD Element, they are also saved here so that a JT File loader/reader does not have to
load the Shape LOD Element in order to determine the Shape quantization level. See 6.2.2.1Shape LOD Element for
complete description of Shape LOD Elements.

Figure 37: Primitive Set Quantization Parameters data collection

U8 : Bits Per Vertex
Bits Per Vertex specifies the number of quantization bits per vertex coordinate component. Value must be within range
[0:24] inclusive.

U8 : Bits Per Color
Bits Per Color specifies the number of quantization bits per color component. Value must be within range [0:24]
inclusive.

6.2.1.1.1.10.9 Wire Harness Set Shape Node Element
Object Type ID: 0x4cc7a521, 0x728, 0x11d3, 0x9d, 0x8b, 0x0, 0xa0, 0xc9, 0xc7, 0xdd, 0xc2

U8 : Bits Per Vertex

U8 : Bits Per Color

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 39

A Wire Harness Set Shape Node Element represents a list of wire harness shapes. Where a wire harness is defined as a
single manufactured wire unit consisting of several physical electrical wires all bound together into a branching structure
of wire bundles that terminate at connectors. A Wire Harness Set Shape Node Element is meant to procedurally generate
its LODs. “Procedurally generate” means that the raw geometric shape definition data (e.g. vertices, polygons, normals,
etc) for LODs is not directly stored; instead some descriptive shape information is stored from which LODs can be
generated (if desired) at load time.

Wire Harness Set Shape Node Elements actually do not even directly contain this description shape definition data, but
instead reference (using Late Loaded Property Atoms) Wire Harness Set Shape Element within the file for the actual
descriptive shape definition data. Storing the descriptive shape definition data within separate independently addressable
data segments in the JT file, allows a JT file reader to be structured to support the “best practice” of delaying the
loading/reading of associated data until it is actually needed. Complete descriptions for Late Loaded Property Atom
Elements and Wire Harness Set Shape Element can be found in 6.2.1.2.7 Late Loaded Property Atom Element and
6.2.2.3 Wire Harness Set Shape Element respectively.

Figure 38: Wire Harness Set Shape Node Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Shape Data can be found in 6.2.1.1.1.10.1.1 Base Shape Data.

6.2.1.1.2 Attribute Elements
Attribute Elements (e.g. color, texture, material, lights, etc.) are placed in LSG as objects associated with nodes.
Attribute Elements are not nodes themselves, but can be associated with any node.

For applications producing or consuming JT format data, it is important that the JT format semantics of how attributes
are meant to be applied and accumulated down the LSG are followed. If not followed, then consistency between the
applications in terms of 3D positioning and rendering of LSG model data will not be achieved.

To that end each attribute type defines its own application and accumulation semantics, but in general attributes at lower
levels in the LSG take precedence and replace or accumulate with attributes set at higher levels. Nodes without
associated attributes inherit those of their parents. Attributes inherit only from their parents, thus a node’s attributes do
not affect that node’s siblings. The root of a partition inherits the attributes in effect at the referring partition node.

Attributes can be declared “final” (see 6.2.1.1.2.1.1Base Attribute Data), which terminates accumulation of that attribute
type at that attribute and propagates the accumulated values there to all descendants of the associated node. Descendants
can explicitly do a one-shot override of “final” using the attribute “force” flag (see 6.2.1.1.2.1.1Base Attribute Data), but
do not by default. Note that “force” does not turn OFF “final” – it is simply a one-shot override of “final” for the specific
attribute marked as “forcing.” An analogy for this “force” and “final” interaction is that “final” is a back-door in the
attribute accumulation semantics, and that “force” is a doggy-door in the back-door!

6.2.1.1.2.1 Base Attribute Element
Object Type ID: 0x10dd1001, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Base Attribute Element represents the simplest form of an attribute that can exist within the LSG. A Base Attribute
Element within a LSG has no implied appearance or positioning semantics.

Base Shape Data

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

40 © ISO 2011 – All rights reserved

Figure 39: Base Attribute Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

6.2.1.1.2.1.1 Base Attribute Data

Figure 40: Base Attribute Data data collection

I32 : Object ID
Object ID is the identifier for this Object. Other objects referencing this particular object do so using the Object ID.

U8 : State Flags
State Flags is a collection of flags. The flags are combined using the binary OR operator and store various state
information for Attribute Elements; such as indicating that the attributes accumulation is final. All undocumented bits
are reserved.

0x01 − Accumulation Final flag.
Provides a means to terminate a particular attribute type’s accumulation at any node of the LSG
and thereby force all descendants to have that value of the attribute.
= 0 – Accumulation is to occur normally
= 1 – Accumulation is “final”

0x02 − Accumulation Force flag.
Provides a way to assign nodes in LSG, attributes that must not be overridden by ancestors.
= 0 – Accumulation of this attribute obeys ancestor’s Final flag setting.
= 1 – Accumulation of this attribute is forced (overrides ancestor’s Final flag setting)

0x04 − Accumulation Ignore Flag
Provides a way to indicate that the attribute is to be ignored (not accumulated).
= 0 – Attribute is to be accumulated normally (subject to values of Force/Final flags)
= 1 – Attribute is to be ignored.

U32 : Field Inhibit Flags
Field Inhibit Flags is a collection of flags. The flags are combined using the binary OR operator and store the per
attribute value accumulation flag. Each value present in an Attribute Element is given a field number ranging from 0 to
31. If the field’s corresponding bit in Inhibit Flags is set, then the field should not participate in attribute accumulation.
All bits are reserved.

I32 : Object ID

U8 : State Flags

U32 : Field Inhibit Flags

Base Attribute Data

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 41

See each particular Attribute Element (e.g. Material Attribute Element) for a description of bit field assignments for each
attribute value.

6.2.1.1.2.2 Material Attribute Element
Object Type ID: 0x10dd1030, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Material Attribute Element defines the reflective characteristics of a material. JT format LSG traversal semantics dictate
that material attributes accumulate down the LSG by replacement.

The Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit assignments for the Material Attribute Element data
fields, are as follows:

Field Inhibit Flag Bit Data Field(s) Bit Applies To
0 Ambient Common RGB Value, Ambient Color
1 Diffuse Color
2 Specular Common RGB Value, Specular Color
3 Emission Common RGB Value, Emission Color
4 Blending Flag, Source Blending Factor, Destination Blending Factor
5 Override Vertex Color Flag

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

42 © ISO 2011 – All rights reserved

Figure 41: Material Attribute Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

U16 : Data Flags
Data Flags is a collection of flags and factor data. The flags and factor data are combined using the binary OR operator.
The flags store information to be used for interpreting how to read subsequent Material data fields. All undocumented
bits are reserved.

The Ambient/Emission/Specular Pattern Flags are used to optimize color data storage size to a single F32 for the
common case where the color is defined as [c, c, c, 1.0] (i.e. RGB values are the same “c” value and Alpha is always
“1.0”).

0x0001 − Pattern flag bits are used flag (i.e. Ambient/Emission/Specular pattern flags)
= 0 – Pattern bits are to be ignored.
= 1 – Pattern bits are valid.

RGBA : Ambient Color

Base Attribute Data

U16 : Data Flags

F32 : Ambient Common
RGB Value

RGBA : Specular Color
F32 : Specular Common

RGB Value

RGBA : Emission Color F32 : Emission Common
RGB Value

RGBA : Diffuse Color

F32 : Shininess

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 43

0x0002 − Ambient Pattern Flag
= 0 – Ambient data stored as four F32.
= 1 – Ambient data stored as one F32 and resultant color equals [c, c, c, 1.0]

0x0004 − Emission Pattern Flag
= 0 – Emission data stored as four F32.
= 1 – Emission data stored as one F32 and resultant color equals [c, c, c, 1.0]

0x0008 − Specular Pattern Flag
= 0 – Specular data stored as four F32.
= 1 – Specular data stored as one F32 and resultant color equals [c, c, c, 1.0]

0x0010 − Blending Flag. Blending is a color combining operation in the graphics pipeline that happens
just before writing a color to the framebuffer. If Blending is ON then incoming fragment
RGBA color values are used (based on Source Blend Factor) and existing framebuffer’s
RGBA color values are used (based on Destination Blend Factor) to blend between the
incoming fragment RGBA and the current frame buffer RGBA to arrive at a new RGBA color
to write into the framebuffer. If Blending is OFF then incoming fragment RGBA color is
written directly into framebuffer unmodified (i.e. completely overriding existing framebuffer
RGBA color). Additional information on how one might leverage the Blending Flag and
Blending Factors to render an image can be found in the references listed in section 2
References and Additional Information.
= 0 – Blending OFF.
= 1 – Blending ON

0x0020 − Override Vertex Colors Flag. If ON, then a shape’s per vertex colors are to be overridden by
the accumulated Material color.
= 0 – Override OFF
= 1 – Override ON

0x07C0 − Source Blend Factor (stored in bits 6 – 10 or in binary notation 0000011111000000). If
Blending Flag enabled, this value indicates how the incoming fragment’s (i.e. the source)
RGBA color values are to be used to blend with the current framebuffer’s (i.e. the destination)
RGBA color values. Additional information on the interpretation of the Blending Factor
values and how one might leverage them to render an image can be found in reference [4]
listed in section 2 References and Additional Information.
= 0 – Interpret same as OpenGL GL_ZERO Blending Factor
= 1 – Interpret same as OpenGL GL_ONE Blending Factor
= 2 – Interpret same as OpenGL GL_DST_COLOR Blending Factor
= 3 – Interpret same as OpenGL GL_SRC_COLOR Blending Factor
= 4 – Interpret same as OpenGL GL_ONE_MINUS_DST_COLOR Blending Factor
= 5 – Interpret same as OpenGL GL_ONE_MINUS_SRC_COLOR Blending Factor
= 6 – Interpret same as OpenGL GL_SRC_ALPHA Blending Factor
= 7 – Interpret same as OpenGL GL_ONE_MINUS_SRC_ALPHA Blending Factor
= 8 – Interpret same as OpenGL GL_DST_ALPHA Blending Factor
= 9 – Interpret same as OpenGL GL_ONE_MINUS_DST_ALPHA Blending Factor
= 10 – Interpret same as OpenGL GL_SRC_ALPHA_SATURATE Blending Factor
 STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/PAS 14
30

6:2
01

1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

44 © ISO 2011 – All rights reserved

0xF800 − Destination Blend Factor (stored in bits 11 – 15 or in binary notation 1111100000000000).).
If Blending Flag enabled, this value indicates how the current framebuffer’s (the destination)
RGBA color values are to be used to blend with the incoming fragment’s (the source) RGBA
color values. Additional information on the interpretation of the Blending Factor values and
how one might leverage them to render an image can be found in reference [4] listed in
section 2 References and Additional Information.
= 0 – Interpret same as OpenGL GL_ZERO Blending Factor
= 1 – Interpret same as OpenGL GL_ONE Blending Factor
= 2 – Interpret same as OpenGL GL_DST_COLOR Blending Factor
= 3 – Interpret same as OpenGL GL_SRC_COLOR Blending Factor
= 4 – Interpret same as OpenGL GL_ONE_MINUS_DST_COLOR Blending Factor
= 5 – Interpret same as OpenGL GL_ONE_MINUS_SRC_COLOR Blending Factor
= 6 – Interpret same as OpenGL GL_SRC_ALPHA Blending Factor
= 7 – Interpret same as OpenGL GL_ONE_MINUS_SRC_ALPHA Blending Factor
= 8 – Interpret same as OpenGL GL_DST_ALPHA Blending Factor
= 9 – Interpret same as OpenGL GL_ONE_MINUS_DST_ALPHA Blending Factor
= 10 – Interpret same as OpenGL GL_SRC_ALPHA_SATURATE Blending Factor

F32 : Ambient Common RGB Value
Ambient Common RGB Value is the assigned value for the Red, Green, and Blue components of the ambient color (i.e.
Red, Green, and Blue are all equal to this same value; R = G = B = value). Also the Alpha component is always assumed
to be equal to “1.0”. Ambient Common RGB Value is only present if Ambient Pattern Flag equals 1.

RGBA : Ambient Color
Ambient Color specifies the ambient red, green, blue, alpha color values of the material. Ambient Color is only present
if Ambient Pattern Flag equals 0.

RGBA : Diffuse Color
Diffuse Color specifies the diffuse red, green, blue, alpha color values of the material.

F32 : Specular Common RGB Value
Specular Common RGB Value is the assigned value for the Red, Green, and Blue components of the specular color (i.e.
Red, Green, and Blue are all equal to this same value; R = G = B = value). Also the Alpha component is always assumed
to be equal to “1.0”. Specular Common RGB Value is only present if Specular Pattern Flag equals 1.

RGBA : Specular Color
Specular Color specifies the specular red, green, blue, alpha color values of the material. Specular Color is only present
if Specular Pattern Flag equals 0.

F32 : Emission Common RGB Value
Emission Common RGB Value is the assigned value for the Red, Green, and Blue components of the emissive color (i.e.
Red, Green, and Blue are all equal to this same value; R = G = B = value). Also the Alpha component is always assumed
to be equal to “1.0”. Emission Common RGB Value is only present if Emission Pattern Flag equals 1.

RGBA : Emission Color
Emission Color specifies the emissive red, green, blue, alpha color values of the material. Emission Color is only present
if Emission Pattern Flag equals 0.

F32 : Shininess
Shininess is the exponent associated with specular reflection and highlighting. Shininess controls the degree with which
the specular highlight decays. Only values in the range [1,128] are valid.

6.2.1.1.2.3 Texture Image Attribute Element
Object Type ID: 0x10dd1073, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 45

Texture Image Attribute Element defines a texture image and its mapping environment. JT format LSG traversal
semantics dictate that texture image attributes accumulate down the LSG by replacement.

Note that additional information on the interpretation of the various Texture Image Attribute Element data fields can be
found in the OpenGL references listed in section 2 References and Additional Information.

The Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit assignments for the Texture Image Attribute Element
data fields, are as follows:

Field Inhibit Flag Bit Data Field(s) Bit Applies To

0 Texture Type, Image Texel Data, Mipmap Image Texel Data, External Storage
Name, Shared Image Flag

1 Border Mode, Border Color
2 Mipmap Minification Filter, Mipmap Magnification Filter
3 S-Dimen Wrap Mode, T-Dimen Wrap Mode, R-Dimen Wrap Mode
4 Blend Type, Blend Color
5 Texture Transform
6 Tex Coord Gen Mode, Tex Coord Reference Plane, Environment Mapping Flag
8 Internal Compression Level

Figure 42: Texture Image Attribute Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

I16 : Version Number
Version Number is the version identifier for this element. The value of this Version Number indicates the format of data
fields to follow.

= 1 − Version-1 Format
= 2 − Version-2 Format

Base Attribute Data

I16 : Version Number

Texture Vers-1 Data

Texture Vers-2 Data

Element Header ZLIB

Version Number = = 2

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

46 © ISO 2011 – All rights reserved

6.2.1.1.2.3.1 Texture Vers-1 Data
Texture Vers-1 Data format is stored in JT file if the Texture Image Element is a vanilla/basic texture image (i.e. if
texture does not use any advanced features as described in 6.2.1.1.2.3.2 Texture Vers-2 Data).

Figure 43: Texture Vers-1 Data data collection

Complete details for Vers-1 Image Format Description can be found in 6.2.1.1.2.3.1.1 Vers-1 Image Format Description.

Complete details for Vers-1 Texture Environment can be found in 6.2.1.1.2.3.1.2 Vers-1 Texture Environment.

I32 : Number of Bytes
Number of Bytes specifies the length, in bytes, of the on-disk representation of the texture image. The texture image in a
JT file is a single monolithic/contiguous block of data beginning with the highest-level mip image, and processing
through the mipmaps down to a one-by-one texel image. If there are no mipmaps, then the number of bytes is for a
single texture image. If Number of Bytes is zero then no other data is stored.

UChar : Image Texel Data
Image Texel Data is the single monolithic/contiguous block of image data. The length of this field in bytes is specified
by the value of data field Number of Bytes.

6.2.1.1.2.3.1.1 Vers-1 Image Format Description
The Vers-1 Image Format Description is a collection of data defining the pixel format, data type, size, and other
miscellaneous characteristics of the monolithic block of image data.

Number of Bytes = = 0

I32 : Number of Bytes

UChar : Image Texel Data
Number of Bytes

Vers-1 Image Format
Description

Vers-1 Texture
Environment

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 47

Figure 44: Vers-1 Image Format Description data collection

U32 : Pixel Format
Pixel format specifies the format of the texture image pixel data. Depending on the format, anywhere from one to four
elements of data exists per texel.

= 0 − No format specified. Texture mapping is not applied.
= 1 − A red color component followed by green and blue color components
= 2 − A red color component followed by green, blue, and alpha color components
= 3 − A single luminance component
= 4 − A luminance component followed by an alpha color component.
= 5 − A single stencil index.
= 6 − A single depth component
= 7 − A single red color component
= 8 − A single green color component
= 9 − A single blue color component
= 10 − A single alpha color component
= 11 − A blue color component, followed by green and red color components
= 12 − A blue color component, followed by green , red, and alpha color components

U32 : Pixel Data Type
Pixel Data Type specifies the data type used to store the per texel data. If the Pixel Format represents a multi component
value (e.g. red, green, blue) then each value requires the Pixel Data Type number of bytes of storage (e.g. a Pixel Format
Type of “1” with Pixel Data Type of “7” would require 12 bytes of storage for each texel).

= 0 − No type specified. Texture mapping is not applied.
= 1 − Signed 8-bit integer
= 2 − Single-precision 32-bit floating point
= 3 − Unsigned 8-bit integer
= 4 − Single bits in unsigned 8-bit integers

U32 : Pixel Format

U32 : Pixel Data Type
i l ifi

I16 : Dimensionality

I32 : Width

I32 : Height

U32 : Mipmaps Flag

U32 : Shared Image Flag

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

48 © ISO 2011 – All rights reserved

= 5 − Unsigned 16-bit integer
= 6 − Signed 16-bit integer
= 7 − Unsigned 32-bit integer
= 8 − Signed 32-bit integer
= 9 − 16-bit floating point according to IEEE-754 format (i.e. 1 sign bit, 5 exponent bits, 10

mantissa bits)

I16 : Dimensionality
Dimensionality specifies the number of dimensions the texture image has. Valid values include:

= 1 − One-dimensional texture
= 2 − Two-dimensional texture

I32 : Width
Width specifies the width dimension (number of texel columns) of the texture image in number of pixels.

I32 : Height
Height specifies the height dimension (number of texel rows) of the texture image in number of pixels. Height is “1” for
one-dimensional images.

U32 : Mipmaps Flag
Mipmaps Flag is a flag indicating whether the texture image has mipmaps.

= 0 − No mipmaps
= 1 − Yes has mipmaps. Image Texel Data is assumed to contain multiple textures, each a

mipmap of the base texture. All texture in power of two must be provided between the
base texture and a one-by-one texture.

U32 : Shared Image Flag
Shared Image Flag is a flag indicating whether this texture image is shareable with other Texture Image Element
attributes.

= 0 − Image is not shareable with other Texture Image Elements.
= 1 − Image is shareable with other Texture Image Elements.

6.2.1.1.2.3.1.2 Vers-1 Texture Environment
The Vers-1 Texture Environment is a collection of data defining various aspects of how a texture image is to be
mapped/applied to a surface.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 49

Figure 45: Vers-1 Texture Environment data collection

I32 : Mipmap Magnification Filter
Mipmap Magnification Filter specifies the texture filtering method to apply when a single pixel on screen maps to a tiny
portion of a texel.

= 0 − None.
= 1 − Nearest. Texel with coordinates nearest the center of the pixel is used.
= 2 − Linear. A weighted linear average of the 2 x 2 array of texels nearest to the center of the

pixel is used. For one-dimensional texture is average of 2 texels. For three dimensional
texel is 2 x 2 x 2 array.

I32 : Mipmap Minification Filter
Mipmap Minification Filter specifies the texture filtering method to apply when a single pixel on screen maps to a large
collection of texels.

= 0 − None.
= 1 − Nearest. Texel with coordinates nearest the center of the pixel is used.
= 2 − Linear. A weighted linear average of the 2 x 2 array of texels nearest to the center of the

pixel is used. For one-dimensional texture is average of 2 texels. For three-dimensional
texture is 2 x 2 x 2 array.

= 3 − Nearest in Mipmap. Within an individual mipmap, the texel with coordinates nearest the
center of the pixel is used.

= 4 − Linear in Mipmap. Within an individual mipmap, a weighted linear average of the 2 x 2
array of texels nearest to the center of the pixel is used. For one-dimensional texture is
average of 2 texels. For three-dimensional texture is 2 x 2 x 2 array

= 5 − Nearest between Mipmaps. Within each of the adjacent two mipmaps, selects the texel
with coordinates nearest the center of the pixel and then interpolates linearly between
these two selected mipmap values.

= 6 − Linear between Mipmaps. Within each of the two adjacent mipmaps, computes value
based on a weighted linear average of the 2 x 2 array of texels nearest to the center of the
pixel and then interpolates linearly between these two computed mipmap values.

I32 : Mipmap Magnification Filter

I32 : Mipmap Minification Filter

I32 : S-Dimen Wrap Mode

I32 : T-Dimen Wrap Mode

I32 : Texture Function Data

Mx4F32 : Texture Transform

RGBA : Blend Color

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

50 © ISO 2011 – All rights reserved

I32 : S-Dimen Wrap Mode
S-Dimen Wrap Mode specifies the mode for handling texture coordinates S-Dimension values outside the range [0, 1].

= 0 − None.
= 1 − Clamp. Any values greater than 1.0 are set to 1.0; any values less than 0.0 are set to 0.0
= 2 − Repeat Integer parts of the texture coordinates are ignored (i.e. retains only the fractional

component o texture coordinates grater than 1.0 and only one-minus the fractional
component of values less than zero). Resulting in copies of the texture map tiling the
surface

= 3 − Mirror Repeat. Like Repeat, except the surface tiles “flip-flop” resulting in an
alternating mirror pattern of surface tiles.

= 4 − Clamp to Edge. Border is always ignored and instead texel at or near the edge is chosen
for coordinates outside the range [0, 1]. Whether the exact nearest edge texel or some
average of the nearest edge texels is used is dependent upon the mipmap filtering value.

= 5 − Clamp to Border. Nearest border texel is chosen for coordinates outside the range [0, 1].
Whether the exact nearest border texel or some average of the nearest border texels is
used is dependent upon the mipmap filtering value.

I32 : T-Dimen Wrap Mode
T-Dimen Wrap Mode specifies the mode for handling texture coordinates T-Dimension values outside the range [0, 1].
Same mode values as documented for S-Dimen Wrap Mode.

I32 : Texture Function Data
Texture Function Data contains information indicating how the values in the texture map are to be
modulated/combined/blended with the original color of the surface or some other alternative color to compute the final
color to be painted on the surface. This information is encoded within a single I32 using the following bit allocations.

Bits 0 - 2 Texture Environment Mode. Additional information on the interpretation of the
Texture Environment Mode values and how one might leverage them to render an
image can be found in reference [4] listed in section 2 References and Additional
Information.

= 0 − None.
= 1 − Decal. Interpret same as OpenGL GL_DECAL environment mode.
= 2 − Modulate. Interpret same as OpenGL GL_MODULATE environment

mode.
= 3 − Replace. Interpret same as OpenGL GL_REPLACE environment mode.
= 4 − Blend. Interpret same as OpenGL GL_BLEND environment mode.
= 5 − Add. Interpret same as OpenGL GL_ADD environment mode.
= 6 − Combine. Interpret same as OpenGL GL_COMBINE environment mode.

Bit 3 Environment Mapping Flag. Note that if this flag is ON (i.e. = 1), then applications
processing this JT data for 3D graphical visualization should automatically turn ON
texture coordinate generation for spherical environment maps.
= 0 – OFF
= 1 – ON

Bits 4 - 31 Reserved for future use.

RGBA : Blend Color
Blend Color specifies the color to be used for “Blend” Texture Environment Mode operations.

Mx4F32 : Texture Transform
Texture Transform defines the texture coordinate transformation matrix. A renderer of JT data would typically apply this
transform to texture coordinates prior to applying the texture.

6.2.1.1.2.3.2 Texture Vers-2 Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 51

Texture Vers-2 Data collection supports texturing effects not representable in the Texture Vers-1 Data format (e.g.
multiple textures (i.e. channels), texture image storage location external to the JT file, three-dimensional textures, other
than unsigned-byte data formats, mirror and edge/border coordinate clamp modes, etc.). Any Texture Image Attribute
Element using the Texture Vers-2 Data format will contain a “degenerate” Texture Vers-1 Data block, where Number of
Bytes data field has a value of “0”.

Figure 46: Texture Vers-2 Data data collection

Complete details for Vers-2 Texture Environment can be found in 6.2.1.1.2.3.2.1 Vers-2 Texture Environment.

Complete details for Texture Coord Generation Parameters can be found in 6.2.1.1.2.3.2.2 Texture Coord Generation
Parameters.

Complete details for Inline Texture Image Data can be found in 6.2.1.1.2.3.2.3 Inline Texture Image Data.

I32 : Texture Type
Texture Type specifies the type of texture.

= 0 − None.

I32 : Texture Type

Vers-2 Texture
Environment

Texture Coord
Generation Parameters

I32 : Texture Channel

U32 : Reserved Field

U32 : Inline Image Storage Flag

I32 : Image Count

MbString : External Storage Name
Inline Texture Image

Data Image
Count

Image
Count

Inline Image Storage Flag == 0 Inline Image Storage Flag == 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

52 © ISO 2011 – All rights reserved

= 1 − One-Dimensional. A one-dimensional texture has a height (T-Dimension) and depth (R-
Dimension) equal to “1” and no top or bottom border.

= 2 − Two-Dimensional. A two-dimensional texture has a depth (R-Dimension) equal to “1.”
= 3 − Three-Dimensional. A three-dimensional texture can be thought of as layers of two-

dimensional sub image rectangles arranged in a sequence.
= 4 − Bump Map. A bump map texture is a texture where the image texel data (e.g. RGB color

values) represents surface normal XYZ components.
= 5 − Cube Map. A cube map texture is a texture cube centered at the origin and formed by a

set of six two-dimensional texture images.

I32 : Texture Channel
Texture Channel specifies the texture channel number for the Texture Image Element. For purposes of multi-texturing,
the JT concept of a texture channel corresponds directly to the OpenGL concept of a “texture unit.” The Texture
Channel value must be between 0 and 31 inclusive. Best practices suggest that renderer of JT data ignore all but channel-
0 if the renderer does not support multi-textured geometry. Also for purposes of blending, renderer of JT data should
assume that higher numbered texture channels “blend over” lower numbered ones.

U32 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

U32 : Inline Image Storage Flag
Inline Image Storage Flag is a flag that indicates whether the texture image is stored within the JT File (i.e. inline) or in
some other external file.

= 0 − Texture image stored in an external file.
= 1 − Texture image stored inline in this JT file.

I32 : Image Count
Image Count specifies the number of texture images. A “Cube Map” Texture Type must have six images while all other
Texture Types should only have one image.

MbString : External Storage Name
External Storage Name is a string identifying the name of an external texture image storage. External Storage Name is
only present if data field Inline Image Storage Flag equals “0.” If present there will be data field Image Count number
of External Storage Name instances. This External Storage Name string is a relative path based name for the texture
image file. Where “relative path” should be interpreted to mean the string contains the file name along with any
additional path information that locates the texture image file relative to the location of the referencing JT file.

6.2.1.1.2.3.2.1 Vers-2 Texture Environment
The Vers-2 Texture Environment is a collection of data defining various aspects of how a texture image is to be
mapped/applied to a surface.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 53

Figure 47: Vers-2 Texture Environment data collection

I32 : Border Mode
Border Mode specifies the texture border mode.

= 0 − No border.
= 1 − Constant Border Color. Indicates that the texture has a constant border color whose

value is defined in data field Border Color.
= 2 − Explicit. Indicates that a border texel ring is present in the texture image definition.

I32 : Mipmap Magnification Filter
Mipmap Magnification Filter specifies the texture filtering method to apply when a single pixel on screen maps to a tiny
portion of a texel.

= 0 − None.
= 1 − Nearest. Texel with coordinates nearest the center of the pixel is used.

I32 : Border Mode

I32 : Mipmap Magnification Filter

I32 : Mipmap Minification Filter

I32 : S-Dimen Wrap Mode

I32 : T-Dimen Wrap Mode

I32 : R-Dimen Wrap Mode

I32 : Blend Type

I32 : Internal Compression Level

RGBA : Blend Color

RGBA : Border Color

Mx4F32 : Texture Transform

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

54 © ISO 2011 – All rights reserved

= 2 − Linear. A weighted linear average of the 2 x 2 array of texels nearest to the center of the
pixel is used. For one-dimensional texture is average of 2 texels. For three dimensional
texel is 2 x 2 x 2 array.

I32 : Mipmap Minification Filter
Mipmap Minification Filter specifies the texture filtering method to apply when a single pixel on screen maps to a large
collection of texels.

= 0 − None.
= 1 − Nearest. Texel with coordinates nearest the center of the pixel is used.
= 2 − Linear. A weighted linear average of the 2 x 2 array of texels nearest to the center of the

pixel is used. For one-dimensional texture is average of 2 texels. For three-dimensional
texture is 2 x 2 x 2 array.

= 3 − Nearest in Mipmap. Within an individual mipmap, the texel with coordinates nearest the
center of the pixel is used.

= 4 − Linear in Mipmap. Within an individual mipmap, a weighted linear average of the 2 x 2
array of texels nearest to the center of the pixel is used. For one-dimensional texture is
average of 2 texels. For three-dimensional texture is 2 x 2 x 2 array

= 5 − Nearest between Mipmaps. Within each of the adjacent two mipmaps, selects the texel
with coordinates nearest the center of the pixel and then interpolates linearly between
these two selected mipmap values.

= 6 − Linear between Mipmaps. Within each of the two adjacent mipmaps, computes value
based on a weighted linear average of the 2 x 2 array of texels nearest to the center of the
pixel and then interpolates linearly between these two computed mipmap values.

I32 : S-Dimen Wrap Mode
S-Dimen Wrap Mode specifies the mode for handling texture coordinates S-Dimension values outside the range [0, 1].

= 0 − None.
= 1 − Clamp. Any values greater than 1.0 are set to 1.0; any values less than 0.0 are set to 0.0
= 2 − Repeat Integer parts of the texture coordinates are ignored (i.e. retains only the fractional

component o texture coordinates grater than 1.0 and only one-minus the fractional
component of values less than zero). Resulting in copies of the texture map tiling the
surface

= 3 − Mirror Repeat. Like Repeat, except the surface tiles “flip-flop” resulting in an
alternating mirror pattern of surface tiles.

= 4 − Clamp to Edge. Border is always ignored and instead texel at or near the edge is chosen
for coordinates outside the range [0, 1]. Whether the exact nearest edge texel or some
average of the nearest edge texels is used is dependent upon the mipmap filtering value.

= 5 − Clamp to Border. Nearest border texel is chosen for coordinates outside the range [0, 1].
Whether the exact nearest border texel or some average of the nearest border texels is
used is dependent upon the mipmap filtering value.

I32 : T-Dimen Wrap Mode
T-Dimen Wrap Mode specifies the mode for handling texture coordinates T-Dimension values outside the range [0, 1].
Same mode values as documented for S-Dimen Wrap Mode.

I32 : R-Dimen Wrap Mode
R-Dimen Wrap Mode specifies the mode for handling texture coordinates R-Dimension values outside the range [0, 1].
Same mode values as documented for S-Dimen Wrap Mode.

I32 : Blend Type
Blend Type contains information indicating how the values in the texture map are to be modulated/combined/blended
with the original color of the surface or some other alternative color to compute the final color to be painted on the
surface. Additional information on the interpretation of the Blend Type values and how one might leverage them to
render an image can be found in reference [4] listed in section 2 References and Additional Information.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 55

= 0 − None.
= 1 − Decal. Interpret same as OpenGL GL_DECAL environment mode.
= 2 − Modulate. Interpret same as OpenGL GL_MODULATE environment mode.
= 3 − Replace. Interpret same as OpenGL GL_REPLACE environment mode.
= 4 − Blend. Interpret same as OpenGL GL_BLEND environment mode.
= 5 − Add. Interpret same as OpenGL GL_ADD environment mode.
= 6 − Combine. Interpret same as OpenGL GL_COMBINE environment mode.

I32 : Internal Compression Level
Internal Compression Level specifies a data compression hint/recommendation that a JT file loader is free to follow for
internally (in memory) storing texel data. This setting does not affect how image texel data is actually stored in JT files
or other externally referenced files.

= 0 − None. No compression of texel data.
= 1 − Conservative. Lossless compression of texel data.
= 2 − Moderate. Texel components truncated to 8-bits each.
= 3 − Aggressive. Texel components truncates to 4-bits each (or 5 bits for RGB images).

RGBA : Blend Color
Blend Color specifies the color to be used for the “Blend” mode of Blend Type operations.

RGBA : Border Color
Border Color specifies the constant border color to use for “Clamp to Border” style wrap modes when the texture itself
does not have a border.

Mx4F32 : Texture Transform
Texture Transform defines the texture coordinate transformation matrix. A renderer of JT data would typically apply this
transform to texture coordinates prior to applying the texture.

6.2.1.1.2.3.2.2 Texture Coord Generation Parameters
Texture Coord Generation Parameters contains information indicating if and how texture coordinate components should
be automatically generated for each of the 4 components (S, T, R, Q) of a texture coordinate.

Figure 48: Texture Coord Generation Parameters data collection

I32 : Tex Coord Gen Mode
Tex Coord Gen Mode specifies the texture coordinate generation mode for each component (S, T, R, Q) of texture
coordinate. There are four mode values stored, one for each component of texture coordinate. The mode values are
stored in S, T, R, Q order.

= 0 − None. No texture coordinates automatically generated.
= 1 − Model Coordinate System Linear. Texture coordinates computed as a distance from a

reference plane specified in model coordinates.
= 2 − View Coordinate System Linear. Texture coordinates computed as a distance from a

reference plane specified in view coordinates.
= 3 − Sphere Map. Texture coordinates generated based on spherical environment mapping.

I32 : Tex Coord Gen Mode

PlaneF32 : Tex Coord Reference Plane

4

4

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

56 © ISO 2011 – All rights reserved

= 4 − Reflection Map. Texture coordinates generated based on cubic environment mapping.
= 5 − Normal Map. Texture coordinates computed/set by copying vertex normal in view

coordinates to S, T, R.

PlaneF32 : Tex Coord Reference Plane
Reference Plane specifies the reference plane used for “Model Coordinate System Linear” and “View Coordinate System
Linear” texture coordinate generation modes. There are four Reference Planes stored, one for each component of texture
coordinate. The Reference Planes are stored in S, T, R, Q order. Even if a components “Tex Coord Gen Mode” is one
that does not require a reference plane, dummy reference planes are still stored in JT file.

6.2.1.1.2.3.2.3 Inline Texture Image Data
Inline Texture Image Data is a collection of data defining the texture format properties and image texel data for one
texture image. Inline Texture Image Data is only present if data field Inline Image Storage Flag equals “1.” If present
there will be data field Image Count number of Inline Texture Image Data instances.

Figure 49: Inline Texture Image Data data collection

Complete description for Vers-2 Image Format Description can be found in 6.2.1.1.2.3.2.3.1Vers-2 Image Format
Description.

I32 : Total Image Data Size
Total Image Data Size specifies the total length, in bytes, of the on-disk representation for all mipmap images. This byte
total does not include the I32 : Mipmap Image Byte Count data field storage (4 bytes per) for each mipmap.

I32 : Mipmap Image Byte Count
Mipmap Image Byte Count specifies the length, in bytes, of the on-disk representation of the next mipmap image.

UChar : Mipmap Image Texel Data
Mipmap Image Texel Data is the mipmap’s block of image data. The length of this field in bytes is specified by the
value of data field Mipmap Image Byte Count.

6.2.1.1.2.3.2.3.1 Vers-2 Image Format Description
The Vers-2 Image Format Description is a collection of data defining the pixel format, data type, size, and other
miscellaneous characteristics of the texel image data.

I32 : Total Image Data Size

UChar : Mipmap Image Texel Data Mipmap Image
Byte Count

Vers-2 Image Format
Description

I32 : Mipmap Image Byte Count

Mipmaps
Count

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 57

Figure 50: Vers-2 Image Format Description data collection

U32 : Pixel Format
Pixel format specifies the format of the texture image pixel data. Depending on the format, anywhere from one to four
elements of data exists per texel.

= 0 − No format specified. Texture mapping is not applied.
= 1 − A red color component followed by green and blue color components
= 2 − A red color component followed by green, blue, and alpha color components
= 3 − A single luminance component
= 4 − A luminance component followed by an alpha color component.
= 5 − A single stencil index.
= 6 − A single depth component
= 7 − A single red color component
= 8 − A single green color component
= 9 − A single blue color component
= 10 − A single alpha color component
= 11 − A blue color component, followed by green and red color components
= 12 − A blue color component, followed by green , red, and alpha color components

U32 : Pixel Format

U32 : Pixel Data Type

I16 : Dimensionality

I16 : Row Alignment

I16 : Width

I16 : Height

I16 : Depth

I16 : Number Border Texels

U32 : Shared Image Flag

I16 : Mipmaps Count

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

58 © ISO 2011 – All rights reserved

U32 : Pixel Data Type
Pixel Data Type specifies the data type used to store the per texel data. If the Pixel Format represents a multi component
value (e.g. red, green, blue) then each value requires the Pixel Data Type number of bytes of storage (e.g. a Pixel Format
Type of “1” with Pixel Data Type of “3” would require 3 bytes of storage for each texel).

= 3 − Unsigned 8-bit integer

I16 : Dimensionality
Dimensionality specifies the number of dimensions the texture image has. Valid values include:

= 1 − One-dimensional texture
= 2 − Two-dimensional texture

I16 : Row Alignment
Row Alignment specifies the byte alignment for image data rows. This data field must have a value of 1, 2, 4, or 8. If set
to “1” then all bytes are used (i.e. no bytes are wasted at end of row). If set to “2”, then if necessary, an extra wasted
byte(s) is/are stored at the end of the row so that the first byte of the next row has an address that is a multiple of “2”
(multiple of four for Row Alignment equal “4” and multiple of eight for row alignment equal “8”). The actual formula
(using C syntax) to determine number of bytes per row is as follows:

BytesPerRow = (numBytesPerPixel * ImageWidth + RowAlignmnet – 1) & ~(RowAlignment – 1)

I16 : Width
Width specifies the width dimension (number of texel columns) of the texture image in number of pixels.

I16 : Height
Height specifies the height dimension (number of texel rows) of the texture image in number of pixels. Height is “1” for
one-dimensional images.

I16 : Depth
Depth specifies the depth dimension (number of texel slices) of the texture image in number of pixels. Depth is “1” for
one-dimensional and two-dimensional images.

I16 : Number Border Texels
Number Border Texels specifies the number of border texels in the texture image definition. Valid values are “0” or “1.”

U32 : Shared Image Flag
Shared Image Flag is a flag indicating whether this texture image is shareable with other Texture Image Element
attributes.

= 0 − Image is not shareable with other Texture Image Elements.
= 1 − Image is shareable with other Texture Image Elements.

I16 : Mipmaps Count
Mipmaps Count specifies the number of mipmap images. A value of “1” indicates that no mipmaps are used. A value
greater than “1” indicates that mipmaps are present all the way down to a 1-by-1 texel.

6.2.1.1.2.4 Draw Style Attribute Element
Object Type ID: 0x10dd1014, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Draw Style Attribute Element contains information defining various aspects of the graphics state/style that should be
used for rendering associated geometry. JT format LSG traversal semantics dictate that draw style attributes accumulate
down the LSG by replacement.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 59

The Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit assignments for the Draw Style Attribute Element data
fields, are as follows:

Field Inhibit Flag Bit Data Field(s) Bit Applies To
0 Two Sided Lighting Flag
1 Back-face Culling Flag
2 Outlined Polygons Flag
3 Lighting Enabled Flag
4 Flat Shading Flag
5 Separate Specular Flag

Figure 51: Draw Style Attribute Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

U8 : Vers-0 Data Flags
Vers-0 Data Flags is a collection of flags. The flags are combined using the binary OR operator and store various state
settings for Draw Style Attribute Elements. All undocumented bits are reserved.

0x01 − Back-face Culling Flag.
Indicates if back-facing polygons should be discarded (culled).
= 0 – Back-facing polygons not culled.
= 1 – Back-facing polygons culled.

0x02 − Two Sided Lighting Flag.
Indicates if two sided lighting should be enabled to insure that back-facing polygons are
illuminated.
= 0 – Disable two sided lighting.
= 1 – Enable two sided lighting.

U8 : Vers-1 Data Flags

Base Attribute Data

U8 : Vers-0 Data Flags

I16 : Version Number

Version Number = = 0

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

60 © ISO 2011 – All rights reserved

0x04 − Outlined Polygons Flag
Indicates if polygons should be draw in “wire frame mode” i.e. not filled; only outlines drawn.
= 0 – Polygons drawn as filled.
= 1 – Only polygon’s outline drawn.

I16 : Version Number
Version Number is the version identifier for this element. The value of this Version Number indicates if additional data
follows.

= 0 − Version-0 Format
= 1 − Version-1 Format

U8 : Vers-1 Data Flags
Vers-1 Data Flags is a collection of flags. The flags are combined using the binary OR operator and store various state
settings for Draw Style Attribute Elements. Vers-1 Data Flags field is only present if Version Number equals “1.” The
Vers-1 Data Flags includes the Vers-0 Data Flags data (thus some data flags are repeated/duplicated) along with some
additional flags. All undocumented bits are reserved.

0x01 − Back-face Culling Flag.
Indicates if back-facing polygons should be discarded (culled).
= 0 – Back-facing polygons not culled.
= 1 – Back-facing polygons culled.

0x02 − Two Sided Lighting Flag.
Indicates if two sided lighting should be enabled to insure that back-facing polygons are
illuminated.
= 0 – Disable two sided lighting.
= 1 – Enable two sided lighting.

0x04 − Outlined Polygons Flag
Indicates if polygons should be draw in “wire frame mode” i.e. not filled; only outlines drawn.
= 0 – Polygons drawn as filled.
= 1 – Only polygon’s outline drawn.

0x08 − Lighting Enabled Flag
Indicates if lighting should be enabled. If lighting disabled, then renderer should perform no
calculations concerning normals, light sources, material properties, etc.
= 0 – Disable lighting.
= 1 – Enable lighting.

0x10 − Flat Shading Flag
Indicates if the geometry should be rendered with single color (flat shading) or with many
different color (smooth/Gouraud) shading.
= 0 – Disable flat shading (i.e. use smooth/Gouraud shading).
= 1 – Enable flat shading.

0x20 − Separate Specular Flag.
Indicates if the application of the specular color should be delayed until after texturing. If no
texture mapping then this flag setting is irrelevant.
= 0 – Apply specular color contribution before texture mapping.
= 1 – Apply specular color contribution after texture mapping.

6.2.1.1.2.5 Light Set Attribute Element
Object Type ID: 0x10dd1096, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 61

Light Set Attribute Element holds an unordered list of Lights. JT format LSG traversal semantics dictate that light set
attributes accumulate down the LSG through addition of lights to an attribute list.

Light Set Attribute Element does not have any Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit assignments.

Figure 52: Light Set Attribute Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

I32 : Light Count
Light Count specifies the number of lights in the Light Set

I32 : Light Object ID
Light Object ID is the identifier for a referenced Light Object.

6.2.1.1.2.6 Infinite Light Attribute Element
Object Type ID: 0x10dd1028, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Infinite Light Attribute Element specifies a light source emitting unattenuated light in a single direction from every point
on an infinite plane. The infinite location indicates that the rays of light can be considered parallel by the time they reach
an object.

JT format LSG traversal semantics dictate that infinite light attributes accumulate down the LSG through addition of
lights to an attribute list.

Infinite Light Attribute Element does not have any Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit
assignments.

Base Attribute Data

Element Header ZLIB

I32 : Light Count

Light Count
I32 : Light Object ID

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

62 © ISO 2011 – All rights reserved

Figure 53: Infinite Light Attribute Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

DirF32 : Direction
Direction specifies the direction the light is pointing in.

I16 : Version Number
Version Number is the version identifier for this element. The value of this Version Number indicates the format of data
fields to follow.

= 0 − Version-0 Format
= 1 − Version-1 Format

I32 : Coord System
Coord System specifies the coordinate space in which Light source is defined. Valid values include the following:

= 1 − Viewpoint Coordinate System. Light source is to move together with the
viewpoint

= 2 − Model Coordinate System. Light source is affected by whatever model
transforms that are current when the light source is encountered in LSG.

= 3 − World Coordinate system. Light source is not affected by model transforms in
the LSG.

Base Light Data

Element Header ZLIB

DirF32 : Direction

I16 : Version Number

Version Number = = 1

I32 : Coord System

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 63

6.2.1.1.2.6.1 Base Light Data

Figure 54: Base Light Data data collection

I32 : Object ID
Object ID is the identifier for this Object. Other objects referencing this particular object do so using the Object ID.

RGBA : Ambient Color
Ambient Color specifies the ambient red, green, blue, alpha color values of the light.

RGBA : Diffuse Color
Diffuse Color specifies the diffuse red, green, blue, alpha color values of the light.

RGBA : Specular Color
Specular Color specifies the specular red, green, blue, alpha color values of the light.

F32 : Brightness
Brightness specifies the Light brightness. The Brightness value must be greater than or equal to “-1”.

6.2.1.1.2.7 Point Light Attribute Element
Object Type ID: 0x10dd1045, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Point Light Attribute Element specifies a light source emitting light from a specified position, along a specified direction,
and with a specified spread angle

JT format LSG traversal semantics dictate that point light attributes accumulate down the LSG through addition of lights
to an attribute list.

Point Light Attribute Element does not have any Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit assignments.

I32 : Object ID

RGBA : Ambient Color

RGBA : Diffuse Color

RGBA : Specular Color

F32 : Brightness

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

64 © ISO 2011 – All rights reserved

Figure 55: Point Light Attribute Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Light Data can be found in 6.2.1.1.2.6.1 Base Light Data.

HCoordF32 : Position
Position specifies the light position in homogeneous coordinates.

F32 : Spread Angle
Spread Angle, as shown in Figure 56 below, specifies in degrees the half angle of the light cone. Valid Spread Angle
values are clamped and interpreted as follows:

angle = = 180.0 − Simple point light
0.0 >= angle <= 90.0 − Spot Light

Base Light Data

Element Header ZLIB

HCoordF32 : Position

F32 : Spread Angle

DirF32 : Spot Direction

I32 : Spot Intensity

I16 : Version Number

Attenuation Coefficients

Version Number = = 1

I32 : Coord System

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 65

Figure 56: Spread Angle value with respect to the light cone

DirF32 : Spot Direction
Spot Direction specifies the direction the spot light is pointing in.

I32 : Spot Intensity
Spot Intensity specifies the intensity distribution of the light within the spot light cone. Spot Intensity is really a “spot
exponent” in a lighting equation and indicates how focused the light is at the center. The larger the value, the more
focused the light source. Only non-negative Spot intensity values are valid.

I16 : Version Number
Version Number is the version identifier for this element. The value of this Version Number indicates the format of data
fields to follow.

= 0 − Version-0 Format
= 1 − Version-1 Format

I32 : Coord System
Coord System specifies the coordinate space in which Light source is defined. Valid values include the following:

= 1 − Viewpoint Coordinate System. Light source is to move together with the
viewpoint

= 2 − Model Coordinate System. Light source is affected by whatever model
transforms that are current when the light source is encountered in LSG.

= 3 − World Coordinate system. Light source is not affected by model transforms in
the LSG.

6.2.1.1.2.7.1 Attenuation Coefficients
Attenuation Coefficients data collection contains the coefficients for how light intensity decreases with distance.

Figure 57: Attenuation Coefficients data collection

F32 : Constant Attenuation

F32 : Linear Attenuation

F32 : Quadratic Attenuation

Spread Angle

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

66 © ISO 2011 – All rights reserved

F32 : Constant Attenuation
Constant Attenuation specifies the constant coefficient for how light intensity decreases with distance. Value must be
greater than or equal to “0”.

F32 : Linear Attenuation
Linear Attenuation specifies the linear coefficient for how light intensity decreases with distance. Value must be greater
than or equal to “0”.

F32 : Quadratic Attenuation
Quadratic Attenuation specifies the quadratic coefficient for how light intensity decreases with distance. Value must be
greater than or equal to “0”.

6.2.1.1.2.8 Linestyle Attribute Element
Object Type ID: 0x10dd10c4, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Linestyle Attribute Element contains information defining the graphical properties that should be used for rendering
polylines. JT format LSG traversal semantics dictate that linestyle attributes accumulate down the LSG by replacement.

Linestyle Attribute Element does not have any Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit assignments.

Figure 58: Linestyle Attribute Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

U8 : Data Flags
Data Flags is a collection of flags and line type data. The flags and line type data are combined using the binary OR
operator and store various polyline rendering attributes. All undocumented bits are reserved.

0x0F − Line Type (stored in bits 0 – 3 or in binary notation 00001111)
Line type specifies the polyline rendering stipple-pattern.
= 0 - Solid
= 1 – Dash
= 2 – Dot
= 3 – Dash_Dot
= 4 – Dash_Dot_Dot
= 5 – Long_Dash
= 6 – Center_Dash
= 7 – Center_Dash_Dash

Base Attribute Data

Element Header ZLIB

U8 : Data Flags

F32 : Line Width

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 67

0x10 − Antialiasing Flag (stored in bit 4 or in binary notation 00010000)
Indicates if antialiasing should be applied as part of rendering polylines.
= 0 – Antialiasing disabled.
= 1 – Antialiasing enabled.

F32 : Line Width
Line Width specifies the width in pixels that should be used for rendering polylines

6.2.1.1.2.9 Pointstyle Attribute Element
Object Type ID: 0x8d57c010, 0xe5cb, 0x11d4, 0x84, 0xe, 0x00, 0xa0, 0xd2, 0x18, 0x2f, 0x9d

Pointstyle Attribute Element contains information defining the graphical properties that should be used for rendering
points. JT format LSG traversal semantics dictate that pointstyle attributes accumulate down the LSG by replacement.

Pointstyle Attribute Element does not have any Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit assignments.

Figure 59: Pointstyle Attribute Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

I16 : Version Number
Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value.

U8 : Data Flags
Data Flags is a collection of flags and point type data. The flags and point type data are combined using the binary OR
operator and store various point rendering attributes. All undocumented bits are reserved.

0x0F − Point Type (stored in bits 0 – 3 or in binary notation 00001111)
These bits are reserved for future expansion of the format to support Point Types.

0x10 − Antialiasing Flag (stored in bit 4 or in binary notation 00010000)
Indicates if antialiasing should be applied as part of rendering points.
= 0 – Antialiasing disabled.
= 1 – Antialiasing enabled.

Base Attribute Data

Element Header ZLIB

I16 : Version Number

F32 : Point Size

U8 : Data Flags

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

68 © ISO 2011 – All rights reserved

F32 : Point Size
Point Size specifies the size in pixels that should be used for rendering points.

6.2.1.1.2.10 Geometric Transform Attribute Element
Object Type ID: 0x10dd1083, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Geometric Transform Attribute Element contains a 4x4 matrix that positions the associated LSG node’s coordinate
system relative to its parent LSG node. JT format LSG traversal semantics dictate that geometric transform attributes
accumulate down the LSG through matrix multiplication as follows:

p’ = pAM

Where p is a point of the model, p’ is the transformed point, M is the current modeling transformation matrix inherited
from ancestor LSG nodes and previous Geometric Transform Attribute Element, and A is the transformation matrix of
this Geometric Transform Attribute Element.

Geometric Transform Attribute Element does not have any Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit
assignments.

Figure 60: Geometric Transform Attribute Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

U16 : Stored Values Mask
Stored Values mask is a 16-bit mask where each bit is a flag indicating whether the corresponding element in the matrix
is different from the identity matrix. Only elements which are different from the identity matrix are actually stored. The
bits are assigned to matrix elements as follows:

Bit15 Bit14 Bit13 Bit12
Bit11 Bit10 Bit9 Bit8

Base Attribute Data

Element Header ZLIB

U16 : Stored Values Mask

if(Stored Values Mask & 0x8000)

F32 : Element Value

Stored Values Mask = Stored Values Mask << 1

16

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 69

Bit7 Bit6 Bit5 Bit4
Bit3 Bit2 Bit1 Bit0

The individual bit-flag values are interpreted as follows:

= 0 − Value not stored (matrix value same as corresponding element in identity matrix)
= 1 − Value stored

F32 : Element Value
Element Value specifies a particular matrix element value.

6.2.1.1.2.11 Shader Effects Attribute Element
Object Type ID: 0xaa1b831d, 0x6e47, 0x4fee, 0xa8, 0x65, 0xcd, 0x7e, 0x1f, 0x2f, 0x39, 0xdb

Shader Effects Attribute Element contains information specifying “high-level” shader functionality (e.g. Phong shading,
bump mapping, etc.) that should be used for rendering the geometry this attribute element is associated with.

JT format LSG traversal semantics dictate that shader effects attributes accumulate down the LSG by replacement.

Shader Effects Attribute Element does not have any Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit
assignments.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

70 © ISO 2011 – All rights reserved

Figure 61: Shader Effects Attribute Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

I16 : Version Number
Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value.

U32 : Enable Flag
Enable Flag specifies whether this Shader Effects Attribute is enabled. Valid values include the following:

= 0 − Shader Effects Attribute disabled
= 1 − Shader Effects Attribute enabled

I32 : Env Map Texture Channel
Env Map Texture Channel specifies the texture channel designated as containing an environment map. A value of “-1”
disables environment mapping through the Shader Effects Attribute. Note that this will NOT disable a texture map that

Base Attribute Data

Element Header ZLIB

I16 : Version Number

I32 : Env Map Texture Channel

Version Number = = 1

U32 : Enable Flag

F32 : Env Map Reflectivity

I32 : Bump Map Texture Channel

F32 : Bumpiness Factor

U32 : Bump Map Normal Space

U32 : Phong Shading Flag

U32 : Reserved Field

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 71

is explicitly set up with sphere mapping or cube mapping through Material Attribute Element. Note that other irrelevant
Material Attribute Element parameters (e.g. blending type, texture coordinate generation mode, border settings, etc.) are
ignored for the environment map texture channel.

F32 : Env Map Reflectivity
Env Map Reflectivity specifies the fraction of the environment to be reflected (1 minus this fraction will show through
form the underlying texture channel). Valid value must be in the range [0:1] inclusive.

I32 : Bump Map Texture Channel
Bump Map Texture Channel specifies the texture channel designated as containing a bump map. A value of “-1”
disables bump mapping through the Shader Effects Attribute. Note that other irrelevant Material Attribute Element
parameters (e.g. blending type, texture coordinate generation mode, border settings, etc.) are ignored for the bump map
texture channel.

F32 : Bumpiness Factor
Bumpiness Factor specifies the degree of “bumpiness”, or the relative “height” of the bump map. Larger values make the
bumps appear deep and more severe. Negative values invert the sense of the bump map, making the surface appear
engraved, rather then embossed. This value only has an effect with tangent space bump maps.; it has no effect on the
appearance of object space bump maps.

U32 : Bump Map Normal Space
Bump Map Normal Space specifies what coordinate space the normal map is to be interpreted in. Valid values include
the following:

= 0 − Normal Map Interpreted as an “object space” normal map
= 1 − Normal Map Interpreted as a “tangent space” normal map.

U32 : Phong Shading Flag
Phong Shading Flag specifies whether Phong Shading (i.e. per fragment lighting) is enabled. Valid values include the
following:

= 0 − Phong Shading disabled
= 1 − Phong Shading enabled

U32 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion

6.2.1.1.2.12 Vertex Shader Attribute Element
Object Type ID: 0x2798bcad, 0xe409, 0x47ad, 0xbd, 0x46, 0xb, 0x37, 0x1f, 0xd7, 0x5d, 0x61

Vertex Shader Attribute Element defines a per-vertex shader program in either the Cg or GLSL shading language.
Complete descriptions of the Cg and GLSL shading languages can be found in references listed within the 2 References
and Additional Information section of this document.

JT format LSG traversal semantics dictate that vertex shader attributes accumulate down the LSG by replacement; with
the exception that if the new vertex shader attribute’s shader language is not the same as current vertex shader attribute’s
shader language, then new vertex shader attribute is simply ignored.

In general, a shader program is used to replace a portion of the otherwise fixed functionality graphics pipeline with some
user-defined function. Specifically a Vertex Shader program is a small user defined program to be run for each vertex
that is sent down to the GPU and processed. A Vertex shader can alter vertex positions and normals, generate texture
coordinates, perform Gouraud vertex lighting, etc

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

72 © ISO 2011 – All rights reserved

Figure 62: Vertex Shader Attribute Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

I16 : Version Number
Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value.

6.2.1.1.2.12.1 Base Shader Data

Figure 63: Base Shader Data data collection

I16 : Version Number

Version Number = = 1

I32 : Shader Language

U32 : Inline Source Flag

Inline Source Flag = = 1

MbString : Source Code MbString : Source Code Loc

I32 : Shader Param Count

Shader Parameter
Shader Param

Count

Base Attribute Data

Element Header ZLIB

Base Shader Data

I16 : Version Number

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 73

I16 : Version Number
Version Number is the version identifier for this data collection. Version number “0x0001” is currently the only valid
value.

I32 : Shader Language
Shader Language specifies the Shader program language. Valid values include the following:

= 0 − None
= 1 − Cg (“C for graphics” is a high-level shading language created by nVIDIA for

programming vertex and pixel shaders [8] [9].
= 2 − GLSL (“GL Shading Language” as defined by the Architectural Review Board

of OpenGL, the governing body of OpenGL [7].

U32 : Inline Source Flag
Inline Source Flag specifies whether the shader’s “source code” is stored within this JT file or in some other externally
referenced file. Valid values include the following:

= 0 − Source code stored in an externally referenced file.
= 1 − Source code stored within this JT file.

MbString : Source Code
Source Code is the shader’s source code in Shader Language programming language.

MbString : Source Code Loc
Source Code Loc specifies the file name for the external file containing the shader’s source code.

I32 : Shader Param Count
Shader Param Count specifies the number of shader parameters.

6.2.1.1.2.12.1.1 Shader Parameter
Shader Parameter data collection defines a Shader input and/or output parameter. A list of Shader Parameters represents
the runtime linkage of the shader program into the GPU’s data streams.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

74 © ISO 2011 – All rights reserved

Figure 64: Shader Parameter data collection

MbString : Param Name
Param Name specifies the shader parameter name.

U32 : Param Type
Param Type specifies the shader parameter type. Valid types include the following:

= 0 − Unknown
= 1 − Boolean
= 2 − Integer
= 3 − Float
= 4 − Vector of two Integer values.
= 5 − Vector of three Integer values
= 6 − Vector of four Integer values
= 7 − Vector of two Float values
= 8 − Vector of three Float values
= 9 − Vector of four Float values
= 10 − 2 x 2 matrix of Float values
= 11 − 3 x 3 matrix of Float values
= 12 − 4 x 4 matrix of Float values
= 13 − Texture Object/Unit number bound to current 1D texture sampler
= 14 − Texture Object/Unit number bound to current 2D texture sampler
= 15 − Texture Object/Unit number bound to current 3D texture sampler

MbString : Param Name

U32 : Param Type

U32 : Value Class

U32 : Direction

U32 : Semantic Binding

U32 : Variability

U32 : Reserved Field

16
U32 : Value

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 75

= 16 − Texture Object/Unit number bound to current rect map texture sampler
= 17 − Texture Object/Unit number bound to current cube map texture sampler
= 18 − Texture Object/Unit number bound to current 1D shadow map texture sampler
= 19 − Texture Object/Unit number bound to current 2D shadow map texture sampler

U32 : Value Class
Value Class specifies the shader parameter “value class”. Valid values include the following:

= 0 − Unknown class
= 1 − Immediate class.
= 2 − Semantic class (i.e. Shader Parameter is implicitly tied/bound to a piece of

OpenGL graphics system state (e.g. OpenGL ModelView matrix) or JT graphics
system state (e.g. diffuse material color)). The actual graphics state that the
parameter is bound to is indicated by value in Value data field.

U32 : Direction
Direction specifies whether the shader parameter is an input, output, or input/output parameter. Direction value is only
applicable for the Cg Shader Language. Valid values include the following:

= 0 − Unknown
= 1 − Input parameter
= 2 − Output parameter
= 3 − Both an Input and an Output parameter.

U32 : Semantic Binding
Semantic Binding specifies the “per vertex input and/or output” or the “per fragment input and/or output” this shader
parameter is associated with (i.e. bound to). Semantic Binding value is only applicable for the Cg Shader Language.
Valid values, including their input/output applicability to vertex and fragment shaders, are as follows (note that N/A
indicates ‘Not Applicable”):

Value Binding Description Vertex Shader Applicability Fragment Shader Applicability
= 0 Unknown
= 1 None
= 2 Position Input/Output Input
= 3 Normal Input N/A
= 4 Binormal Input N/A
= 5 Blend Indices Input N/A
= 6 Blend Weight Input N/A
= 7 Tangent Input N/A
= 8 Point Size Input/Output Input
= 10 Texture Coordinate 0 Input/Output Input
= 11 Texture Coordinate 1 Input/Output Input
= 12 Texture Coordinate 2 Input/Output Input
= 13 Texture Coordinate 3 Input/Output Input
= 14 Texture Coordinate 4 Input/Output Input
= 15 Texture Coordinate 5 Input/Output Input
= 16 Texture Coordinate 6 Input/Output Input
= 17 Texture Coordinate 7 Input/Output Input
= 20 Fog Coordinate Output Input
= 21 Primary Color Output Input
= 22 Secondary Color Output Input
= 23 Primary Color N/A Output
= 24 Depth Value N/A Output

U32 : Variability

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

76 © ISO 2011 – All rights reserved

Variability specifies how often the value of the parameter is allowed to change. Valid values include the following:

= 0 − Unknown
= 1 − Constant (a parameter that takes on a single value and never changes)
= 2 − Uniform (a parameter that may take on a different value each time the shader is

invoked but remains the same for all vertices or fragments processed by the
shader)

= 3 − Varying (a parameter which may change with every vertex or fragment
processed by the shader)

U32 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

U32 : Value
Value specifies the shader parameter values treated as a U32 array of bytes. The maximum number of bytes required to
store all possible Param Type and Value Class dependent values is 64 bytes and thus there are 16 U32 values stored. The
interpretation of the Value data is Param Type and Value Class dependent as follows:

• For “Immediate” Value Class parameters (i.e. Value Class = = 1), the interpretation of the Value data is
dependent upon the Param Type value.

• For “Semantic” Value Class parameters, the Value data is to be interpreted as a single U32 with all the

possible values documented in Annex B:Semantic Value Class Shader Parameter Values.

6.2.1.1.2.13 Fragment Shader Attribute Element
Object Type ID: 0xad8dccc2, 0x7a80, 0x456d, 0xb0, 0xd5, 0xdd, 0x3a, 0xb, 0x8d, 0x21, 0xe7

Fragment Shader Attribute Element defines a per-fragment shader program in either the Cg or GLSL shading language.
Complete descriptions of the Cg and GLSL shading languages can be found in references listed within the 2 References
and Additional Information section of this document.

JT format LSG traversal semantics dictate that fragment shader attributes accumulate down the LSG by replacement;
with the exception that if the new fragment shader attribute’s shader language is not the same as current fragment shader
attribute’s shader language, then new fragment shader attribute is simply ignored.

In general, a shader program is used to replace a portion of the otherwise fixed functionality graphics pipeline with some
user-defined function. Specifically a Fragment Shader program is a small user defined program to be run for each
fragment generated by the hardware’s scan-conversion logic (where a fragment is a proto-pixel generated by triangle
scan-conversion, but not let laid down into the frame buffer). A Fragment Shader can support sophisticated effects like
Phong shading, shadow mapping, bump mapping, reflection mapping, etc.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 77

Figure 65: Fragment Shader Attribute Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

Complete description for Base Shader Data can be found in 6.2.1.1.2.12.1 Base Shader Data.

I16 : Version Number
Version Number is the version identifier for this element. Version number “0x0001” is currently the only valid value.

6.2.1.2 Property Atom Elements
Property Atom Elements are meta-data objects associated with nodes. Property Atom Elements are not nodes
themselves, but can be associated with any node to maintain arbitrary application or enterprise information (meta-data)
pertaining to that node. Each Node Element in a LSG may hold zero or more properties and this relationship information
is stored within 6.2.1.3 Property Table section of a JT file.
An individual property is specified as a key/value Property Atom Element pair, where the key identifies the type and
meaning of the value. The JT format supports many different Property Atom Element key/value object types. The
different Property Atom Element key/value object types are documented in the following subsections.

 Some “Best Practices” for placing application or enterprise properties/meta-data on Nodes in JT files can be found in 8.4
Metadata Conventions section of this reference.

6.2.1.2.1 Base Property Atom Element
Object Type ID: 0x10dd104b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Base Property Atom Element represents the simples for of a property that can exist within the LSG and has no type
specific value data associated with it.

Figure 66: Base Property Atom Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Base Property Atom Data

Element Header ZLIB

Base Attribute Data

Element Header ZLIB

Base Shader Data

I16 : Version Number

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

78 © ISO 2011 – All rights reserved

6.2.1.2.1.1 Base Property Atom Data

Figure 67: Base Property Atom Data data collection

I32 : ObjectID
Object ID is the identifier for this Object. Other objects referencing this particular object do so using the Object ID.

U32 : State Flags
State Flags is a collection of flags. The flags are combined using the binary OR operator and store various state
information for property atoms. Bits 0 – 7 are freely available for an application to store what ever property atom
information desired. All other bits are reserved for future expansion of the file format.

6.2.1.2.2 String Property Atom Element
Object Type ID: 0x10dd106e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

String Property Atom Element represents a character string property atom.

Figure 68: String Property Atom Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 6.2.1.2.1.1Base Property Atom Data.

MbString : Value
Value contains the character string value for this property atom.

6.2.1.2.3 Integer Property Atom Element
Object Type ID: 0x10dd102b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Integer Property Atom Element represents a property atom whose value is of I32 data type.

Base Property Atom Data

MbString : Value

Element Header ZLIB

I32 : ObjectID

U32 : State Flags

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 79

Figure 69: Integer Property Atom Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 6.2.1.2.1.1Base Property Atom Data.

I32 : Value
Value contains the integer value for this property atom.

6.2.1.2.4 Floating Point Property Atom Element
Object Type ID: 0x10dd1019, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Floating Point Property Atom Element represents a property atom whose value is of F32 data type.

Figure 70: Floating Point Property Atom Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 6.2.1.2.1.1Base Property Atom Data.

F32 : Value
Value contains the floating point value for this property atom.

6.2.1.2.5 JT Object Reference Property Atom Element
Object Type ID: 0x10dd1004, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

JT Object Reference Property Atom Element represents a property atom whose value is an object ID for another object
within the JT file.

Base Property Atom Data

F32 : Value

Element Header ZLIB

Base Property Atom Data

I32 : Value

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

80 © ISO 2011 – All rights reserved

Figure 71: JT Object Reference Property Atom Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 6.2.1.2.1.1Base Property Atom Data.

I32 : Object ID
Object ID specifies the identifier within the JT file for the referenced object.

6.2.1.2.6 Date Property Atom Element
Object Type ID: 0xce357246, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1

Date Property Atom Element represents a property atom whose value is a “date”.

Figure 72: Date Property Atom Element data collection

Base Property Atom Data

Element Header ZLIB

I16 : Year

I16 : Month

I16 : Day

I16 : Hour

I16 : Minute

I16 : Second

Base Property Atom Data

I32 : Object ID

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 81

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 6.2.1.2.1.1Base Property Atom Data.

I16 : Year
Year specifies the date year value.

I16 : Month
Month specifies the date month value.

I16 : Day
Day specifies the date day value.

I16 : Hour
Hour specifies the date hour value.

I16 : Minute
Minute specifies the date minute value.

I16 : Second
Second specifies the date Second value.

6.2.1.2.7 Late Loaded Property Atom Element
Object Type ID: 0xe0b05be5, 0xfbbd, 0x11d1, 0xa3, 0xa7, 0x00, 0xaa, 0x00, 0xd1, 0x09, 0x54

Late Loaded Property Atom Element is a property atom type used to reference an associated piece of atomic data in a
separate addressable segment of the JT file. The “Late Loaded” connotation derives from the associated data being
stored in a separate addressable segment of the JT file, and thus a JT file reader can be structured to support the “best
practice” of delaying the loading/reading of the associated data until it is actually needed.

Late Loaded Property Atom Elements are used to store a variety of data, including, but not limited to, Shape LOD
Segments and B-Rep Segments (see 6.2.2 Shape LOD Segment and 6.2.3 JT B-Rep Segment).

Figure 73: Late Loaded Property Atom Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 6.2.1.2.1.1Base Property Atom Data.

Base Property Atom Data

GUID : Segment ID

I32 : Segment Type

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

82 © ISO 2011 – All rights reserved

GUID : Segment ID
Segment ID is the globally unique identifier for the associated data segment in the JT file. See 6.1.2 TOC Segment for
additional information on how this Segment ID can be used in conjunction with the file TOC Entries to locate the
associated data in the JT file.

I32 : Segment Type
Segment Type defines a broad classification of the associated data segment contents. For example, a Segment Type of
“1” denotes that the segment contains Logical Scene Graph material; “2” denotes contents of a B-Rep, etc.

The complete list of segment types can be found in Table 3: Segment Types.

6.2.1.3 Property Table
The Property Table is where the data connecting Nodes with their associated Properties is stored. The Property Table
contains a Node Property Table for each Node in the JT File which has associated Properties. A Node Property Table is
a list of key/value Property Atom Element pairs for all Properties associated with a particular Node Element Object.

For a reference compliant JT File all Node Elements and Property Atom Elements contained in a JT file should have
been read by the time a JT file reader reaches the Property Table section of the file. This means that all Node Objects
and Property Atom Objects referenced in the Property Table (through Object IDs), should have already been read, and if
not, then the file is corrupt (i.e. not reference compliant).

Figure 74: Property Table data collection

I16 : Version Number
Version Number is the version identifier for this Property Table. Version number “0x0001” is currently the only valid
value.

I32 : Node Property Table Count
Node Property Table Count specifies the number of Node Property Tables to follow. This value is equivalent to the
number of Node Elements (see 6.2.1.1.1Node Elements) that have associated Property Atom Elements (see
6.2.1.2Property Atom Elements).

I32 : Node Object ID
Node Object ID is the identifier for the Node Element object (see 6.2.1.1.1Node Elements) that the following Node
Property Table is for (i.e. Node Element that all properties in the following Node Property Table are associated with).

6.2.1.3.1 Node Property Table

I16 : Version Number

I32 : Node Property Table Count

Node Property
Table Count

I32 : Node Object ID

Node Property Table

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 83

The Node Property Table is a list of key/value Property Atom Element pairs for all properties associated with a particular
Node Element Object. The list is terminated by a “0” value for Key Property Atom Object ID.

Figure 75: Node Property Table data collection

I32 : Key Property Atom Object ID
Key Property Atom Object ID is the identifier for the Property Atom Element object (see 6.2.1.2Property Atom
Elements) representing the “key” part of the property key/value pair. A value of “0” indicates the end of the Node
Property Table.

I32 : Value Property Atom Object ID
Value Property Atom Object ID is the identifier for the Property Atom Element object (see 6.2.1.2Property Atom
Elements) representing the “value” part of the property key/value pair. A value is not stored if Key Property Atom
Object ID has a value of “0”.

6.2.2 Shape LOD Segment
Shape LOD Segment contains an Element that defines the geometric shape definition data (e.g. vertices, polygons,
normals, etc) for a particular shape Level Of Detail or alternative representation. Shape LOD Segments are typically
referenced by Shape Node Elements using Late Loaded Property Atom Elements (see 6.2.1.1.1.10 Shape Node Elements
and 6.2.1.2.7 Late Loaded Property Atom Element respectively).

Figure 76: Shape LOD Segment data collection

Complete description for Segment Header can be found in 6.1.3.1Segment Header.

6.2.2.1 Shape LOD Element
A Shape LOD Element is the holder/container of the geometric shape definition data (e.g. vertices, polygons, normals,
etc.) for a single LOD. Much of the “heavyweight” data contained within a Shape LOD Element may be optionally
compressed and/or encoded. The compression and/or encoding state is indicated through other data stored in each Shape
LOD Element.

Segment Header

Shape LOD Element

I32 : Value Property Atom Object ID

While Key
Property Atom
Object ID != 0

I32 : Key Property Atom Object ID

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

84 © ISO 2011 – All rights reserved

There are several types of Shape LOD Elements which the JT format supports. The following sub-sections document the
various Shape LOD Element types.

6.2.2.1.1 Vertex Shape LOD Element
Object Type ID: 0x10dd10b0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

Vertex Shape LOD Element represents LODs defined by collections of vertices.

Figure 77: Vertex Shape LOD Element data collection

Complete description for Element Header can be found in 6.1.3.2.1Element Header.

6.2.2.1.1.1 Vertex Shape LOD Data
Vertex Shape LOD Data collection contains the bindings and quantization settings for all shape LODs defined by a
collection of vertices.

Figure 78: Vertex Shape LOD Data data collection

Complete description for Quantization Parameters can be found in 6.2.1.1.1.10.2.1.1Quantization Parameters.

I16 : Version Number
Version Number is the version identifier for this Vertex Shape LOD Data. Version number “0x0001” is currently the
only valid value.

I32 : Binding Attributes
Binding Attributes is a collection of normal, texture coordinate, and color binding information encoded within a single
I32 using the following bit allocation. All undocumented bits are reserved.

A Tri-Strip Set Shape Node Element defines a collection of independent and unconnected triangle strips. Each strip
constitutes one primitive of the set and is defined by one list of vertex coordinates

Bits 0 - 7 Normal Binding. Normal Binding specifies how (at what granularity) normal
vector data is supplied (“bound”) for the Shape LOD.
= 0 − None. Shape has no normal data.
= 1 − Per Vertex. Shape has a normal vector for every vertex.
= 2 − Per Facet. Shape has a normal vector for every face/polygon.
= 3 − Per Primitive. Shape has a normal vector for each shape primitive (e.g. a

I16 : Version Number

I32 : Binding Attributes

Quantization Parameters

Element Header

Vertex Shape LOD Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 85

6.2.1.1.1.10.3 Tri-Strip Set Shape Node Element is made up of a
collection of independent and unconnected triangle strips; where each
strip constitutes one primitive of the shape and thus there would be a
normal per triangle strip)

Bits 8 - 15 Texture Coordinate Binding. Texture Coordinate Binding specifies how (at what
granularity) texture coordinate data is supplied (“bound”) for the Shape LOD.
Valid values are the same as documented for Normal Binding.

Bits 16 - 23 Color Binding. Color Binding specifies how (at what granularity) color data is
supplied (“bound”) for the Shape LOD. Valid values are the same as
documented for Normal Binding.

6.2.2.1.2 Tri-Strip Set Shape LOD Element
Object Type ID: 0x10dd10ab, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

A Tri-Strip Set Shape LOD Element contains the geometric shape definition data (e.g. vertices, polygons, normals, etc.)
for a single LOD of a collection of independent and unconnected triangle strips. Each strip constitutes one primitive of
the set and the ordering of the vertices (identified in Vertex Based Shape Compressed Rep Data as making up a single
tri-strip primitive) in forming triangles, is the same as OpenGL’s triangle strip definition [4].

A Tri-Strip Set Shape LOD Element is typically referenced by a Tri-Strip Set Shape Node Element using Late Loaded
Property Atom Elements (see 6.2.1.1.1.10.3 Tri-Strip Set Shape Node Element and 6.2.1.2.7 Late Loaded Property Atom
Element respectively).

Figure 79: Tri-Strip Set Shape LOD Element data collection

Complete description for Element Header can be found in 6.1.3.2.1Element Header.

Complete description for Vertex Shape LOD Data can be found in 6.2.2.1.1.1Vertex Shape LOD Data.

Complete description for Vertex Based Shape Compressed Rep Data can be found in 7.1.3Vertex Based Shape
Compressed Rep Data.

I16 : Version Number
Version Number is the version identifier for this Tri-Strip Set Shape LOD. Version number “0x0001” is currently the
only valid value.

Element Header

Vertex Shape LOD Data

I16 : Version Number

Vertex Based Shape
Compressed Rep Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

86 © ISO 2011 – All rights reserved

6.2.2.1.3 Polyline Set Shape LOD Element
Object Type ID: 0x10dd10a1, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

A Polyline Set Shape LOD Element contains the geometric shape definition data (e.g. vertices, normals, etc.) for a single
LOD of a collection of independent and unconnected polylines. Each polyline constitutes one primitive of the set.

A Polyline Set Shape LOD Element is typically referenced by a Polyline Set Shape Node Element using Late Loaded
Property Atom Elements (see 6.2.1.1.1.10.5 Polyline Set Shape Node Element and 6.2.1.2.7 Late Loaded Property Atom
Element respectively).

Figure 80: Polyline Set Shape LOD Element data collection

Complete description for Element Header can be found in 6.1.3.2.1Element Header.

Complete description for Vertex Shape LOD Data can be found in 6.2.2.1.1.1Vertex Shape LOD Data.

Complete description for Vertex Based Shape Compressed Rep Data can be found in 7.1.3Vertex Based Shape
Compressed Rep Data.

I16 : Version Number
Version Number is the version identifier for this Polyline Set Shape LOD. Version number “0x0001” is currently the
only valid value.

6.2.2.1.4 Point Set Shape LOD Element
Object Type ID: 0x98134716, 0x0011, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83, 0x5d, 0x5a

A Point Set Shape LOD Element contains the geometric shape definition data (e.g. coordinates, normals, etc.) for a
collection of independent and unconnected points. Each point constitutes one primitive of the set.

A Point Set Shape LOD Element is typically referenced by a Point Set Shape Node Element using Late Loaded Property
Atom Elements (see 6.2.1.1.1.10.5 Point Set Shape Node Element and 6.2.1.2.7 Late Loaded Property Atom Element
respectively).

Element Header

Vertex Shape LOD Data

I16 : Version Number

Vertex Based Shape
Compressed Rep Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 87

Figure 81: Point Set Shape LOD Element data collection

Complete description for Element Header can be found in 6.1.3.2.1Element Header.

Complete description for Vertex Shape LOD Data can be found in 6.2.2.1.1.1Vertex Shape LOD Data.

Complete description for Vertex Based Shape Compressed Rep Data can be found in 7.1.3Vertex Based Shape
Compressed Rep Data.

I16 : Version Number
Version Number is the version identifier for this Point Set Shape LOD. Version number “0x0001” is currently the only
valid value.

6.2.2.1.5 Polygon Set Shape LOD Element
Object Type ID: 0x10dd109f, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

A Polygon Set Shape LOD Element contains the geometric shape definition data (e.g. vertices, normals, etc.) for a single
LOD of a collection of independent and unconnected polygons. Each polygon constitutes one primitive of the set.

A Polygon Set Shape LOD Element is typically referenced by a Polygon Set Shape Node Element using Late Loaded
Property Atom Elements (see 6.2.1.1.1.10.6 Polygon Set Shape Node Element and 6.2.1.2.7 Late Loaded Property Atom
Element respectively).

Element Header

Vertex Shape LOD Data

I16 : Version Number

Vertex Based Shape
Compressed Rep Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

88 © ISO 2011 – All rights reserved

Figure 82: Polygon Set Shape LOD Element data collection

Complete description for Element Header can be found in 6.1.3.2.1Element Header.

Complete description for Vertex Shape LOD Data can be found in 6.2.2.1.1.1Vertex Shape LOD Data.

Complete description for Vertex Based Shape Compressed Rep Data can be found in 7.1.3Vertex Based Shape
Compressed Rep Data.

I16 : Version Number
Version Number is the version identifier for this Polygon Set Shape LOD. Version number “0x0001” is currently the
only valid value.

6.2.2.1.6 Null Shape LOD Element
Object Type ID: 0x3e637aed, 0x2a89, 0x41f8, 0xa9, 0xfd, 0x55, 0x37, 0x37, 0x3, 0x96, 0x82

A Null Shape LOD Element represents the pseudo geometric shape definition data for a NULL Shape Node Element.
Although a NULL Shape Node Element has no real geometric primitive representation (i.e. is empty), its usage as a
“proxy/placeholder” node within the LSG still supports the concept of having a defined bounding box and thus the
existence of this Null Shape LOD Element type.

A Null Shape LOD Element is typically referenced by a NULL Shape Node Element using Late Loaded Property Atom
Elements (see 6.2.1.1.1.10.7 NULL Shape Node Element and 6.2.1.2.7 Late Loaded Property Atom Element
respectively).

Figure 83: Null Shape LOD Element data collection

Element Header

I16 : Version Number

BBoxF32 : Untransformed BBox

Element Header

Vertex Shape LOD Data

I16 : Version Number

Vertex Based Shape
Compressed Rep Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 89

Complete description for Element Header can be found in 6.1.3.2.1Element Header.

I16 : Version Number
Version Number is the version identifier for this Null Shape LOD Element. Version number “0x0001” is currently the
only valid value.

BBoxF32 : Untransformed BBox
The Untransformed BBox is an axis-aligned LCS bounding box and represents the untransformed extents for this Null
Shape LOD Element.

6.2.2.2 Primitive Set Shape Element
Object Type ID: 0xe40373c2, 0x1ad9, 0x11d3, 0x9d, 0xaf, 0x0, 0xa0, 0xc9, 0xc7, 0xdd, 0xc2

A Primitive Set Shape Element defines the minimum data necessary to procedurally generate LODs for a list of primitive
shapes (e.g. box, cylinder, sphere, etc.). “Procedurally generate” means that the raw geometric shape definition data (e.g.
vertices, polygons, normals, etc) for LODs is not directly stored; instead some basic shape information is stored (e.g.
sphere center and radius) from which LODs can be generated.

Figure 84: Primitive Set Shape Element data collection

Complete description for Element Header can be found in 6.1.3.2.1Element Header.

Element Header

I16 : Version Number

I32 : Bits Per Vertex

Lossless Compressed
Primitive Set Data

Bits Per Vertex = = 0

Lossy Quantized
Primitive Set Data

I32 : Texture Coord Binding

I32 : Color Binding

Version Number = = 2

I32 : Texture Coord Gen Type

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

90 © ISO 2011 – All rights reserved

I32 : Texture Coord Binding
Texture Coord Binding specifies how (at what granularity) texture coordinate data is supplied (“bound”) for the shape.
Valid values are as follows:

= 0 − None. Shape has no texture coordinate data.
= 1 − Per Vertex. Shape has texture coordinates for every vertex.

I32 : Color Binding
Color Binding specifies how (at what granularity) color data is supplied (“bound”) for the shape. Valid values are the
same as documented for Texture Coord Binding data field.

I16 : Version Number
Version Number is the version identifier for this element. The value of this Version Number indicates the format of data
fields to follow.

= 1 − Version-1 Format
= 2 − Version-2 Format

I32 : Bits Per Vertex
Bits Per Vertex specifies the number of quantization bits per vertex coordinate component. Value must be within range
[0:32] inclusive.

I32 : Texture Coord Gen Type
Texture Coord Gen Type specifies how texture coordinates are to be generated.

= 0 − Single Tile…Indicates that a single copy of a texture image will be applied to significant
primitive features (i.e. cube face, cylinder wall, end cap) no matter how eccentrically
shaped.

= 1 − Isotropic…Implies that multiple copies of a texture image may be mapped onto eccentric
surfaces such that a mapped texel stays approximately square.

6.2.2.2.1 Lossless Compressed Primitive Set Data
The Lossless Compressed Primitive Set Data collection contains all the per-primitive information stored in a “lossless”
compression format for all primitives in the Primitive Set. The Lossless Compressed Primitive Set Data collection is
only present when the Bits Per Vertex data field equals “0” (see 6.2.2.2 Primitive Set Shape Element for complete
description).

Figure 85: Lossless Compressed Primitive Set Data data collection

I32 : Uncompressed Data Size

I32 : Compressed Data Size

U8 : Primitive Data Abs(Compressed
Data Size)

U8 : Compressed
Primitive Data Compressed

Data Size

Compressed Data Size < 0 Compressed Data Size > 0

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 91

I32 : Uncompressed Data Size
Uncompressed Data size specifies the uncompressed size of Primitive Data or Compressed Primitive Data in bytes.

I32 : Compressed Data Size
Compressed Data Size specifies the compressed size of Primitive Data or Compressed Primitive Data in bytes. If the
Compressed Data Size is negative, then the Compressed Primitive Data field is not present (i.e. data is not compressed)
and the absolute value of Compressed Data Size should be equal to Uncompressed Data Size value.

U8 : Primitive Data
The Primitive Data field is a packed array of the raw per primitive data (i.e. reserved, params1, params2, params3, color,
type) sequentially for all primitives in the set. The Primitive Data field is only present if Compressed Data Size value is
less than zero.

The per primitive data is packed into Primitive Data array using an interleaved data schema/format as follows:

{[reserved], [params1], [params2], [params3], [color], [type]}, …, for all primitives

Where the data elements have the following size and meaning:

Element Data Type Description
reserved I32 - This is a field reserved for future expansion of the JT Format.
params1 CoordF32 - Interpretation is Primitive Type specific (see below table)
params2 DirF32 - Interpretation is Primitive Type specific (see below table)
params3 Quaternion - Interpretation is Primitive Type specific (see below table)
color RGB - Red, Green, Blue color component values
type I32 - Primitive Type

= 0 – Box
= 1 – Cylinder
= 2 – Pyramid
= 3 – Sphere
= 4 – Tri-Prism

Table 5: Primitive Set Primitive Data Elements

Given this format of the Primitive Data, and the previously read size fields, a reader can then implicitly compute the data
stride (length of one primitive entry in Primitive Data), and number of primitives.

The interpretation of the three “params#” data fields is primitive type dependent as follows:

Primitive
Type params1 params2 params3

 [0] [1] [2] [0] [1] [2] [0] [1] [2] [3]

Box min X min Y min Z length
X

length
Y

length
Z orientation in Quaternion form

Cylinder base
center X

base
center

Y

base
center

Z

spine
X

spine
Y

spine
Z

radius
1

radius
2 N/A N/A

Pyramid base
center X

base
center

Y

base
center

Z

length
X

length
Y

length
Z orientation in Quaternion form

Sphere center X center
Y

center
Z radius N/A N/A N/A N/A N/A N/A

Tri-Prism bottom
front X

bottom
front Y

bottom
front Z

length
X (to
right)

length
Y (to
back)

length
Z (to
top)

orientation in Quaternion form

Table 6: Primitive Set “params#” Data Fields Interpretation

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

92 © ISO 2011 – All rights reserved

U8 : Compressed Primitive Data
The Compressed Primitive Data field represents the same data as documented in Primitive Data field above except that
the data is compressed using the general “ZLIB deflation compression” method. The Compressed Primitive Data field is
only present if Compressed Data Size value is greater than zero. See 7 Data Compression and Encoding for more details
on ZLIB compression and ZLIB library version used.

6.2.2.2.2 Lossy Quantized Primitive Set Data
The Lossy Quantized Primitive Set Data collection contains all the per-primitive information (i.e. reserved, params1,
params2, params3, color, type) stored in a “lossy” encoding/compression format for all primitives in the Primitive Set.
The Lossy Quantized Primitive Set Data collection is only present when the Bits Per Vertex data field is NOT equal to
“0” (See 6.2.2.2 Primitive Set Shape Element for compete description).

The interpretation of the three per-primitive “params#” data fields is primitive type dependent. See Table 6: Primitive
Set “params#” Data Fields Interpretation in 6.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type
description of the “params#” data fields.

Figure 86: Lossy Quantized Primitive Set Data data collection

I32 : Primitive Count
Primitive Count specifies the number of primitives in the Primitive Set.

Quaternion : params3
Interpretation of params3 data field is primitive Type dependent. See Table 6: Primitive Set “params#” Data Fields
Interpretation in 6.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the params3 data
fields.

I32 : Primitive Count
Primitive Count > 4

Primitive
Count

Quaternion : params3

CoordF32 : params1

DirF32 : params2

RGB : Color

I32 : Type

Color Binding != 0

U8 : Bits Per Color

Compressed params1

Compressed params3

Compressed params2

Color Binding != 0

Compressed Colors

VecI32{Int32CDP, Lag1} : Compressed Types STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 93

CoordF32 : params1
Interpretation of params1 data field is primitive Type dependent. See Table 6: Primitive Set “params#” Data Fields
Interpretation in 6.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the params1 data
fields.

DirF32 : params2
Interpretation of params1 data field is primitive Type dependent. See Table 6: Primitive Set “params#” Data Fields
Interpretation in 6.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the params1 data
fields.

RGB : Color
Color specifies the Red, Green Blue color components for the primitive. This data field is only present if previously read
Color Binding (see 6.2.2.2 Primitive Set Shape Element) is not equal to “0”.

I32 : Type
Type specifies the primitive type. See Table 5: Primitive Set Primitive Data Elements in 6.2.2.2.1 Lossless Compressed
Primitive Set Data for valid primitive Type values.

U8 : Bits Per Color
Bits Per Color specifies the number of quantization bits per color component. Value must be within range [0:32]
inclusive.

VecI32{Int32CDP, Lag1} : Compressed Types
The Compressed Types data field is a vector of Type data for all the primitives in the Primitive Set. Compressed Types
uses the Int32 version of the CODEC to compress and encode data. In an uncompressed form the valid primitive Type
vales are as documented in Table 5: Primitive Set Primitive Data Elements in 6.2.2.2.1 Lossless Compressed Primitive
Set Data.

6.2.2.2.2.1 Compressed params1
Compressed params1 is the compressed representation of the params1 data for all the primitives in the Primitive Set.
Note that the interpretation of the uncompressed params1 data is primitive Type dependent. See Table 6: Primitive Set
“params#” Data Fields Interpretation in 6.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type
description of the params1 data fields

The params1 data for all primitives in the Primitive Set is compressed/encoded on a per ordinate basis using a separate
Uniform Quantizer (with Bits Per Vertex number of quantization bits) for each collection of ordinate values. Since
params1 is of type “CoordF32”, it has three ordinate values (three F32 values), and thus three Uniform Quantizers
(where a Uniform Quantizer is a scalar quantizer/encoder whose range is divided into levels of equal spacing). See 7
Data Compression and Encoding for more complete description of Uniform Quantizer.

The JT Format packs all the params1 data for all primitives into a single array using an ordinate dependent order (as
shown below) and then encodes each of the lists of ordinate values using a separate Uniform Quantizer per ordinate list.

{prim1 params1[0], prim2 params1[0],…primN params1[0],
prim1 params1[1], prim2 params1[1],…primN params1[1],
prim1 params1[2], prim2 params1[2],…primN params1[2]}

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate value
collection, and an integer array of params1 quantization codes that corresponds to the above described “ordinate
dependent order” packed array of params1 data.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

94 © ISO 2011 – All rights reserved

Figure 87: Compressed params1 data collection

VecF32 : Quantization Range Min/Max Pairs
Quantization Range Min/Max Pairs is a vector of Uniform Quantizer range min/max value pairs. There must be a
min/max pair for each ordinate value collection (i.e. each Uniform Quantizer). Thus the length of this vector is “2 *
num_ordinates” (so vector length would be “6” for params1 data).

VecI32{Int32CDP, Lag1} : params1 Codes
The params1 Codes data field is a vector of quantizer “codes” for the params1 data of all the primitives in the Primitive
Set. The params1Codes also uses the Int32 version of the CODEC to compress and encode data.

6.2.2.2.2.2 Compressed params3
Compressed params3 is the compressed representation of the params3 data for all the primitives in the Primitive Set.
Note that the interpretation of the uncompressed param31 data is primitive Type dependent. See Table 6: Primitive Set
“params#” Data Fields Interpretation in 6.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type
description of the params3 data fields

The params3 data for all primitives in the Primitive Set is compressed/encoded on a per ordinate basis using a separate
Uniform Quantizer (with Bits Per Vertex number of quantization bits) for each collection of ordinate values. Since
params1 is of type “Quaternion”, it has four ordinate values (four F32 values), and thus four Uniform Quantizers (where
a Uniform Quantizer is a scalar quantizer/encoder whose range is divided into levels of equal spacing). See 7 Data
Compression and Encoding for more complete description of Uniform Quantizer.

The JT Format packs all the params3 data for all primitives into a single array using an ordinate dependent order (as
shown below) and then encodes each of the lists of ordinate values using a separate Uniform Quantizer per ordinate list.

{prim1 params3[0], prim2 params3[0],…primN params3[0],
prim1 params3[1], prim2 params3[1],…primN params3[1],
prim1 params3[2], prim2 params3[2],…primN params3[2],
prim1 params3[3], prim2 params3[3],…primN params3[3]}

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate value
collection, and an integer array of params3 quantization codes that corresponds to the above described “ordinate
dependent order” packed array of params3 data.

The storage format of Compressed params3 is exactly the same as that documented in Figure 87: Compressed params1
data collection.

6.2.2.2.2.3 Compressed params2
Compressed params2 is the compressed representation of the params2 data for all the primitives in the Primitive Set.
Note that the interpretation of the uncompressed params2 data is primitive Type dependent. See Table 6: Primitive Set
“params#” Data Fields Interpretation in 6.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type
description of the params2 data fields

The params2 data for all primitives in the Primitive Set is compressed/encoded on a per ordinate basis using a separate
Uniform Quantizer (with Bits Per Vertex number of quantization bits) for each collection of ordinate values. Since
params2 is of type “DirF32”, it has three ordinate values (three F32 values), and thus three Uniform Quantizers (where a
Uniform Quantizer is a scalar quantizer/encoder whose range is divided into levels of equal spacing). See 7 Data
Compression and Encoding for more complete description of Uniform Quantizer.

VecF32 : Quantization Range Min/Max Pairs

VecI32{Int32CDP, Lag1} : params1 Codes

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 95

The JT Format packs all the params2 data for all primitives into a single array using an ordinate dependent order (as
shown below) and then encodes each of the lists of ordinate values using a separate Uniform Quantizer per ordinate list.

{prim1 params2[0], prim2 params2[0],…primN params2[0],
prim1 params2[1], prim2 params2[1],…primN params2[1],
 prim1 params2[2], prim2 params2[2],…primN params2[2]}

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate value
collection, and an integer array of params2 quantization codes that corresponds to the above described “ordinate
dependent order” packed array of params2 data.

The storage format of Compressed params2 is exactly the same as that documented in Figure 87: Compressed params1
data collection.

6.2.2.2.2.4 Compressed Colors
Compressed Colors is the compressed representation of the color data for all the primitives in the Primitive Set. This
data collection is only present if previously read Color Binding (see 6.2.2.2 Primitive Set Shape Element) is not equal to
“0”.

The color data for all primitives in the Primitive Set is compressed/encoded on a per ordinate basis using a separate
Uniform Quantizer (with Bits Per Color number of quantization bits) for each collection of ordinate values. Since color
is of type “RGB”, it has three ordinate values (three F32 values), and thus three Uniform Quantizers (where a Uniform
Quantizer is a scalar quantizer/encoder whose range is divided into levels of equal spacing). See 7 Data Compression
and Encoding for more complete description of Uniform Quantizer.

The JT Format packs all the color data for all primitives into a single array using an ordinate dependent order (as shown
below) and then encodes each of the lists of ordinate values using a separate Uniform Quantizer per ordinate list.

{prim1 color[0], prim2 color[0],…primN color[0],
prim1 color[1], prim2 color[1],…primN color[1],
 prim1 color[2], prim2 color[2],…primN color[2]}

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate value
collection, and an integer array of color quantization codes that corresponds to the above described “ordinate dependent
order” packed array of color data.

The storage format of Compressed Colors is exactly the same as that documented in Figure 87: Compressed params1
data collection.

6.2.2.3 Wire Harness Set Shape Element
Object Type ID: 0x4cc7a523, 0x728, 0x11d3, 0x9d, 0x8b, 0x0, 0xa0, 0xc9, 0xc7, 0xdd, 0xc2

A Wire Harness Set Shape Element defines the data necessary to procedurally generate LODs for a list of wire harnesses.
“Procedurally generate” means that the raw geometric shape definition data (e.g. vertices, polygons, normals, etc) for
LODs is not directly stored; instead some descriptive shape information is stored from which LODs can be generated at
load time.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

96 © ISO 2011 – All rights reserved

Figure 88: Wire Harness Set Shape Element data collection

Complete description for Element Header can be found in 6.1.3.2.1Element Header.

I16 : Version Number
Version Number is the version identifier for this Wire Harness Set Shape Element. Version number “0x0001” is
currently the only valid value.

I32 : Normal Binding
Normal Binding specifies how (at what granularity) normal vector data is supplied (“bound”) for the shape. Valid values
include the following:

= 0 − None. Shape has no normal data.
= 1 − Per Vertex. Shape has a normal vector for every vertex.

I32 : Texture Coord Binding
Texture Coord Binding specifies how (at what granularity) texture coordinate data is supplied (“bound”) for the shape.
Valid values are the same as documented for Normal Binding data field.

I32 : Color Binding
Color Binding specifies how (at what granularity) color data is supplied (“bound”) for the shape. Valid values are the
same as documented for Normal Binding data field.

6.2.2.3.1 Wire Harness Set
A Wire Harness Set defines a topological and geometric representation of a set/list of wire harnesses. Each wire harness
in the set is a single manufactured wire unit consisting of several physical electrical wires all bound together into a
branching structure of wire bundles that terminate at connectors. Note that only the wires are modeled by the Wire
Harness Set, not any of the physical representation of the connectors or wrapping material used to secure the harness.

The topology of a wire Harness can be viewed as a non-directed acyclic graph. Each node of the graph is represented in
3D space by a Branch Node. Each edge of the graph is represented in 3D space by a Bundle. Physical Wires are defined
to trace a path from one leaf Branch Node in the graph to another leaf Branch Node in the graph using an ordered list of
Wire Segments. So essentially there are two topologies modeled, the graph topology of the Bundles, and the topology of
the Wires.

Element Header

I16 : Version Number

I32 : Normal Binding

I32 : Texture Coord Binding

I32 : Color Binding

Wire Harness Set

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 97

The geometry of the wire Harness defines the 3D location of the Branch Nodes, the 3D spine curve (path) of the Bundles,
and the physical radius and multiplicity of the Wires. These geometry definitions are referenced though the topology
structure.

Figure 89: Wire Harness Set data collection

I32 : Version Number
Version Number is the version identifier for this Wire Harness Set. Version number “1” is currently the only valid value.

6.2.2.3.1.1 Entity Counts
Entity Counts Specifies the counts for (number of) each of the entity types which exists within a set of wire harnesses.

I32 : Version Number

Entity Counts

Harness Count > 0

Topological Entities

Geometric

Entity Tag Counters

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

98 © ISO 2011 – All rights reserved

Figure 90: Entity Counts data collection

I32 : Harness Count
Harness Count specifies the number of Wire Harness entities in the list.

I32 : Bundle Count
Bundle Count specifies the number of Bundle entities in the list.

I32 : Wire Count
Wire Count specifies the number of Wire entities in the list.

I32 : Wire Segment Count
Wire Segment Count specifies the number of Wire Segment entities in the list.

I32 : Branch Node Count
Branch Node Count specifies the number of Branch Node entities in the list.

I32 : Bundle Spine Curve Count
Bundle Spine Curve Count specifies the number of Bundle Spine Curve entities in the list.

I32 : Branch Point Count
Branch Point Count specifies the number of Branch Point entities in the list.

I32 : Harness Count

I32 : Bundle Count

I32 : Wire Count

I32 : Wire Segment Count

I32 : Branch Node Count

I32 : Bundle Spine Curve Count

I32 : Branch Point Count

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 99

6.2.2.3.1.2 Topological Entities

Figure 91: Topological Entities data collection

6.2.2.3.1.2.1 Harness
A Harness is single manufactured wire unit consisting of several physical electrical wires all bound together into a
branching structure of wire bundles that terminate at connectors. A Harness is made up of an ordered set of Bundles, an
ordered set of Branch Nodes, and a set of Wires.

Harness Harness
Count

Bundle Bundle
Count

Wire Wire
Count

Wire Segment Wire Segment
Count

Branch Node Branch
Node Count

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

100 © ISO 2011 – All rights reserved

Figure 92: Harness data collection

I32 : Harness Data1
Harness Data1 is a collection of Harness information encoded/packed within a single I32 using the following bit
allocation. All undocumented bits are reserved.

Bits 0 - 23 Specifies the index into the list of Bundles of the first Bundle in the Harness. All
Bundles inclusive between first Bundle index and last Bundle index (see Harness
Data2) are part of this Harness

Bits 24 - 30 Represents bits 8-14 of the I16 Harness tag identifier. Note that bits 0-7 of the I16
Harness tag identifier can be found in Harness Data2 data field. Using C-language
syntax the complete Harness tag identifier can be built as follows:

Tag = ((Harness Data1 & 0x7f000000) >> 16) | ((Harness Data2 & 0xff000000) >> 24)

I32 : Harness Data2
Harness Data2 is a collection of Harness information encoded/packed within a single I32 using the following bit
allocation. All undocumented bits are reserved.

Bits 0 - 23 Specifies the index into the list of Bundles of the last Bundle in the Harness. All
Bundles inclusive between first Bundle index (see Harness Data1) and last Bundle
index are part of this Harness

Bits 24 - 31 Represents bits 0-7 of the I16 Harness tag identifier. Note that bits 8-14 of the I16
Harness tag identifier can be found in Harness Data1 data field. Using C-language
syntax the complete Harness tag identifier can be built as follows:

Tag = ((Harness Data1 & 0x7f000000) >> 16) | ((Harness Data2 & 0xff000000) >> 24)

I32 : First Branch Node Index
First Branch Node Index specifies the index into the list of Branch Nodes of the first Branch Node in the Harness. All
Branch Nodes inclusive between First Branch Node Index and Last Branch Node Index are part of this Harness.

I32 : Harness Data1

I32 : Harness Data2

I32 : First Branch Node Index

I32 : Last Branch Node Index

I32 : First Wire Index

I32 : Last Wire Index

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 101

I32 : Last Branch Node Index
Last Branch Node Index specifies the index into the list of Branch Nodes of the Last Branch Node in the Harness. All
Branch Nodes inclusive between First Branch Node Index and Last Branch Node Index are part of this Harness.

I32 : First Wire Index
First Wire Index specifies the index into the list of Wires of the first Wire in the Harness. All Wires inclusive between
First Wire Index and Last Wire Index are part of this Harness.

I32 : Last Wire Index
Last Wire Index specifies the index into the list of Wires of the last Wire in the Harness. All Wires inclusive between
First Wire Index and Last Wire Index are part of this Harness.

6.2.2.3.1.2.2 Bundle
A Bundle models the group of wires that span between two Branch Nodes in a Harness. A Bundle is composed of a start
and end Branch Node which models the topological points at which a Harness branches into two or more Bundles. A
Bundle also refers to a Bundle Spine Curve which represents the 3D path that the Bundle centerline makes in space.
Note that only the Bundle centerline is modeled; the routing of each individual wire in the Bundle is considered
immaterial (i.e. left to a system processing this data to arrange how it sees fit). The Bundle Spine Curve ends must
coincide with the Bundle’s start and end Branch Nodes.

Figure 93: Bundle data collection

I32 : Bundle Data1
Bundle Data1 is a collection of Bundle information encoded/packed within a single I32 using the following bit allocation.
All undocumented bits are reserved.

Bits 0 - 23 Specifies the index into the list of Branch Nodes of the start Branch Node for the
Bundle.

Bits 24 - 30 Represents bits 16-22 of the 23 bit Bundle tag identifier. Note that bits 8-15 and bits
0-7 of the 23 bit Bundle tag identifier can be found in Bundle Data2 and Bundle
Data3 data fields respectively. Using C-language syntax the complete Bundle tag
identifier can be built as follows:

Tag = ((Bundle Data1 & 0x7f000000) >> 8) | ((Bundle Data2 & 0xff000000) >> 16) |

((Bundle Data3 & 0xff000000) >> 24)

I32 : Bundle Data1

I32 : Bundle Data2

I32 : Bundle Data3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

102 © ISO 2011 – All rights reserved

I32 : Bundle Data2
Bundle Data2 is a collection of Bundle information encoded/packed within a single I32 using the following bit allocation.
All undocumented bits are reserved.

Bits 0 - 23 Specifies the index into the list of Branch Nodes of the end Branch Node for the
Bundle.

Bits 24 - 31 Represents bits 8-15 of the 23 bit Bundle tag identifier. Note that bits 16-22 and bits
0-7 of the 23 bit Bundle tag identifier can be found in Bundle Data1 and Bundle
Data3 data fields respectively. Using C-language syntax the complete Bundle tag
identifier can be built as follows:

Tag = ((Bundle Data1 & 0x7f000000) >> 8) | ((Bundle Data2 & 0xff000000) >> 16) |

((Bundle Data3 & 0xff000000) >> 24)

I32 : Bundle Data3
Bundle Data3 is a collection of Bundle information encoded/packed within a single I32 using the following bit allocation.
All undocumented bits are reserved.

Bits 0 - 23 Specifies the index into the list of Bundle Spine Curves of the spine curve associated
with the Bundle.

Bits 24 - 31 Represents bits 0-7 of the 23 bit Bundle tag identifier. Note that bits 16-22 and bits 8-
15 of the 23 bit Bundle tag identifier can be found in Bundle Data1 and Bundle Data2
data fields respectively. Using C-language syntax the complete Bundle tag identifier
can be built as follows:

Tag = ((Bundle Data1 & 0x7f000000) >> 8) | ((Bundle Data2 & 0xff000000) >> 16) |

((Bundle Data3 & 0xff000000) >> 24)

6.2.2.3.1.2.3 Wire
A Wire models the contiguous nature of a single strand of wire from beginning to end. A Wire passes through an ordered
list of Bundles as identified by the ordered list of Wire Segments composing a Wire. In order to reduce data explosion,
and leverage the fact that many Wires in a Harness have the same physical representation, semantic meaning, and
start/end branch nodes, the Wire entity supports a multiplicity factor. This multiplicity factor allows a single Wire entity
to represent more than one discrete physical wire in a Harness. Only physical wires of circular cross-section are modeled
by a Wire entity.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 103

Figure 94: Wire data collection

I32 : Wire Data1
Wire Data1 is a collection of Wire information encoded/packed within a single I32 using the following bit allocation. All
undocumented bits are reserved.

Bits 0 - 23 Specifies the index into the list of Wire Segments of the first Wire Segment in the
Wire. All Wire Segments inclusive between first Wire Segment index and last Wire
Segment index (see Wire Data2) are part of this Wire

Bits 24 - 30 Represents bits 16-22 of the 23 bit Wire tag identifier. Note that bits 8-15 and bits 0-7
of the 23 bit Wiretag identifier can be found in Wire Data2 and Wire Data3 data fields
respectively. Using C-language syntax the complete Wire tag identifier can be built as
follows:

Tag = ((Wire Data1 & 0x7f000000) >> 8) | ((Wire Data2 & 0xff000000) >> 16) |

((Wire Data3 & 0xff000000) >> 24)

I32 : Wire Data2
Wire Data2 is a collection of Wire information encoded/packed within a single I32 using the following bit allocation. All
undocumented bits are reserved.

Bits 0 - 23 Specifies the index into the list of Wire Segments of the last Wire Segment in the
Wire. All Wire Segments inclusive between first Wire Segment index (see Wire
Data1) and last Wire Segment index are part of this Wire

Bits 24 - 31 Represents bits 8-15 of the 23 bit Wire tag identifier. Note that bits 16-22 and bits 0-7
of the 23 bit Wire tag identifier can be found in Wire Data1 and Wire Data3 data
fields respectively. Using C-language syntax the complete Wire tag identifier can be
built as follows:

Tag = ((Wire Data1 & 0x7f000000) >> 8) | ((Wire Data2 & 0xff000000) >> 16) |

((Wire Data3 & 0xff000000) >> 24)

I32 : Wire Data1

I32 : Wire Data2

I32 : Wire Data3

RGBA : Color

F32 : Radius

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

104 © ISO 2011 – All rights reserved

I32 : Wire Data3
Wire Data3 is a collection of Wire information encoded/packed within a single I32 using the following bit allocation. All
undocumented bits are reserved.

Bits 0 - 23 Specifies the Wire multiplicity factor. The multiplicity factor is used to allow a single
Wire to represent multiple (more than one) discrete physical wires that have the same
semantic meaning, attributes and starting/ending Wire Segment.

Bits 24 - 31 Represents bits 0-7 of the 23 bit Wire tag identifier. Note that bits 16-22 and bits 8-15
of the 23 bit Wire tag identifier can be found in Wire Data1 and Wire Data2 data
fields respectively. Using C-language syntax the complete Wire tag identifier can be
built as follows:

Tag = ((Wire Data1 & 0x7f000000) >> 8) | ((Wire Data2 & 0xff000000) >> 16) |

((Wire Data3 & 0xff000000) >> 24)

RGBA : Color
Color specifies the Red, Green, Blue, and Alpha components of the Wire color.

F32 : Radius
Radius specifies the physical radius of the Wire (thus only physical Wires of circular cross-section can be modeled).

6.2.2.3.1.2.4 Wire Segment
A Wire Segment indirectly models the inclusion of a Wire in a particular Bundle (i.e. that a Wire passes through a
particular Bundle).

Figure 95: Wire Segment data collection

I32 : Bundle Index
Bundle Index specifies the index into the list of Bundles of the Bundle this Wire Segment is associated with.

I32 : Tag
Tag specifies the tag identifier for the Wire Segment entity.

6.2.2.3.1.2.5 Branch Node
Leaf Branch Nodes model the topological terminating points of a Harness (i.e. where a connector would be) while
internal Branch Nodes model the topological points at which a Harness branches into two or more Bundles.

I32 : Bundle Index

I32 : Tag

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 105

Figure 96: Branch Node data collection

I32 : Branch Point Index
Branch Point Index specifies the index into the list of Branch Points of the Branch Point associated with the Branch
Node.

I32 : Tag
Tag specifies the tag identifier for the Branch Node entity.

6.2.2.3.1.3 Geometric Entities

Figure 97: Geometric data collection

CoordF32 : Branch Point Coord
Branch Point Coord specifies the XYZ local coordinate system point coordinates for the Branch Point.

6.2.2.3.1.3.1 Bundle Spine Curve
A Bundle Spine Curve is referenced by a Bundle and represents the precise 3D geometric path that the referencing
Bundle’s centerline makes in space

Bundle Spine Curve Bundle
Spine Curve

Count

Branch Point
Count

CoordF32 : Branch Point Coord

I32 : Branch Point Index

I32 : Tag

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

106 © ISO 2011 – All rights reserved

Figure 98: Bundle Spine Curve data collection

U8 : Base Type
Base Type specifies the curve base type identifier. Currently only NURBS curve Base Type is supported, but a type
identifier is still included in the specification to allow for future expansion of the JT Format to support other curve types.
Valid Base Type values include the following:

= 1 − Curve is a NURBS curve

F64 : Domain Limit Min
Domain Limit Min specifies the minimum value placed on the parametric domain. A value of “-1.0” indicates that no
additional domain limit has been set on the real parametric domain.

F64 : Domain Limit Max
Domain Limit Max specifies the maximum value placed on the parametric domain. A value of “-1.0” indicates that no
additional domain limit has been set on the real parametric domain.

F64 : Collocation Tolerance
Collocation Tolerance specifies the tolerance to be used for determining whether two points are collocated. A value of “-
1” indicates that this tolerance has not been set

U8 : Serialization Precision
Serialization Precision specifies whether the curve data is serialized in single or double precision. Currently only double
precision serialization is supported for Bundle Spine Curves, but a Serialization Precision value is still included in the
specification to allow for future expansion of the JT Format to support single precision Bundle Spine Curves. Valid
Serialization Precision values include the following:

= 0 − Double precision serialization

6.2.2.3.1.3.1.1 NURBS XYZ Curve
NURBS XYZ Curve data collection defines a single model space NURBS curve. This format for storing NURBS XYZ
curves is only used within the Wire Harness Set Shape Element.

U8 : Base Type

F64 : Domain Limit Min

F64 : Domain Limit Max

F64 : Collocation Tolerance

U8 : Serialization Precision

NURBS XYZ Curve

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 107

Figure 99: NURBS XYZ Curve data collection

I32 : Degree
Degree specifies the NURBS curve degree. The degree value must be within the range [1:16] inclusive.

I32 : Control Point Count
Control Point Count specifies the number of control points for the NURBS curve.

I32 : Control Point Dim
Control Point Dim specifies the dimensionality of the control points. Valid dimensionality values include the following:

= 3 − Non-Rational (each control point has 3 coordinates)
= 4 − Rational (each control point has 4 coordinates)

I32 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

F64 : Knot Vector Value
Knot Vector Value specifies a single value within the NURBS curve knot vector. There should be a total of “Degree +
Control Point Count + 1” of these values. The list of these values forms the total NURBS curve knot vector which must
be clamped and non-decreasing; where clamped means knot multiplicity of “degree + 1” at both the beginning and end of
the knot vector.

I32 : Degree

I32 : Control Point Count

I32 : Control Point Dim

I32 : Reserved Field

Degree + Control Point Count + 1
F64 : Knot Vector Value

HCoordF64 : Control Point HCoord

Control Point Dim = = 4

CoordF64 : Control Point Coord

Control Point
Count

Control Point
Count

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

108 © ISO 2011 – All rights reserved

CoordF64 : Control Point Coord
Control Point Coord specifies the XYZ coordinates for a single control point

HCoordF64 : Control Point HCoord
Control Point HCoord specifies the XYZW homogeneous coordinates for a single control point.

6.2.2.3.1.4 Entity Tag Counters
Entity Tag Counters data collection specifies the next available “unique” tag value for each topological entity type in a
Wire Harness Set. These are rolling tag counters that are meant to be used for assigning a unique tag when a new entity
is added to a Wire Harness Set.

Figure 100: Entity Tag Counters data collection

I32 : Harness Tag Counter
Harness Tag Counter specifies the next available “unique’ tag value for Harness entity.

I32 : Bundle Tag Counter
Bundle Tag Counter specifies the next available “unique’ tag value for Bundle entity.

I32 : Wire Tag Counter
Wire Tag Counter specifies the next available “unique’ tag value for Wire entity.

I32 : Wire Segment Tag Counter
Wire Segment Tag Counter specifies the next available “unique’ tag value for Wire Segment entity.

I32 : Branch Node Tag Counter
Branch Node Tag Counter specifies the next available “unique’ tag value for Branch Node entity.

6.2.3 JT B-Rep Segment
JT B-Rep Segment contains an Element that defines the precise geometric Boundary Representation data for a particular
Part in JT B-Rep format. Note that there is also another Boundary Representation format (i.e. XT B-Rep) supported by
the JT file format within a different file Segment Type. Complete description for the XT B-Rep can be found in 6.2.4 XT
B-Rep Segment.

I32 : Harness Tag Counter

I32 : Bundle Tag Counter

I32 : Wire Tag Counter

I32 : Wire Segment Tag Counter

I32 : Branch Node Tag Counter

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 109

JT B-Rep Segments are typically referenced by Part Node Elements (see 6.2.1.1.1.5Part Node Element) using Late
Loaded Property Atom Elements (see 6.2.1.2.7Late Loaded Property Atom Element). The JT B-Rep Segment type
supports ZLIB compression on all element data, so all elements in JT B-Rep Segment use the Element Header ZLIB
form of element header data.

Figure 101: JT B-Rep Segment data collection

Complete description for Segment Header can be found in 6.1.3.1Segment Header.

6.2.3.1 JT B-Rep Element
Object Type ID: 0x873a70c0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

JT B-Rep Element represents a particular Part’s precise data in JT boundary representation format. Much of the
“heavyweight” data contained within a JT B-Rep Element is compressed and/or encoded. The compression and/or
encoding state is indicated through other data stored in each JT B-Rep Element.

Two important aspects of a Part are its geometry and its topology. The geometry describes the shape of a Part: this
Surface is a plane, that Surface is a cylinder, this Curve is an arc, etc. The topology describes the connectivity of the
Part: this Point is inside the Part, these Surfaces are next to each other, etc. The 0, 1, and 2 dimensional building blocks
of geometry are Points, Curves, and Surfaces. The corresponding topological building blocks are Vertices, Edges, and
Faces. Topology also uses Shells and Regions to conceptually divide up the three dimensional space.

Parts may have the same topology, but wildly different geometry. Imagine the Surfaces of a Part being composed of
rubber. The topology of the Part does not change as we deform the Part by bending or stretching the surfaces, as long as
we do not cut or glue them (we call this a “nice” deformation). A Part’s topology can be classified as being “manifold”
or “non-manifold”; where “manifold” implies that the Part has the property that each Edge, excluding seams and poles,
has exactly two faces using it.

Similarly, Parts may have nearly identical geometry but different topology. The topology of a Part depends on how the
geometry is put together. A Part may be manifold or non-manifold simply depending on how the geometry is put
together. In addition to describing connectivity in space, topology is used to describe areas of interest (active areas) on
Surfaces. These active Surface areas are used in defining a complex Part. The areas are specified by oriented Loops and
often referred to as trimmed Surfaces which are exactly the 2-dimensional topological building block called a Face.

Readers desiring/needing a more in-depth exploration of boundary representation theory in order to understand the
significance/meaning of some of the JT B-Rep data fields are referred to references [10] and [11] listed in 2 References
and Additional Information section of this document.

Since the topology is a convenient way to describe or “organize” the Part, it is also convenient to store the geometry of
the Part in the topological structures. The following sub-sections document the JT B-Rep format for storing the topology
and geometry of a Part in a JT file.

Segment Header

JT B-Rep Element

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

110 © ISO 2011 – All rights reserved

Figure 102: JT B-Rep Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

I32 : Version Number
Version Number is the version identifier for this JT B-Rep Element. Version numbers “4” and “5” are currently
supported.

U32 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

I32 : Version Number

U32 : Reserved Field

Topological Entity Counts

Geometric Entity Counts

Topology Data

Region Count > 0

Geometric Data

Topological Entity Tag Counters

Version Number > 4

U32 : CAD Tags Flag
CAD Tags Flag = = 1

B-Rep CAD Tag Data

Element Header ZLIB

CoordF64 : Reserved Field

F64 : Reserved Field

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 111

CoordF64 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

F64 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

U32 : CAD Tags Flag
CAD Tags Flag is a flag indicating whether CAD Tag data exist for the JT B-Rep.

6.2.3.1.1 Topological Entity Counts
Topological Entity Counts data collection defines the counts for each of the various topological entities within a B-Rep.

Figure 103: Topological Entity Counts data collection

I32 : Region Count
Region Count indicates the number of topological region entities in the B-Rep.

I32 : Shell Count
Shell Count indicates the number of topological shell entities in the B-Rep

I32 : Face Count
Face Count indicates the number of topological face entities in the B-Rep

I32 : Loop Count
Loop Count indicates the number of topological loop entities in the B-Rep

I32 : CoEdge Count
CoEdge Count indicates the number of topological coedge entities in the B-Rep

I32 : Region Count

I32 : Shell Count

I32 : Face Count

I32 : Loop Count

I32 : CoEdge Count

I32 : Edge Count

I32 : Vertex Count

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

112 © ISO 2011 – All rights reserved

I32 : Edge Count
Edge Count indicates the number of topological edge entities in the B-Rep

I32 : Vertex Count
Vertex Count indicates the number of topological vertex entities in the B-Rep

6.2.3.1.2 Geometric Entity Counts
Geometric Entity Counts data collection defines the counts for each of the various geometric entities within a B-Rep.

Figure 104: Geometric Entity Counts data collection

I32 : Surface Count
Surface Count indicates the number of distinct geometric surface entities in the B-Rep

I32 : PCS Curve Count
PCS Curve Count indicates the number of distinct geometric Parameter Coordinate Space curves (i.e. UV curve) entities
in the B-Rep

I32 : MCS Curve Count
MCS Curve Count indicates the number of distinct geometric (Model Coordinate Space) curves (i.e. XYZ curve) entities
in the B-Rep.

I32 : Point Count
Point Count indicates the number of distinct geometric point entities in the B-Rep.

I32 : Surface Count

I32 : PCS Curve Count

I32 : MCS Curve Count

I32 : Point Count

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 113

6.2.3.1.3 Topology Data

Figure 105: Topology Data data collection

6.2.3.1.3.1 Regions Topology Data
Regions Topology Data defines the disjoint set of non-overlapping Shells making up each Region. Each Region is
defined by one or more non-overlapping Shells. The volume of a Region is that volume lying inside each “anti-hole
Shell” and outside each simply-contained “hole Shell” belonging to the particular Region. A Region is analogous to a
dimensionally elevated face where Region corresponds to Face and Shell corresponds to Trim Loop.

Each Region’s defining Shells are identified in a list of Shells by an index for both the first Shell and the last Shell in
each Region (i.e. all Shells inclusive between the specified first and last Shell list index define the particular Region).

Regions Topology Data

Shells Topology Data

Shell Count > 0

Faces Topology Data

Face Count > 0

Loops Topology Data

Loop Count > 0

CoEdges Topology Data

CoEdge Count > 0

Edges Topology Data

Edge Count > 0

Vertices Topology Data

Vertex Count > 0

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

114 © ISO 2011 – All rights reserved

Figure 106: Regions Topology Data data collection

VecI32{Int32CDP, Lag1} : First Shell Indices
First Shell Indices is a vector of indices representing the index of the first Shell in each Region. First Shell Indices uses
the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Last Shell Indices
Last Shell Indices is a vector of indices representing the index of the last Shell in each Region. Last Shell Indices uses
the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Region Tags
Each Region has an identifier tag. Region Tags is a vector of identifier tags for a set of Regions. Region Tags uses the
Int32 version of the CODEC to compress and encode data.

6.2.3.1.3.2 Shells Topology Data
Shells Topology Data defines the set of topological adjacent Faces making up each Shell. A Shell’s set of topological
adjacent Faces define a single (usually closed) two manifold solid that in turn defines the boundary between the finite
volume of space enclosed within the Shell and the infinite volume of space outside the Shell. Additional, each Shell has
a flag that denotes whether the Shell refers to the finite interior volume (i.e. a “hole Shell”) or the infinite exterior volume
(i.e. an “anti-hole Shell”).

Each Shell’s defining Faces are identified in a list of Faces by an index for both the first Face and the last Face in each
Shell (i.e. all Faces inclusive between the specified first and last Face list index define the particular Shell).

Figure 107: Shells Topology Data data collection

VecI32{Int32CDP, Lag1} : First Face Indices

VecI32{Int32CDP, Lag1} : Last Face Indices

VecI32{Int32CDP, Lag1} : Shell Tags

VecI32{Int32CDP, Xor1} : Shell Anti-Hole Flags

VecI32{Int32CDP, Lag1} : First Shell Indices

VecI32{Int32CDP, Lag1} : Last Shell Indices

VecI32{Int32CDP, Lag1} : Region Tags

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 115

VecI32{Int32CDP, Lag1} : First Face Indices
First Face Indices is a vector of indices representing the index of the first Face in each Shell. First Face Indices uses the
Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Last Face Indices
Last Face Indices is a vector of indices representing the index of the last Face in each Shell. Last Face Indices uses the
Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Shell Tags
Each Shell has an identifier tag. Shell Tags is a vector of identifier tags for a set of Shells. Shell Tags uses the Int32
version of the CODEC to compress and encode data.

VecI32{Int32CDP, Xor1} : Shell Anti-Hole Flags
Each Shell has a flag identifying whether the Shell is an anti-hole Shell. Shell Anti-Hole Flags is a vector of anti-hole
flags for a set of Shells.

In an uncompressed/decoded form the flag values have the following meaning:

= 0 − Shell is not an anti-hole Shell
= 1 − Shell is an anti-hole Shell

Shell Anti-Hole Flags uses the Int32 version of the CODEC to compress and encode data.

6.2.3.1.3.3 Faces Topology Data
A Face is a two-dimensional topological building block defined as the active (that portion to be used in the model)
regions/areas of a Geometric Surface; where active regions/areas of a Geometric Surface are indicated using oriented
Trim Loops. Faces Topology Data specifies the underlying Geometric Surface and Trim Loops making up each Face
along with a “reverse normal” flag and identifier tag for each Face.

A Face must be trimmed with at least one “anti-hole” Trim Loop and may be trimmed with one or more “hole” Trim
Loops. Thus the area of the Geometric Surface defined as the Face, is the area inside the “anti-hole” Trim Loops and
outside each “hole” Trim Loop. No Trim Loops (“hole’ or “anti-hole”) may intersect/cross or be tangent at any point.
“Anti-Hole” Trim Loops must be defined with a counter-clockwise orientation whereas “hole” Trim Loops must be
defined with a clockwise orientation. With this Trim Loop orientation definition, as one traverses a Trim Loop of a Face,
the material or “active region” is always to one’s left. Figure 108 gives an example in parameter space of proper trim
loop definition and orientation (as indicated by the arrows on the loop’s CoEdges) for a face with two holes. “L1”
represents the face “anti-hole” Trim Loop while “L2” and L3” represent the two “hole” Trim Loops. Note that each hole
is always represented by a separate distinct “hole” Trim Loop.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

116 © ISO 2011 – All rights reserved

Figure 108: Trim Loop example in parameter Space - One Face with 2 Holes

Each Face’s underlying Geometric Surface is identified by an index into a list of Geometric Surfaces. Each Face’s
defining Trim Loops are identified in a list of trim Loops by an index for both the first Trim Loop and the last Trim Loop
in each Face (i.e. all Trim Loops inclusive between the specified first and last Trim Loop list index define the particular
Face).

Figure 109: Faces Topology Data data collection

VecI32{Int32CDP, Lag1} : First Trim Loop Indices

VecI32{Int32CDP, Lag1} : Last Trim Loop Indices

VecI32{Int32CDP, Lag1} : Surface Indices

VecI32{Int32CDP, Lag1} : Face Tags

VecI32{Int32CDP, Xor1} : Face Reverse Normal Flags

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 117

VecI32{Int32CDP, Lag1} : First Trim Loop Indices
First Trim Loop Indices is a vector of indices representing the index of the first Trim Loop in each Face. First Trim Loop
Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Last Trim Loop Indices
Last Trim Loop Indices is a vector of indices representing the index of the last Trim Loop in each Face. Last Trim Loop
Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Surface Indices
Surface Indices is a vector of indices representing the index of the underlying Geometric Surface for each Face. Surface
Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Face Tags
Each Face has an identifier tag. Face Tags is a vector of identifier tags for a set of Faces. Face Tags uses the Int32
version of the CODEC to compress and encode data.

VecI32{Int32CDP, Xor1} : Face Reverse Normal Flags
Each Face has a flag identifying whether the Face’s normal(s) should be interpreted to point in the direction opposite of
the usual U cross V normal (note that these flags do not imply any sort of parameter reversal, the flag only implies that
the material is on the other side of the surface).

Face Reverse Normal Flags is a vector of reverse-normal flags for a set of Faces.

In an uncompressed/decoded form the flag values have the following meaning:

= 0 − Face normal is not reversed
= 1 − Shell normal is reversed.

Face Reverse Normal Flags uses the Int32 version of the CODEC to compress and encode data.

6.2.3.1.3.4 Loops Topology Data
A Loop (often called Trimming Loop) defines in parameter space a 1D boundary around which geometric surfaces are
trimmed to form a Face. Loops Topology Data specifies the CoEdges making up each Loop along with an anti-hole flag
and identifier tag for each Loop.

A Loop is composed of one or more CoEdges and the Loop must be closed and non-self-intersecting.

Each Loop’s defining CoEdges are identified in a list of CoEdges by an index for both the first CoEdge and the last
CoEdge in each Loop (i.e. all CoEdges inclusive between the specified first and last CoEdge list index define the
particular Loop).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

118 © ISO 2011 – All rights reserved

Figure 110: Loops Topology Data data collection

VecI32{Int32CDP, Lag1} : First CoEdge Indices
First CoEdge Indices is a vector of indices representing the index of the first CoEdge in each Loop. First CoEdge Indices
uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Last CoEdge Indices
Last CoEdge Indices is a vector of indices representing the index of the last CoEdge in each Loop. Last CoEdge Indices
uses the Int32 version of the CODEC to compress and encode data.

VecI32{I32CDP, Lag1} : Loop Tags
Each Loop has an identifier tag. Loop Tags is a vector of identifier tags for a set of Loops. Loop Tags uses the Int32
version of the CODEC to compress and encode data.

VecI32{I32CDP, Xor1} : Anti-Hole Flags
Each Loop has a flag identifying whether the Loop is an anti-hole Loop. Anti-Hole Flags is a vector of anti-hole flags for
a set of Loops

In an uncompressed/decoded form the flag values have the following meaning:

= 0 − Loop is not an anti-hole Loop
= 1 − Loop is an anti-hole Loop

Anti-Hole Flags uses the Int32 version of the CODEC to compress and encode data.

6.2.3.1.3.5 CoEdges Topology Data
A CoEdge defines a parameter space edge trim Loop segment (i.e. the projection of an Edge into the parameter space of
the Face). CoEdges Topology Data specifies the underlying Edge and PCS Curve making up each CoEdge along with a
MCS curve reversed flag and tag for each CoEdge.

The “Co” portion of the CoEdge name derives from the manifold topology definition that each Edge has exactly two
Faces containing it; thus a CoEdge defines one Face’s “use” of an Edge and the adjoining Face also has a CoEdge (“use”)
for the same underlying Edge. This sharing of the same underlying Edge by two adjoining Faces necessitates the need
for a “MCS Curve Reversed Flag” on each CoEdge to indicate the edge traversal direction (i.e. for a proper manifold
topology definition each CoEdge must traverse the Edge in opposite directions).

VecI32{Int32CDP, Lag1} : First CoEdge Indices

VecI32{Int32CDP, Lag1} : Last CoEdge Indices

VecI32{I32CDP, Lag1} : Loop Tags

VecI32{I32CDP, Xor1} : Anti-Hole Flags

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 119

Figure 111: CoEdges Topology Data data collection

VecI32{Int32CDP, Lag1} : Edge Indices
Edge Indices is a vector of indices representing the index of the underlying Edge for each CoEdge. Edge Indices uses the
Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : PCS Curve Indices
PCS Curve Indices is a vector of indices representing the index of the PCS Curve (UV Curve) for each CoEdge. PCS
Curve Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : CoEdge Tags
Each CoEdge has an identifier tag. CoEdge Tags is a vector of identifier tags for a set of CoEdges. CoEdge Tags uses
the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Xor1} : MCS Curve Reversed Flags
Each CoEdge has a flag indicating whether the directional sense of the associated Edge’s MCS curve should be
interpreted as opposite the direction its parameterization implies. MCS Curve Reversed Flags is a vector of reverse flags
for a set of CoEdges.

In an uncompressed/decoded form the flag values have the following meaning:

= 0 − Directional sense of associated edges MCS curve should not be interpreted as opposite
the direction its parameterization implies.

= 1 − Directional sense of associated edges MCS curve should be interpreted as opposite the
direction its parameterization implies.

MCS Curve Reversed Flags uses the Int32 version of the CODEC to compress and encode data.
.

6.2.3.1.3.6 Edges Topology Data
An Edge defines a model space trim Loop segment. Edges Topology Data specifies the underlying MCS Curve and start
and end Vertex making up each Edge along with an identification tag for each Edge.

If manifold topology, then two faces join at a single model Edge and thus an edge is shared/referenced by two CoEdges
(one per Face).

VecI32{Int32CDP, Lag1} : Edge Indices

VecI32{Int32CDP, Lag1} : PCS Curve Indices

VecI32{Int32CDP, Lag1} : CoEdge Tags

VecI32{Int32CDP, Xor1} : MCS Curve Reversed Flags

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

120 © ISO 2011 – All rights reserved

Figure 112: Edges Topology Data data collection

VecI32{Int32CDP, Lag1} : Start Vertex Indices
Start Vertex Indices is a vector of indices representing the index of the start Vertex in each Edge. Start Vertex Indices
uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : End Vertex Indices
End Vertex Indices is a vector of indices representing the index of the end Vertex in each Edge. End Vertex Indices uses
the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : MCS Curve Indices
MCS Curve Indices is a vector of indices representing the index of the MCS Curve (Model Space curve) for each Edge.
MCS Curve Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Edge Tags
Each Edge has an identifier Tag. Edge Tags is a vector of identifier Tags for a set of Edges. Edge Tags uses the Int32
version of the CODEC to compress and encode data.

6.2.3.1.3.7 Vertices Topology Data
A Vertex is the simplest topological entity and is basically made up of a geometric Point. Vertices Topology Data
specifies the underlying geometric Point making up each Vertex along with an identification tag for each Vertex.

The presence of Vertices Topology Data in a JT B-Rep topology definition is optional. Vertex data is optional because
unlike most topological entities, no connectivity information is contained in a Vertex structure and Vertex data is also not
necessary for performing operations such as tessellation or mass properties calculations.

A Vertex is usually shared/referenced by two or more Edges (e.g. if the corners of four rectangular Faces touches at a
common point, this point is represented by a Vertex and is shared by four Edges).

Figure 113: Vertices Topology Data data collection

VecI32{Int32CDP, Lag1} : Point Indices

VecI32{Int32CDP, Lag1} : Vertex Tags

VecI32{Int32CDP, Lag1} : Start Vertex Indices

VecI32{Int32CDP, Lag1} : End Vertex Indices

VecI32{Int32CDP, Lag1} : MCS Curve Indices

VecI32{Int32CDP, Lag1} : Edge Tags

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 121

VecI32{Int32CDP, Lag1} : Point Indices
Point Indices is a vector of indices representing the index of the geometric point for each Vertex. Point Indices uses the
Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Vertex Tags
Each Vertex has an identifier Tag. Vertex Tags is a vector of identifier Tags for a set of Vertices. Vertex Tags uses the
Int32 version of the CODEC to compress and encode data.

6.2.3.1.4 Geometric Data

Figure 114: Geometric Data data collection

6.2.3.1.4.1 Surfaces Geometric Data
Surfaces Geometric Data collection contains the JT B-Rep’s geometric Surface data. Currently only NURBS Surface
types are supported within a JT B-Rep. The count/number of Surfaces within a JT B-Rep is indicated by data field
Surface Count documented in 6.2.3.1.2 Geometric Entity Counts.

Surfaces Geometric
Data

Surface Count > 0

PCS Curves Geometric
Data

PCS Curve Count > 0

MCS Curves
Geometric Data

MCS Curve Count > 0

Point Geometric Data

Point Count > 0

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

122 © ISO 2011 – All rights reserved

Figure 115: Surfaces Geometric Data data collection

VecI32{Int32CDP, Lag1} : Surface Base Types
Each Surface is assigned a base type identifier. Surface Base Types is a vector of base type identifiers for each Surface in
a list of Surfaces. Currently only NURBS Surface Base Type is supported, but a type identifier is still included in the
specification to allow for future expansion of the JT Format to support other surface types within a JT B-Rep.

In an uncompressed/decoded form the Surface base type identifier values have the following meaning:

= 1 − Surface is a NURBS surface

Surface Base Types uses the Int32 version of the CODEC to compress and encode data.

Non-Trivial Knot Vector
NURBS Surface Indices

NURBS Surface Degree

NURBS Surface Control
Point Counts

NURBS Surface Control
Point Weights

NURBS Surface Control
Points

NURBS Surface Knot
Vectors

VecI32{Int32CDP, Lag1} : Surface Base Types

VecI32{Int32CDP, Lag1} : NURBS Surface Control Point Dimensionality

VecI32{Int32CDP, Lag1} : NURBS Surface Reserved Fields

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 123

VecI32{Int32CDP, Lag1} : NURBS Surface Control Point Dimensionality
NURBS Surface Control Point Dimensionality is a vector of control point dimensionality values for each NURBS
Surface in a list of Surfaces (i.e. there is a stored values for each NURBS Surface in the list).

In an uncompressed/decoded form dimensionality values have the following meaning:

= 3 − Non-Rational (each control point has 3 coordinates)
= 4 − Rational (each control point has 4 coordinates)

NURBS Surface Control Point Dimensionality uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : NURBS Surface Reserved Fields
NURBS Surface Reserved Fields is a vector of data reserved for future expansion of the JT format. Each NURBS
Surface in a list of Surfaces has one reserved data field entry in this NURBS Surface Reserved Fields vector. NURBS
Surface Reserved Fields uses the Int32 version of the CODEC to compress and encode data

6.2.3.1.4.1.1 Non-Trivial Knot Vector NURBS Surface Indices
Non-Trivial Knot Vector NURBS Surface Indices data collection specifies for both U and V directions the Surface index
identifiers (i.e. indices to particular NURBS Surfaces within a list of Surfaces) for all NURBS Surfaces containing non-
trivial knot vectors. A description/definition for “non-trivial knot vector” can be found in 7.1.8 Compressed Entity List
for Non-Trivial Knot Vector.

This Surface index data is stored in a compressed format.

Figure 116: Non-Trivial Knot Vector NURBS Surface Indices data collection

Both Non-Trivial U Knot Vector Surface Indices and Non-Trivial V Knot Vector Surface Indices have the same data
format as that documented for data collection 7.1.8 Compressed Entity List for Non-Trivial Knot Vector.

6.2.3.1.4.1.2 NURBS Surface Degree
NURBS Surface Degree data collection defines the Surface degree in both U and V directions for each NURBS Surface
in a list of Surfaces (i.e. there are stored values for each NURBS Surface in the list). This degree data for the list of
Surfaces is stored in a compressed format.

Figure 117: NURBS Surface Degree data collection

VecI32{Int32CDP, Lag1} : U-Degrees

VecI32{Int32CDP, Lag1} : V-Degrees

Non-Trivial U Knot
Vector Surface Indices

Non-Trivial V Knot
Vector Surface Indices

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

124 © ISO 2011 – All rights reserved

VecI32{Int32CDP, Lag1} : U-Degrees
U-Degrees is a vector of Surface degree values in U direction for each NURBS Surface in a list of Surfaces. U-Degrees
uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : V-Degrees
V -Degrees is a vector of Surface degree values in V direction for each NURBS Surface in a list of Surfaces. V-Degrees
uses the Int32 version of the CODEC to compress and encode data.

6.2.3.1.4.1.3 NURBS Surface Control Point Counts
NURBS Surface Control Point Counts defines the number of NURBS Surface control points for both U and V directions
for each NURBS Surface in a list of Surfaces (i.e. there are stored values for each NURBS Surface in the list). The
control point count data for the list of Surfaces in stored in a compressed format.

Figure 118: NURBS Surface Control Point Counts data collection

VecI32{Int32CDP, Lag1} : U-Control Point Counts
U-Control Point Counts is a vector of control point counts in U direction for each NURBS Surface in a list of Surfaces.
U-Control Point Counts uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : V-Control Point Counts
V-Control Point Counts is a vector of control point counts in V direction for each NURBS Surface in a list of Surfaces.
V-Control Point Counts uses the Int32 version of the CODEC to compress and encode data.

6.2.3.1.4.1.4 NURBS Surface Control Point Weights
NURBS Surface Control Point Weights data collection defines the Weight values for a conditional set of Control Points
for a list of NURBS Surfaces. The storing of the Weight value for a particular Control Point is conditional, because if
NURBS Surface Control Point Dimension is “non-rational” or the actual Control Point’s Weight value is “1”, then no
Weight value is stored for the Control Point (i.e. Weight value can be inferred to be “1”).

The NURBS Surface Control Point Weights data is stored in a compressed format.

Figure 119: NURBS Surface Control Point Weights data collection

Complete description for Compressed Control Point Weights Data can be found in 7.1.9 Compressed Control Point
Weights Data.

6.2.3.1.4.1.5 NURBS Surface Control Points
NURBS Surface Control Points is the compressed and/or encoded representation of the Control Point coordinates for
each NURBS Surface in a list of Surfaces (i.e. there are stored values for each NURBS Surface in the list). Note that
these are non-homogeneous coordinates (i.e. Control Point coordinates have been divided by the corresponding Control
Point Weight values).

Compressed Control
Point Weights Data

VecI32{Int32CDP, Lag1} : U-Control Point Counts

VecI32{Int32CDP, Lag1} : V-Control Point Counts

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 125

Figure 120: NURBS Surface Control Points data collection

VecF64{Float64CDP, NULL} : Control Points
Control Points is a vector of Control Point coordinates for all the NURBS Surfaces in a list of Surfaces. All the NURBS
Surfaces Control Point coordinates are cumulated into this single vector in the same order as the Surface appears in the
Surface list (i.e. Surface-1 U Control Points, Surface-1 V Control Points, Surface-2 U Control Points, Surface-2 V
Control Points, etc.). Control Points uses the Float64 version of the CODEC to compress and encode data in a “lossless”
manner.

6.2.3.1.4.1.6 NURBS Surface Knot Vectors
NURBS Surface Knot Vectors defines the knot vectors for both U and V directions for each NURBS Surface having non-
trivial knot vectors in a list of Surfaces (i.e. there are stored values for each non-trivial knot vector NURBS Surface in the
list). The NURBS Surfaces for which knot vectors are stored (i.e. those containing non-trivial knot vectors) are identified
in data collection Non-Trivial Knot Vector NURBS Surface Indices documented in 6.2.3.1.4.1.1 Non-Trivial Knot
Vector NURBS Surface Indices.

The knot vector data for the list of Surfaces is stored in a compressed format.

Figure 121: NURBS Surface Knot Vectors data collection

VecF64{Float64CDP, NULL} : U Knot Vectors
U Knot Vectors is a list of knot vector values in U direction for each NURBS Surface having non-trivial knot vectors in a
list of Surfaces. All these NURBS Surface U direction non-trivial knot vectors are cumulated into this single list in the
same order as the Surface appears in the Surface list (i.e. Surface-N Non-Trivial U Knot Vector, Surface-M Non-Trivial
U Knot Vector, etc.). U Knot Vectors uses the Float64 version of the CODEC to compress and encode data.

VecF64{Float64CDP, NULL} : V Knot Vectors
V Knot Vectors is a list of knot vector values in V direction for each NURBS Surface having non-trivial knot vectors in a
list of Surfaces. All these NURBS Surface V direction non-trivial knot vectors are cumulated into this single list in the
same order as the Surface appears in the Surface list (i.e. Surface-N Non-Trivial V Knot Vector, Surface-M Non-Trivial
V Knot Vector, etc.). V Knot Vectors uses the Float64 version of the CODEC to compress and encode data.

6.2.3.1.4.2 PCS Curves Geometric Data
PCS Curves Geometric Data collection contains the JT B-Rep’s Parameter Coordinate Space geometric Curve data (i.e.
UV Curve data). This geometric PCS Curve data is divided up into two collection types; one data collection for what are
considered “Trivial” PCS curves and one data collection for compressed/encoded PCS NURBS Curve data.

“Trivial” PCS Curves are those UV Curves whose definition is such that the actual UV Curve definition can be derived
from the parametric domain definition by storing a limited amount of descriptive data for each UV curve (i.e. do not have
to store the complete NURBS UV Curve definition).

VecF64{Float64CDP, NULL} : U Knot Vectors

VecF64{Float64CDP, NULL} : V Knot Vectors

VecF64{Float64CDP, NULL} : Control Points

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

126 © ISO 2011 – All rights reserved

The count/number of PCS Curves within a JT B-Rep is indicated by data field PCS Curve Count documented in 6.2.3.1.2
Geometric Entity Counts.

Figure 122: PCS Curves Geometric Data data collection

Complete description for Compressed Curve Data can be found in 7.1.10 Compressed Curve Data.

6.2.3.1.4.2.1 Trivial PCS Curves
Trivial PCS Curves data collection represents those UV curves whose definition is such (i.e. “trivial” enough) that the
actual UV curve definition can be derived from the parametric domain definition by storing a limited amount of
descriptive data for each UV curve (i.e. do not have to store the complete UV curve definition). These Trivial PCS
Curves are grouped into three classifications (Trivial Domain Loop, Trivial Box Loop, or Trivial Domain UV Curve) and
stored as described in the following sub-sections.

Compressed Curve Data

Trivial PCS Curves

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 127

Figure 123: Trivial PCS Curves data collection

I32 : Trivial Domain Loops Exist Flag
Trivial Domain Loops Exist Flag is a flag indicating whether “trivial” domain loops exist/follow. A Trivial Domain
Loop is a Loop that encloses the entire parametric domain. (i.e. all UV Curves of the Loop span the entire length of the
Surface parametric domain). Given this criteria a Trivial Domain Loop must always be made up of four Trivial Domain
UV curves.

= 0 − Trivial Domain Loops do not exist.
= 1 − Trivial Domain Loops exist.

I32 : Trivial Domain Loops Exist Flag

I32 : Trivial Box Loops Exist Flag

I32 : Trivial Domain UV Curves Exist Flag

Trivial Domain Loops Exist Flag = = 1

Trivial Box Loops Exist Flag = = 1

Trivial Domain UV Curves Exist Flag = = 1

VecI32{Int32CDP, Lag1} : Trivial Domain Loop UV Curve Indices

VecI32{Int32CDP, Lag1} : Trivial Box Loop UV Curve Indices

VecF64{Float64CDP, NULL} : Trivial Box Loop Corner Coords

VecI32{Int32CDP, Lag1} : Trivial UV Curve Indices

VecI32{Int32CDP, Lag1} : Trivial UV Curve Para Domain Side Codes

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

128 © ISO 2011 – All rights reserved

I32 : Trivial Box Loops Exist Flag
Trivial Box Loops Exist Flag is a flag indicating whether “trivial” box loops exist/follow. A trivial Box Loop is a Loop
that forms a rectangle (i.e. corresponding curve end coordinates of opposite sides of the box are equal). Given this
criteria a Trivial Box Loop must always be made up of four UV curves

= 0 − Trivial Box Loops do not exist.
= 1 − Trivial Box Loops exist.

“Equality of corresponding curve end coordinates of opposite sides of the box” is represented graphically as follows:

I32 : Trivial Domain UV Curves Exist Flag
Trivial Domain UV Curves Exist Flag is a flag indicating whether “trivial” domain UV curves (Loop CoEdges)
exist/follow that are not part of a Trivial Domain Loop or Trivial Box Loop (i.e. a Loop contains some UV curves that
span the entire length of the Surface parametric domain but not all the Loop UV curves meet this criteria and thus not
captured as part of the Trivial Domain Loop data).

= 0 − Trivial Domain UV Curves do not exist.
= 1 − Trivial Domain UV Curves exist.

VecI32{Int32CDP, Lag1} : Trivial Domain Loop UV Curve Indices
Trivial Domain Loop UV Curve Indices is a vector of all UV curve indices that are part of a Trivial Domain Loop. Note
that each Trivial Domain Loop is always made up of four UV curves (thus four UV curve indices per Loop). Trivial
Domain Loop UV Curve Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Trivial Box Loop UV Curve Indices
Trivial Box Loop UV Curve Indices is a vector of all UV Curve indices that are part of a Trivial Box Loop. Note that
each Trivial Box Loop is always made up of four UV Curves (thus four UV Curve indices per Loop). Trivial Box Loop
UV Curve Indices uses the Int32 version of the CODEC to compress and encode data.

VecF64{Float64CDP, NULL} : Trivial Box Loop Corner Coords
Trivial Box Loop Corner Coords is a vector of box corner coordinates for all Trivial Box Loops (i.e. each Box Loop will
store two box coroner coordinates). A Box Loop’s set of “box corner coordinates” are the coordinates of the two
min/max diagonally opposite corners of the box. Note that if the Box Loop is a “hole”, then the max and min corners are
the other ends of the respective box sides that contain the max and min corners. Trivial Box Loop Corner Coords uses
the Float64 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Trivial UV Curve Indices
Trivial UV Curve Indices is a vector of all Loop UV Curve indices that are not part of a Trivial Domain Loop or Trivial
Box Loop. Trivial UV Curve Indices uses the Int32 version of the CODEC to compress and encode data.

V

U

P0 P1

P2

P3
P4 P5

P6

P7

P0[0] – P5[0] = 0
P1[0] – P4[0] = 0
P2[1] – P7[1] = 0
P3[1] – P6[1] = 0

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 129

VecI32{Int32CDP, Lag1} : Trivial UV Curve Para Domain Side Codes
Trivial UV Curve Para Domain Side Codes is a vector containing a “side code” for each Trivial UV Curve indicating
which parametric domain side the UV Curve lies on.

In an uncompressed/decoded form the parametric domain side values have the following meaning:

= 0 − Bottom side of parametric domain
= 1 − Right side of parametric domain
= 2 − Top side of parametric domain
= 3 − Left side of parametric domain

Trivial UV Curve Para Domain Side Codes uses the Int32 version of the CODEC to compress and encode data.

6.2.3.1.4.3 MCS Curves Geometric Data
MCS Curves Geometric Data collection contains the JT B-Rep’s Model Coordinate System geometric Curve data (i.e.
XYZ Curve data). Currently only NURBS Curve types are supported within a JT B-Rep. The count/number of MCS
Curves within a JT B-Rep is indicated by data field MCS Curve Count documented in 6.2.3.1.2 Geometric Entity Counts.

Figure 124: MCS Curves Geometric Data data collection

Complete description for Compressed Curve Data can be found in 7.1.10 Compressed Curve Data.

6.2.3.1.4.4 Point Geometric Data
Point Geometric Data collection contains the JT B-Rep’s geometric Point data. Each Point is simply represented by a
CoordF32 for the Point’s coordinate components. The count/number of Points within a JT B-Rep is indicated by data
field Point Count documented in 6.2.3.1.2 Geometric Entity Counts.

Figure 125: Point Geometric Data data collection

CoordF32 : Point Coordinates
Point Coordinates specifies the XYZ coordinate components for a Point.

6.2.3.1.5 Topological Entity Tag Counters
Topological Entity Tag Counters data collection specifies the next available “unique” tag value for each entity type in a
JT B-Rep. These are rolling tag counters that are meant to be used for assigning a unique tag when a new entity is added
to a JT B-Rep.

CoordF32 : Point Coordinates
 Point Count

Compressed Curve
Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

130 © ISO 2011 – All rights reserved

Figure 126: Topological Entity Tag Counters data collection

I32 : Region Tag Counter
Region tag Counter specifies the next available “unique’ tag value for Region entity.

I32 : Shell Tag Counter
Shell Tag Counter specifies the next available “unique’ tag value for Shell entity.

I32 : Face Tag Counter
Face Tag Counter specifies the next available “unique’ tag value for Face entity.

I32 : Loop Tag Counter
Loop Tag Counter specifies the next available “unique’ tag value for Loop entity.

I32 : CoEdge Tag Counter
CoEdge Tag Counter specifies the next available “unique’ tag value for CoEdge entity.

I32 : Edge Tag Counter
Edge Tag Counter specifies the next available “unique’ tag value for Edge entity.

I32 : Vertex Tag Counter
Vertex Tag Counter specifies the next available “unique’ tag value for Vertex entity.

6.2.3.1.6 B-Rep CAD Tag Data
The B-Rep CAD Tag Data collection contains the list of persistent IDs, as defined in the CAD System, to uniquely
identify individual Faces and Edges in the JT B-Rep. The existence of this B-Rep CAD Tag Data collection is dependent
upon the value of previously read data field CAD Tags Flag as documented in 6.2.3.1 JT B-Rep Element.

If B-Rep CAD Tag Data collection is present, there will be a CAD Tag for every Face and every Edge in the JT B-Rep
and the list order will be Face CAD Tags followed by Edge CAD Tags. Therefore the total number of CAD Tags in the
list should be equal to “Face Count + Edge Count” as documented in 6.2.3.1.1 Topological Entity Counts.

I32 : Region Tag Counter

I32 : Shell Tag Counter

I32 : Face Tag Counter

I32 : Loop Tag Counter

I32 : CoEdge Tag Counter

I32 : Edge Tag Counter

I32 : Vertex Tag Counter

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 131

Figure 127: B-Rep CAD Tag Data data collection

Complete description for Compressed CAD Tag Data can be found in 7.1.11 Compressed CAD Tag Data.

6.2.4 XT B-Rep Segment
XT B-Rep Segment contains an Element that defines the precise geometric Boundary Representation data for a particular
Part in Parasolid boundary representation (XT) format. Note that there is also another Boundary Representation format
(i.e. JT B-Rep) supported by the JT file format within a different file Segment Type. Complete description for the JT B-
Rep can be found in 6.2.3 JT B-Rep Segment.

XT B-Rep Segments are typically referenced by Part Node Elements (see 6.2.1.1.1.5Part Node Element) using Late
Loaded Property Atom Elements (see 6.2.1.2.7Late Loaded Property Atom Element). The XT B-Rep Segment type
supports ZLIB compression on all element data, so all elements in XT B-Rep Segment use the Element Header ZLIB
form of element header data.

6.2.4.1 XT B-Rep Element
Object Type ID: 0x873a70e0, 0x2ac9, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

XT B-Rep Element represents a particular part’s precise data in Parasolid boundary representations (XT) format.

Figure 128: XT B-Rep Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

I32 : Version Number

I32 : Parasolid Kernel Major Version Number

I32 : Parasolid Kernel Minor Version Number

I32 : XT B-Rep Data Length

XT B-Rep Data

Element Header ZLIB

Compressed CAD
Tag Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

132 © ISO 2011 – All rights reserved

I32 : Version Number
Version Number is the version identifier for this XT B-Rep Element. Version number “1” is currently the only valid
value.

I32 : Parasolid Kernel Major Version Number
Parasolid Kernel Major Version Number specifies the major version number for the revision of Parasolid that wrote the
XT B-Rep data into JT File.

I32 : Parasolid Kernel Minor Version Number
Parasolid Kernel Minor Version Number specifies the minor version number for the revision of Parasolid that wrote the
XT B-Rep data into JT File.

I32 : XT B-Rep Data Length
XT B-Rep Data Length specifies the length in bytes of the XT B-Rep Data collection. A JT file loader/reader may use
this information to compute the end position of the XT B-Rep Data within the JT file and thus skip (for whatever reason)
reading the remaining XT B-Rep Data.

6.2.4.1.1 XT B-Rep Data
The XT B-Rep Data collection specifies the raw stream of bytes that Parasolid uses to represent a Part’s B-Rep Body(s)
in an external file. The XT B-Rep Data collection format in the JT file is exactly equivalent to the Parasolid XT “Neutral
Binary” encoding format as written by the Parasolid “PK_PART_transmit” interface routine.

Complete documentation for the Parasolid XT “Neutral Binary” encoding format as written by “PK_PART_transmit”
can be found in “Appendix D Parasolid XT Format Reference” of this document.

6.2.5 Wireframe Segment
Wireframe Segment contains an Element that defines the precise 3D wireframe data for a particular Part. A Wireframe
Segment is typically referenced by a Part Node Element (see 6.2.1.1.1.5 Part Node Element) using a Late Loaded
Property Atom Element (see 6.2.1.2.7 Late Loaded Property Atom Element). The Wireframe Segment type supports
ZLIB compression on all element data, so all elements in Wireframe Segment use the Element Header ZLIB form of
element header data.

Figure 129: Wireframe Segment data collection

Complete description for Segment Header can be found in 6.1.3.1Segment Header.

6.2.5.1 Wireframe Rep Element
Object Type ID: 0x873a70d0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97

A Wireframe Rep Element represents a particular Part’s precise 3D wireframe data (e.g. reference curves, section
curves). Much of the “heavyweight” data contained within a Wireframe Rep Element is compressed and/or encoded.
The compression and/or encoding state is indicated through other data stored in each Wireframe Rep Element.

Segment Header

Wireframe Rep Element

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 133

Figure 130: Wireframe Rep Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

I32 : Edge Count
Edge Count indicates the number of topological Edge entities in the Wireframe Rep

I32 : MCS Curve Count
MCS Curve Count indicates the number of distinct geometric (Model Coordinate Space) curves (i.e. XYZ curve) entities
in the Wireframe Rep.

VecI32{Int32CDP, Lag1} : MCS Curve Indices
MCS Curve Indices is a vector of indices representing the index of the MCS Curve (Model Space curve) for each Edge.
MCS Curve Indices uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Edge Tags
Each Edge has an identifier Tag. Edge Tags is a vector of identifier Tags for a set of Edges. Edge Tags uses the Int32
version of the CODEC to compress and encode data.

I32 : Edge Count

I32 : MCS Curve Count

Edge Count > 0

MCS Curve Count > 0

Wireframe MCS
Curves Geometric Data

I32 : Edge Tag Counter

U8 : Segment End ID

VecI32{Int32CDP, Lag1} : MCS Curve Indices

VecI32{Int32CDP, Lag1} : Edge Tags

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

134 © ISO 2011 – All rights reserved

I32 : Edge Tag Counter
Edge Tag Counter specifies the next available “unique’ tag value for Edge entity.

U8 : Segment End ID
Segment End ID defines the segment end identifier. This field should always have a value of “114”.

6.2.5.1.1 Wireframe MCS Curves Geometric Data
Wireframe MCS Curves Geometric Data collection contains the Wireframe Rep’s Model Coordinate System geometric
Curve data (i.e. XYZ Curve data). Currently only NURBS Curve types are supported within a Wireframe Rep. The
count/number of MCS Curves within a Wireframe Rep is indicated by data field MCS Curve Count documented in
6.2.5.1 Wireframe Rep Element.

Figure 131: Wireframe MCS Curves Geometric Data data collection

Complete description for Compressed Curve Data can be found in 7.1.10 Compressed Curve Data.

6.2.6 Meta Data Segment
Meta Data Segments are used to store large collections of meta-data in separate addressable segments of the JT File.
Storing meta-data in a separate addressable segment allows references (from within the JT file) to these segments to be
constructed such that the meta-data can be late-loaded (i.e. JT file reader can be structured to support the “best practice”
of delaying the loading/reading of the referenced meta-data segment until it is actually needed).

Meta Data Segments are typically referenced by Part Node Elements (see 6.2.1.1.1.5Part Node Element) using Late
Loaded Property Atom Elements (see 6.2.1.2.7Late Loaded Property Atom Element).

The Meta Data Segment type supports ZLIB compression on all element data, so all elements in Meta Data Segment use
the Element Header ZLIB form of element header data.

Figure 132: Meta Data Segment data collection

Complete description for Segment Header can be found in 6.1.3.1 Segment Header.

The following sub-sections document the various Meta Data Element types.

Segment Header

Meta Data Element

Compressed Curve
Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 135

6.2.6.1 Property Proxy Meta Data Element
Object Type ID: 0xce357247, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1

A Property Proxy Meta Data Element serves as a “proxy” for all meta-data properties associated with a particular Meta
Data Node Element (see 6.2.1.1.1.6 Meta Data Node Element). The proxy is in the form of a list of key/value property
pairs where the key identifies the type and meaning of the value. Although the property key is always in the form of a
String data type, the value can be one of many several data types.

Figure 133: Property Proxy Meta Data Element data collection

Element Header ZLIB

MbString : Property Key

U8 : Property Value Type

If Property Key string is not
empty (i.e. NULL).

MbString : String Property Value

Property Value Type = = 1

I32 : Integer Property Value

Property Value Type = = 2

F32 : Float Property Value

Property Value Type = = 3

Property Value Type = = 4

Date Property Value

while Property Key
string is not empty

(i.e. NULL).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

136 © ISO 2011 – All rights reserved

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

MbString : Property Key
Property Key specifies the key string for the property.

U8 : Property Value Type
Property Value Type specifies the data type for the Property Value. If the type equals “0” then no Property Value is
written. Valid types include the following:

= 0 − Unknown
= 1 − MbString data type value
= 2 − I32 data type value
= 3 − F32 data type value
= 4 − Date value

MbString : String Property Value
String Property Value represents the property value when Property Value Type = = 1.

I32 : Integer Property Value
Integer Property Value represents the property value when Property Value Type = = 2.

F32 : Float Property Value
Float Property Value represents the property value when Property Value Type = = 3.

6.2.6.1.1 Date Property Value
Date Property Value data collection represents a date as a combination of year, month, day, hour, minute, and second
data fields.

Figure 134: Date Property Value data collection

I16 : Year
Year specifies the date year value.

I16 : Year

I16 : Month

I16 : Day

I16 : Hour

I16 : Minute

I16 : Second

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 137

I16 : Month
Month specifies the date month value.

I16 : Day
Day specifies the date day value.

I16 : Hour
Hour specifies the date hour value.

I16 : Minute
Minute specifies the date minute value.

I16 : Second
Second specifies the date Second value.

6.2.6.2 PMI Manager Meta Data Element
Object Type ID: 0xce357249, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1

The PMI Manager Meta Data Element data collection is a type of Meta Data Element which contains the Product and
Manufacturing Information for a part/assembly.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

138 © ISO 2011 – All rights reserved

Figure 135: PMI Manager Meta Data Element data collection

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

I16 : Version Number
Version Number is the version identifier for the PMI. There are several PMI versions that must be supported for JT File
format 8.1. This is because if an older JT File format containing PMI is read and then re-exported to JT File Format 8.1,
the exported PMI data must be maintained in the version format originally read from the initial JT file (i.e. PMI data read
from a JT File is not migrated to new version format when re-exported to another JT File format).

I16 : Version Number

I16 : Reserved Field

PMI Entities

PMI Associations

PMI User Attributes

PMI String Table

PMI Model Views

Version Number > 5

Generic PMI Entities

Version Number > 7

U32 : CAD Tags Flag
CAD Tags Flag = = 1

PMI CAD Tag Data

Element Header ZLIB

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 139

The valid PMI version numbers are as follows:

= 3 − Version-3
= 4 − Version-4
= 5 − Version-5
= 6 − Version-6
= 7 − Version-7
= 8 − Version-8

I16 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

U32 : CAD Tags Flag
CAD Tags Flag is a flag indicating whether CAD Tag data exist for the PMI.

6.2.6.2.1 PMI Entities

Figure 136: PMI Entities data collection

6.2.6.2.1.1 PMI Dimension Entities
The PMI Dimension Entities data collection defines data for a list of Dimensions.

PMI Dimension Entities

PMI Note Entities

PMI Datum Feature Symbol Entities

PMI Datum Target Entities

PMI Feature Control Frame Entities

PMI Line Weld Entities

PMI Spot Weld Entities

PMI Surface Finish Entities

PMI Measurement Point Entities

PMI Locator Entities

PMI Reference Geometry Entities

PMI Design Group Entities

PMI Coordinate System Entities

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

140 © ISO 2011 – All rights reserved

Figure 137: PMI Dimension Entities data collection

I32 : Dimension Count
Dimension Count specifies the number of Dimension entities.

6.2.6.2.1.1.1 PMI 2D Data
The PMI 2D Data collection defines a data format common to all 2D based PMI entities.

Figure 138: PMI 2D Data data collection

I32 : Text Entity Count
Text Entity Count specifies the number of Text entities in the particular PMI entity.

6.2.6.2.1.1.1.1 PMI Base Data
The PMI Base Data collection defines the basic/common data that every 2D and 3D PMI entity contains

I32 : Text Entity Count

PMI Base Data

Text Entity
Count

2D Text Data

Non-Text Polyline Data

I32 : Dimension Count

Dimension
Count

PMI 2D Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 141

Figure 139: PMI Base Data data collection

I32 : User Label
User Label specifies the particular PMI entity identifier.

U8 : 2D-Frame Flag
2D-Frame Flag is a flag specifying whether 6.2.6.2.1.1.1.1.1 2D-Reference Frame data is stored. If 2D-Frame Flag has a
non-zero value then 2D-Reference Frame data is included. If 2D-Frame Flag has a value of “2”, then dummy (i.e. all
zeros) 2D-Reference Frame data is written. The “2D-Frame Flag = = 2” case is used by 6.2.6.2.6 Generic PMI Entities
because for Generic PMI Entities all the 6.2.6.2.1.1.1.3 Non-Text Polyline Data is already in 3D form (i.e. XYZ
coordinate data).

F32 : Text Height
Text Height specifies the PMI text height in WCS.

U8 : Symbol Valid Flag
Symbol Valid Flag is a flag specifying whether the particular PMI entity is valid. If Symbol Valid Flag has a non-zero
value then PMI entity is valid. This flag is only stored if the Version Number as defined in 6.2.6.2PMI Manager Meta
Data Element is greater than “4.”

6.2.6.2.1.1.1.1.1 2D-Reference Frame
The 2D-Reference Frame data collection defines a reference frame (2D coordinate system) where the PMI entity is
displayed in 3D space. All the PMI entity’s 2D and 3D polyline data is assumed to lie on the defined plane.

I32 : User Label

2D-Reference Frame

U8 : 2D-Frame Flag
2D-Frame Flag != 0

F32 : Text Height

Version Number > 4

U8 : Symbol Valid Flag

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

142 © ISO 2011 – All rights reserved

Figure 140: 2D-Reference Frame data collection

CoordF32 : Origin
Origin defines the origin (min-corner) of the 2D coordinate system

CoordF32 : X-Axis Point
X-Axis Point defines a point along the X-Axis of the 2D coordinate system.

CoordF32 : Y-Axis Point
Y-Axis Point defines a point along the Y-Axis of the 2D coordinate system.

6.2.6.2.1.1.1.2 2D Text Data
The 2D Text Data collection defines a 2D text entity/primitive.

Figure 141: 2D Text Data data collection

I32 : String ID
String ID specifies the identifier for the character string. This identifier is an index to a particular character string in the
PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no string.

I32 : String ID

I32 : Font

I32 : Reserved Field

F32 : Reserved Field

Text Box

Text Polyline Data

CoordF32 : Origin

CoordF32 : X-Axis Point

CoordF32 : Y-Axis Point

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 143

I32 : Font
Font identifies the font to be used for this text. Valid values include the following:

= 1 − Simplex
= 2 − Din
= 3 − Military
= 4 − ISO
= 5 − Lightline
= 6 − IGES 1001
= 7 − Century
= 8 − IGES 1002
= 9 − IGES 1003
= 101 − Japanese JISX 0208 coded character set
= 102 − Japanese Extended Unix Codes JISX 0208 coded character set
= 103 − Chinese GB 2312.1980 Simplified coded character set
= 104 − Korean KSC 5601 coded character set
= 105 − Chinese Big5 Traditional coded character set

I32 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

F32 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

6.2.6.2.1.1.1.2.1 Text Box
The Text Box data collection specifies a 2D box that particular text fits within. All values are with respect to 2D-
Reference Frame documented in 6.2.6.2.1.1.1.1.1 2D-Reference Frame.

Figure 142: Text Box data collection

F32 : Origin X-Coord

F32 : Origin Y Coord

F32 : Lower Right Corner X-Coord

F32 : Lower Right Corner Y-Coord

F32 : Upper Left Corner X-Coord

F32 : Upper Left Corner Y Coord

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

144 © ISO 2011 – All rights reserved

F32 : Origin X-Coord
Origin X-Coord defines the 2D X-coordinate of the text origin with respect to 2D-Reference Frame.

F32 : Origin Y Coord
Origin Y-Coord defines the 2D Y-coordinate of the text origin with respect to 2D-Reference Frame.

F32 : Lower Right Corner X-Coord
Lower Right Corner X-Coord defines the 2D X-coordinate of the lower right corner of the text with respect to 2D-
Reference Frame.

F32 : Lower Right Corner Y-Coord
Lower Right Corner Y-Coord defines the 2D Y-coordinate of the lower right corner of the text with respect to 2D-
Reference Frame.

F32 : Upper Left Corner X-Coord
Upper Left Corner X-Coord defines the 2D X-coordinate of the upper left corner of the text with respect to 2D-Reference
Frame.

F32 : Upper Left Corner Y Coord
Upper Left Corner Y-Coord defines the 2D Y-coordinate of the upper left corner of the text with respect to 2D-Reference
Frame.

6.2.6.2.1.1.1.2.2 Text Polyline Data
The Text Polyline Data collection defines any polyline segments which are part of the text representation. This existence
of this polyline data is conditional (i.e. not all text has it) and is made up of an array of indices into an array of polyline
segments packed as 2D vertex coordinates, specifying where each polyline segment begins and ends. Polylines are
constructed from these arrays of data as follows:

Figure 143: Constructing Text Polylines from data arrays

0
2
6
10

Array of Indices Array of Polyline Segments
(packed as 2D coords)

80.609
5.42
65.08
5.42
65.61
5.42
72.84
6.62
72.84
4.21
65.61
5.42
80.60
5.42
73.37
4.21
73.37
6.62
80.60
5.42

Polyline 1 Vertices

Polyline 2 Vertices

Polyline 3 Vertices

X, Y Vertex 1

X, Y Vertex 2

X, Y Vertex 3
. . .

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 145

 This data is represented in JT file in the following format:

Figure 144: Text Polyline Data data collection

I32 : Polyline Segment Index Count
Polyline Segment Index Count specifies the number of polyline segment indices.

I16 : Polyline Segment Index
Polyline Segment Index is an index into the Polyline Vertex Coords array specifying where polyline segment begins or
ends. This index is a vertex coordinate index so the absolute index into the Polyline Vertex Coords array is computed by
multiplying the index value by “2” (i.e. for 2D coordinates).

VecF32 : Polyline Vertex Coords
Polyline Vertex Coords is an array of polyline segments packed as 2D point coordinates. These 2D point coordinates are
with respect to the 2D-Reference Frame documented in 6.2.6.2.1.1.1.1.1 2D-Reference Frame.

6.2.6.2.1.1.1.3 Non-Text Polyline Data
The Non-Text Polyline Data collection contains all the non-text polylines making up the particular PMI entity. Examples
of non-text polylines include line attachments, text boxes, symbol box dividers, etc. The Non-Text Polyline Data
collection is made up of an array of indices into an array of polyline segments packed as either 2D or 3D vertex
coordinates, specifying where each polyline segment begins and ends. Whether vertex coordinates are 2D or 3D is
dependent upon the PMI entity type using this data collection. If it is a 6.2.6.2.6 Generic PMI Entities type then the
packed coordinate data is 3D; for all other PMI entity types the packed coordinate data is 2D. Also for Version Number,
as defined in 6.2.6.2 PMI Manager Meta Data Element, greater than “4” an array of values that sequentially specify the
polyline type in the polyline segments array is included.

Figure 145 below shows how Polylines are constructed from these arrays of data for the packed 2D coordinates case.
The packed 3D coordinates case is interpreted the same except that the coordinates array includes a Z component and is
thus packed as “[XYZ][XYZ][XYZ]…”

I32 : Polyline Segment Index Count

Polyline Segment Index Count > 0

I16 : Polyline Segment Index Polyline Segment
Index Count

VecF32 : Polyline Vertex Coords

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

146 © ISO 2011 – All rights reserved

Figure 145: Constructing Non-Text Polylines from packed 2D data arrays

This data is represented in the JT format as follows:

Figure 146: Non-Text Polyline Data data collection

I32 : Polyline Segment Index Count
Polyline Segment Index Count specifies the number of polyline segment indices.

I16 : Polyline Segment Index
Polyline Segment Index is an index into the Polyline Vertex Coords array specifying where polyline segment begins or
ends. This index is a vertex/coordinate index so the absolute index into the Polyline Vertex Coords array is computed by
multiplying the index value by “2” (i.e. for 2D coordinates).

I32 : Polyline Type Count
Polyline Type Count specifies the number of polyline type values.

I32 : Polyline Segment Index Count

I16 : Polyline Segment Index Polyline Segment
Index Count

VecF32 : Polyline Vertex Coords

I32 : Polyline Type Count

Version Number > 4

I16 : Polyline Type Polyline Type
Count

0
2
6
10

Array of Indices Array of Polyline Segments
(packed as 2D coords)

80.609
5.42
65.08
5.42
65.61
5.42
72.84
6.62
72.84
4.21
65.61
5.42
80.60
5.42
73.37
4.21
73.37
6.62
80.60
5.42

Polyline 1 Vertices

Polyline 2 Vertices

Polyline 3 Vertices

X, Y Vertex 1

X, Y Vertex 2

X, Y Vertex 3
. . .

Array of Polyline
Type Values

2
0
4
1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 147

I16 : Polyline Type
Polyline Type specifies the type of polyline segment in Polyline Vertex Coords array. See Figure 145: Constructing
Non-Text Polylines from packed 2D data arrays for interpretation of this array of type values relative to the defined
polylines. Valid values include the following:

= 0 − General line
= 1 − General arrow
= 2 − General circle
= 3 − General arc
= 4 − Extended line 1
= 5 − Extended line 2
= 6 − Extended arc
= 7 − Extended circle
= 8 − Text line (used in text boxes and symbol box dividers)
= 9 − Text string

VecF32 : Polyline Vertex Coords
Polyline Vertex Coords is an array of polyline segments packed as 2D point coordinates. These 2D point coordinates are
with respect to the 2D-Reference Frame documented in 6.2.6.2.1.1.1.1.1 2D-Reference Frame.

6.2.6.2.1.2 PMI Note Entities
The PMI Note Entities data collection defines data for a list of Notes. Notes are used to connect textual information to
specific Part entities.

Figure 147: PMI Note Entities data collection

Complete description for PMI 2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.

I32 : Note Count
Note Count specifies the number of Note entities.

U32 : URL Flag
URL Flag specifies whether Note is an URL. This data field is only present if Version Number, as defined in 6.2.6.2 PMI
Manager Meta Data Element, is greater than “5”. The URL is the actual text of the note as specified in PMI 2D Data.

I32 : Note Count

Note
Count

PMI 2D Data

Version Number > 5

U32 : URL Flag

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

148 © ISO 2011 – All rights reserved

6.2.6.2.1.3 PMI Datum Feature Symbol Entities
The PMI Datum Feature Symbol Entities data collection defines data for a list of Datum Feature Symbols. A Datum
Feature Symbol is a Geometric Dimensioning and Tolerancing (GD&T) symbol that provides a “label” for a part feature
which is referenced by a Feature Control Frame.

Figure 148: PMI Datum Feature Symbol Entities data collection

Complete description for PMI 2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.

I32 : DFS Count
DFS Count specifies the number of Datum Feature Symbol entities.

6.2.6.2.1.4 PMI Datum Target Entities
The PMI Datum Target Entities data collection defines data for a list of Datum Targets. A Datum Target is a Geometric
Dimensioning and Tolerancing (GD&T) symbol that specifies a point, a line, or an area on a part to define a “datum” for
manufacturing and inspection operations.

Figure 149: PMI Datum Target Entities data collection

Complete description for PMI 2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.

I32 : Datum Target Count
Datum Target Count specifies the number of Datum Target entities.

6.2.6.2.1.5 PMI Feature Control Frame Entities
The PMI Feature Control Frame Entities data collection defines data for a list of Feature Control Frames. A Feature
Control Frame is a Geometric Dimensioning and Tolerancing (GD&T) symbol used for expressing the geometric
characteristics, form tolerance, runout or location tolerance, and relationships between the geometric features of a part. If
necessary, Datum Feature and/or Datum Target references may be included in the Feature Control Frame symbol.

I32 : Datum Target Count

Datum Target
Count

PMI 2D Data

I32 : DFS Count

 DFS Count
PMI 2D Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 149

Figure 150: PMI Feature Control Frame Entities data collection

Complete description for PMI 2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.

I32 : FCF Count
FCF Count specifies the number of Feature Control Frame entities.

6.2.6.2.1.6 PMI Line Weld Entities
The PMI Line Weld Entities data collection defines data for a list of Line Weld symbols. A Line Weld symbol describes
the specifications for welding a joint.

Figure 151: PMI Line Weld Entities data collection

Complete description for PMI 2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.

I32 : Line Weld Count
Line Weld Count specifies the number of Line Weld entities.

6.2.6.2.1.7 PMI Spot Weld Entities
The PMI Spot Weld Entities data collection defines data for a list of Spot Weld Symbols. Spot Weld symbols describe
the specifications for welding sheet metal.

Several data fields of the PMI Spot Weld Entities data collection are only present if Version Number, as defined in
6.2.6.2PMI Manager Meta Data Element, is greater than or equal to “4”.

I32 : Line Weld Count

Line Weld
Count

PMI 2D Data

I32 : FCF Count

FCF Count
PMI 2D Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

150 © ISO 2011 – All rights reserved

Figure 152: PMI Spot Weld Entities data collection

I32 : Spot Weld Count
Spot Weld Count specifies the number of Spot Weld entities.

CoordF32 : Weld Point
Weld Point specifies the coordinates of the weld point.

DirF32 : Approach Direction
Approach Direction specifies the components of the direction vector from which the weld gun approaches the part.

DirF32 : Clamping Direction
Clamping Direction specifies the components of the clamping force direction vector.

DirF32 : Normal Direction
Normal Direction specifies the components of the direction vector normal to the actual spot weld.

6.2.6.2.1.7.1 PMI 3D Data
The PMI 3D Data collection defines a data format common to all 3D based PMI entities.

Along with the PMI Base Data and String identifier, this data collection also includes non-text polyline data defined by
an array of indices into an array of polyline segments packed as 2D/3D vertex coordinates, specifying where each
polyline segment begins and ends. How polylines are constructed from this index array and packed vertex coordinates
array is the same as that illustrated in Figure 143 of 6.2.6.2.1.1.1.2.2 Text Polyline Data.

I32 : Spot Weld Count

Spot Weld
Count

PMI 3D Data

CoordF32 : Weld Point

DirF32 : Approach Direction

DirF32 : Clamping Direction

DirF32 : Normal Direction

Version Number >= 4

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 151

Figure 153: PMI 3D Data data collection

Complete description for PMI Base Data can be found in 6.2.6.2.1.1.1.1 PMI Base Data.

I32 : String ID
String ID specifies the identifier for the character string. This identifier is an index to a particular character string in the
PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no string.

I16 : Polyline Dimensionality
Polyline Dimensionality specifies the dimensionality of the polyline coordinates packed in Polyline Vertex Coords.
Valid values include the following:

= 2 − Indicates 2-dimensioanl (xyxy…) data packing..
= 3 − Indicates 3-dimensional (xyzxyz…) data packing.

I32 : Polyline Segment Index Count
Polyline Segment Index Count specifies the number of polyline segment indices.

I16 : Polyline Segment Index
Polyline Segment Index is an index into the Polyline Vertex Coords array specifying where polyline segment begins or
ends. This index is a vertex coordinate index so the absolute index into the Polyline Vertex Coords array is computed by
multiplying the index value by Polyline Dimensionality.

VecF32 : Polyline Vertex Coords
Polyline Vertex Coords is an array of polyline segments packed as Polyline Dimensionality point coordinates.

6.2.6.2.1.8 PMI Surface Finish Entities
The PMI Surface Finish Entities data collection defines data for a list of Surface Finish symbols. Surface Finish symbols
indicate surface quality and generally are only specified where finish quality affects function (e.g. bearings, pistons,
gears).

PMI Base Data

I32 : String ID

I16 : Polyline Dimensionality

I32 : Polyline Segment Index Count

I16 : Polyline Segment Index Polyline Segment
Index Count

VecF32 : Polyline Vertex Coords

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

152 © ISO 2011 – All rights reserved

Figure 154: PMI Surface Finish Entities data collection

Complete description for PMI 2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.

I32 : SF Count
SF Count specifies the number of Surface Finish symbol entities.

6.2.6.2.1.9 PMI Measurement Point Entities
The PMI Measurement Point Entities data collection defines data for a list of Measurement Point symbols. Measurement
Points are predefined locations (i.e. geometric entities or theoretical, but measurable points, such as surface locations)
which are measured on manufactured parts to verify the accuracy of the manufacturing process.

Several data fields of the PMI Measurement Point Entities data collection are only present if Version Number, as defined
in 6.2.6.2PMI Manager Meta Data Element, is greater than or equal to “4”.

I32 : SF Count

 SF Count
PMI 2D Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 153

Figure 155: PMI Measurement Point Entities data collection

Complete description for PMI 3D Data can be found in 6.2.6.2.1.7.1 PMI 3D Data.

I32 : MP Count
MP Count specifies the number of Measurement Point entities.

CoordF32 : Location
Location specifies the coordinates of the Measurement Point.

DirF32 : Measurement Direction
Measurement Direction specifies the components of the direction vector from which a CCM (Coordinate Measuring
Machine) approaches when taking a measurement.

DirF32 : Coordinate Direction
Coordinate Direction specifies the components of the direction vector another Measurement Point on a mating part would
lye to align with a Measurement Point on the first part.

DirF32 : Normal Direction
Normal Direction specifies the components of the direction vector normal to the actual Measurement Point.

6.2.6.2.1.10 PMI Locator Entities
The PMI Locator Entities data collection defines data for a list of Locator symbols. Locator symbols are used to
accurately locate components with respect to each other and the manufacturing tooling.

I32 : MP Count

 MP Count

PMI 3D Data

CoordF32 : Location

DirF32 : Measurement Direction

DirF32 : Coordinate Direction

DirF32 : Normal Direction

Version Number >= 4

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

154 © ISO 2011 – All rights reserved

Figure 156: PMI Locator Entities data collection

Complete description for PMI 2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.

I32 : Locator Count
Locator Count specifies the number of Locator symbol entities.

6.2.6.2.1.11 PMI Reference Geometry Entities
The PMI Reference Geometry Entities data collection defines data for a list of Reference Geometry. Reference
Geometry can be thought of as user-definable datums, which are positioned relative to the topology of an existing entity.
Each reference geometry type (point, polyline, polygon) can be implicitly determined by the value of Polyline Segment
Index[1] (see 6.2.6.2.1.7.1 PMI 3D Data) as follows:

Polyline Segment Index[1] Implied Reference Geometry Type
= = 1 Point
= = 2 Polyline
> 2 Polygon

Figure 157: PMI Reference Geometry Entities data collection

Complete description for PMI 3D Data can be found in 6.2.6.2.1.7.1 PMI 3D Data.

I32 : Reference Geometry Count
Reference Geometry Count specifies the number of Reference Geometry entities.

6.2.6.2.1.12 PMI Design Group Entities
The PMI Design Group Entities data collection defines data for a list of Design Groups. Design Groups are collections
of PMI created to organize a model into smaller subsets of information. This organization is achieved via PMI
Associations (see 6.2.6.2.2 PMI Associations), where specific PMI entities are associated as “destinations” to a “source”
PMI Design Group.

I32 : Reference Geometry Count

Reference
Geometry Count

PMI 3D Data

I32 : Locator Count

Locator
Count

PMI 2D Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 155

Figure 158: PMI Design Group Entities data collection

I32 : Design Group Count
Design Group Count specifies the number of Design Group entities.

I32 : Group Name String ID
Group Name String ID specifies the identifier for the group name character string. This identifier is an index to a
particular character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1”
indicates no string.

I32 : Attribute Count
Attribute Count specifies the number of Design Group Attribute data collections

6.2.6.2.1.12.1 Design Group Attribute
The Design Group Attribute data collection defines a group property/attribute.

I32 : Design Group Count

Design Group
Count

I32 : Attribute Count

Version Number >= 3

I32 : Group Name String ID

Attribute
Count

Design Group Attribute

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

156 © ISO 2011 – All rights reserved

Figure 159: Design Group Attribute data collection

I32 : Attribute Type
Attribute Type specifies the attribute type. Valid types include the following:

= 1 − Integer
= 2 − Double
= 3 − String

I32 : Integer Value
Integer Value specifies the value for “integer” Attribute Types.

F64 : Double Value
Double Value specifies the value for “double” Attribute Types.

I32 : String Value String ID
String Value String ID specifies the string identifier value for “string” Attribute Types. This identifier is an index to a
particular character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1”
indicates no string.

I32 : Label String ID
Label String ID specifies the string identifier for the attribute label. This identifier is an index to a particular character
string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no string.

I32 : Attribute Type

Attribute Type = = 1

I32 : Integer Value

Attribute Type = = 2

F64 : Double Value

Attribute Type = = 3

I32 : String Value String ID

I32 : Label String ID

I32 : Description String ID

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 157

I32 : Description String ID
Description String ID specifies the string identifier for the attribute description. This identifier is an index to a particular
character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no
string.

6.2.6.2.1.13 PMI Coordinate System Entities
The PMI Coordinate System Entities data collection defines data for a list of Coordinate Systems.

Figure 160: PMI Coordinate System Entities data collection

I32 : Coord Sys Count
Coord Sys Count specifies the number of Coordinate System entities.

I32 : Name String ID
Name String ID specifies the string identifier for the Coordinate System name. This identifier is an index to a particular
character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no
string.

CoordF32 : Origin
Origin defines the origin of the coordinate system.

CoordF32 : X-Axis Point
X-Axis Point defines a point along the X-Axis of the coordinate system.

CoordF32 : Y-Axis Point
Y-Axis Point defines a point along the Y-Axis of the coordinate system.

6.2.6.2.2 PMI Associations
The PMI Associations data collection defines data for a list of associations. An association defines a link (“relationship”)
between two PMI, B-Rep, or Wireframe Rep entities where one entity is defined as the “source” and the other entity is
defined as the “destination”.

I32 : Coord Sys Count

Coord Sys
Count

I32 : Name String ID

CoordF32 : Origin

CoordF32 : X-Axis Point

CoordF32 : Y-Axis Point

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

158 © ISO 2011 – All rights reserved

Figure 161: PMI Associations data collection

I32 : Association Count
Association Count specifies the number of associations.

I32 : Source Data
Source Data is a collection of source entity information encoded/packed within a single I32 using the following bit
allocation. All undocumented bits are reserved.

Bits 0 - 23 Source Entity Identifier. The interpretation of this identifier data is dependent upon the
value of Bit 31 documented below.

Bits 24 -30 Source Entity PMI or B-Rep type. Valid types include the following:
= 0 − PMI - Dimension
= 1 − PMI - Note
= 2 − PMI - Datum Feature Symbol
= 3 − PMI - Datum Target
= 4 − PMI - Feature Control Frame
= 5 − PMI - Line Weld
= 6 − PMI - Spot Weld
= 7 − PMI - Measurement Point
= 8 − PMI - Surface Finish
= 9 − PMI - Locator Designator
= 10 − PMI - Reference Geometry
= 11 − PMI - Coordinate System

I32 : Association Count

Association
Count

I32 : Source Data

I32 : Destination Data

I32 : Reason Code

I32 : Source Owning Entity String ID

I32 : Destination Owning Entity String ID

Version Number > 5

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 159

= 12 − PMI - Design Group
= 13 − PMI - User Attribute
= 14 − B-Rep - Vertex
= 15 − B-Rep - Edge
= 16 − B-Rep - Face
= 17 − PMI - Model View
= 18 − PMI - Generic
= 19 − Wireframe Rep - Edge
= 20 − PMI - Unspecified type
= 21 − Part Instance

Bit 31 Indirect Identifier Flag

= 0 – Value in Bits 0-23 is not the actual CAD identifier, instead Bits 0-23 is an index
into the source type’s PMI array or index of the edge/face in B-Rep or
Wireframe Rep for the source entity.

= 1 – Value in Bits 0-23 is not the actual CAD identifier; instead Bits 0-23 is an index
into the list of CAD Tags (as documented in 6.2.6.2.7 PMI CAD Tag Data)
identifying the CAD Tag belonging to the particular source entity.

I32 : Destination Data
Destination Data is a collection of destination entity information encoded/packed within a single I32. The encoding
schema and interpretation of this data is the same as that documented in Source Data.

I32 : Reason Code
Reason Code specifies the “reason” for the association. Valid Reason Codes include the following:

= 0 − Association is to the primary entity being dimensioned
= 1 − Association is to the secondary entity being dimensioned
= 2 − Association is to the dimension plane
= 5 − Association is to the entity used to specify the Z-Axis of a coordinate system
= 10 − Association is to an entity "associated" to or "included in" a PMI symbol
= 11 − Association is to an entity used to "attach" a PMI symbol.
= 12 − Association is to first entity used to “attach” a PMI symbol
= 13 − Association is to second entity used to “attach” a PMI symbol
= 14 − Specifying PMI grouping, source is PMI/B-Rep entity and destination is design

group.
= 15 − Association is to a weld line entity
= 16 − Association is to a “hot spot”
= 17 − Association is to a child in a PMI stack
= 72 − Association is for PMI miscellaneous relation.
= 73 − Association is for PMI related entity.
= 98 − Association is to show the PMI when associated Model View is selected. Source is the

PMI, and destination is Model View.
= 99 − Association is to show/select PMI B, if showing/selecting PMI A. Source is PMI A,

and destination is PMI B. This is different from an “attached” PMI , where the
convention is to show the PMI visibly linked to one another.

= 100 − Association is to show all parts except the associated part instance. Source is the part
instance, and destination is Model View

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

160 © ISO 2011 – All rights reserved

I32 : Source Owning Entity String ID
Source Owning Entity String ID specifies the string identifier for the string which contains the unique CAD identifier of
the component (part or assembly) that owns the source PMI or B-Rep entity. This identifier is an index to a particular
character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no
string and implies that the entity is to be found on the current node‘s PMI/B-Rep/Wireframe-Rep segment. It is valid for
the source owning entity to be the same as the destination owning entity (i.e. an association between two PMI or B-Rep
entities in the same part/assembly). This data field is only present if Version Number, as defined in 6.2.6.2 PMI Manager
Meta Data Element, is greater than “5”.

I32 : Destination Owning Entity String ID
Destination Owning Entity String ID specifies the string identifier for the string which contains the unique CAD
identifier of the component (part or assembly) that owns the destination PMI or B-Rep entity. This identifier is an index
to a particular character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-
1” indicates no string and implies that the entity is to be found on the current node‘s PMI/B-Rep/Wireframe-Rep
segment. It is valid for the source owning entity to be the same as the destination owning entity (i.e. an association
between two PMI or B-Rep entities in the same part/assembly). This data field is only present if Version Number, as
defined in 6.2.6.2 PMI Manager Meta Data Element, is greater than “5”.

6.2.6.2.3 PMI User Attributes
The PMI User Attributes collection defines data for a list of user attributes. PMI User Attributes are used to add attribute
data to a part/assembly. Each user attribute is composed of key/value pair of strings.

Figure 162: PMI User Attributes data collection

I32 : User Attribute Count
User Attribute Count specifies the number of user attributes.

I32 : Key String ID
Key String ID specifies the string identifier for the user attribute key. This identifier is an index to a particular character
string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no string.

I32 : Value String ID
Value String ID specifies the string identifier for the user attribute value. This identifier is an index to a particular
character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no
string.

6.2.6.2.4 PMI String Table
The PMI String Table data collection defines data for a list of character strings and serves as a central repository for all
character strings used by other PMI Entities within the same PMI Manager Meta Data Element. PMI Entities reference
into this list/array of character strings to define usage of a particular character string using a simple list/array “index” (i.e.
String ID).

I32 : User Attribute Count

User Attribute
Count

I32 : Key String ID

I32 : Value String ID

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 161

Figure 163: PMI String Table data collection

I32 : String Count
String Count specifies the number of character strings in the string table.

String : PMI String
PMI String specifies the character string.

6.2.6.2.5 PMI Model Views
The PMI Model Views data collection defines data for a list of Model Views. A fully annotated part/assembly may
contain so much PMI information, that it becomes very difficult to interpret the design intent when viewing a 3D Model
(with PMI visible) of the part/assembly. Model Views provide a means to capture and organize PMI information about a
3D model so that the design intent can be clearly interpreted and communicated to others in later stages of the Product
Lifecycle Management (PLM) process (e.g. manufacturing, inspection, assembly). This organization is achieved via PMI
Associations (see 6.2.6.2.2 PMI Associations), where specific PMI entities are associated as “destinations” to a “source”
PMI Model View.

I32 : String Count

String Count
String : PMI String

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

162 © ISO 2011 – All rights reserved

Figure 164: PMI Model Views data collection

I32 : Model View Count
Model View Count specifies the number of Model Views.

DirF32 : Eye Direction
Eye Direction specifies the camera direction vector.

F32 : Angle
Angle specifies the camera rotation angle (in degrees where positive is counter-clockwise) about the Eye Direction. So
this Angle in combination with the Eye Direction is equivalent to specifying a rotation using axis-angle representation.

CoordF32 : Eye Position
Eye Position specifies the WCS coordinates of the eye/camera “look from” position.

I32 : Model View Count

Model View
Count

DirF32 : Eye Direction

F32 : Angle

CoordF32 : Eye Position

CoordF32 : Target Point

CoordF32 : View Angle

F32 : Viewport Diameter

F32 : Reserved Field

I32 : Reserved Field

I32 : Active Flag

I32 : View ID

I32 : View Name String ID

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 163

CoordF32 : Target Point
Target Point specifies the WCS coordinates of the eye/camera “look at” position.

CoordF32 : View Angle
View angle specifies the X, Y, Z rotation angles (in degrees) of the model’s axis. The rotations are defined with respect
to an initial orientation where the model’s axis are aligned with the screen’s axis (i.e. +X axis points to right, +Y axis
points up, +Z axis points out at you).

F32 : Viewport Diameter
Viewport Diameter specifies the diameter in WCS coordinates of the largest possible circle that could be inscribed within
viewport. If a large diameter value is specified, the model appears very small in relation to the viewport; whereas if a
small diameter value is specified a close-up (“zoomed-in)” view of the model results.

F32 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

I32 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion

I32 : Active Flag
Active Flag is a flag specifying whether this Model View is the “active” view. Valid values include the following:

= 0 − Is not the active Model View.
= 1 − Is the active Model View

I32 : View ID
View ID specifies the Model View unique identifier.

I32 : View Name String ID
View Name String ID specifies the string identifier for the Model View’s name. This identifier is an index to a particular
character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no
string.

6.2.6.2.6 Generic PMI Entities
The Generic PMI Entities data collection provides a “generic” format for defining various PMI entity types, including
user defined types. The generic format defines the data making up the PMI Entity through a combination of the PMI 2D
Data collection and a list of PMI Property data collections.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

164 © ISO 2011 – All rights reserved

Figure 165: Generic PMI Entities data collection

Complete description for PMI 2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.

I32 : Generic Entity Count
Generic Entity Count specifies the number of Generic PMI Entities.

I32 : Property Count
Property Count specifies the number of PMI Properties.

I32 : Entity Type Name String ID
Entity Type Name String ID specifies the string identifier for the name of the Generic PMI Entity Type. This identifier is
an index to a particular character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier
value of “-1” indicates no string.

I32 : Parent Type Name String ID
Parent Type Name String ID specifies the string identifier for the name of the parent Generic PMI Entity Type. This
identifier is an index to a particular character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An
identifier value of “-1” indicates no string.

I32 : Generic Entity Count

Generic
Entity Count

I32 : Property Count

PMI 2D Data

I32 : Parent Type Name String ID

Property
Count

I32 : Entity Type Name String ID

PMI Property

U16 : Entity Type

U16 : Parent Type

U16 : User Flags

Version Number > 6

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 165

U16 : Entity Type
Entity Type specifies the Generic PMI Entity Type. The valid Entity Type values (in hexadecimal format) are
documented in the following table. Note that for “user defined” Generic PMI Entities a hexadecimal value of “0x0114”
(as documented in table below) should be used.

0x0001 − PMI (generally only used as a Parent Type)
0x0002 − Weld
0x0004 − Spot Weld
0x0008 − Line Weld
0x0010 − Groove Weld
0x0011 − Fillet Weld
0x0012 − Slot Weld
0x0014 − Edge Weld
0x0018 − Arc Spot Weld
0x0020 − Resistance Spot Weld
0x0021 − Resistance Seam Weld
0x0022 − Structural Adhesive Bead Shaped
0x0024 − Structural Adhesive Tape Shaped
0x0028 − Structural Adhesive Dollop Shaped
0x0040 − Mechanical Clinch Connector
0x0041 − Surface Finish
0x0042 − Measurement Point
0x0044 − Datum Locator
0x0048 − Certification Point
0x0080 − Geometric Dimensioning and Tolerancing
0x0081 − Feature Control Frame
0x0082 − Dimension
0x0084 − Datum Feature Symbol
0x0088 − Datum Target
0x0100 − Note
0x0101 − Face Attribute Note
0x0102 − Model View Label Note
0x0104 − Coordinate System
0x0108 − Reference Geometry
0x0110 − Reference Point
0x0111 − Reference Axis
0x0112 − Reference Plane
0x0114 − User Defined
0x0118 − Measurement Locator
0x0120 − Datum Point
0x0121 − Surface Vector Measurement Point
0x0122 − Hole Vector Measurement Point
0x0124 − Trimmed Sheet Vector Measurement Point
0x0128 − Hem Vector Measurement Point

U16 : Parent Type
Parent Type specifies the parent Generic PMI Entity Type. The valid Parent Type values are the same as that
documented above for Entity Type. The Parent Type is used to create a class hierarchy of PMI when presenting the PMI
contents from a JT file.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

166 © ISO 2011 – All rights reserved

U16 : User Flags
User Flags is a collection of flags. The flags are combined using the binary OR operator and store various state
information for the Generic PMI Entity. All undocumented bits are reserved.

0x0001 − Show PMI Entity “flat to screen only” flag
= 0 – Allow PMI display plane to rotate with model.
= 1 – Display PMI entity in the plane of the screen, so that it does not rotate with model.

6.2.6.2.6.1 PMI Property
A PMI Property data collection consists of a key/value pair and is used to describe attributes of Generic PMI Entity or
other specific data.

Figure 166: PMI Property data collection

Both Key PMI Property Atom and Value PMI Property Atom have the same format as that documented in 6.2.6.2.6.1.1
PMI Property Atom.

Although there is no reference compliant requirements for what the PMI Property key/value pairs must be for each
Generic PMI Entity type, there are some common PMI Property keys and corresponding value formats that appear in JT
File. The below table documents these common PMI Property keys (i.e. the keys encoded string value) and what the
format of the value data is in the values encoded string (see 6.2.6.2.6.1.1 PMI Property Atom for an explanation of what
is meant by “encoded string value” for the “key” and “value” data).

Table 7: Common Property Keys and Their Value Encoding formats

“Key” Property Atom Value
String

“Value” Property
Atom Value String
Encoding Format

Decoding Notes

“PMI_PROP_ANCHOR_POINT" “Px Py Pz” Each Px, Py, Pz is a F32 value using “%f” format
“PMI_PROP_NOTE_HAS_URL” “0” or “1” 0 = = False; 1 = = True

“PMI_PROP_NORMAL_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format
“PMI_PROP_APPROACH_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format
“PMI_PROP_CLAMPING_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format

“PMI_PROP_MEAS_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format
“PMI_PROP_COORD_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format

“PMI_PROP_MEAS_LEVEL” “#” Integer representing level number
“PMITextForegroundColor” “#” Hexadecimal integer representing RGB color where

value has “0x00bbggrr” form. The low-order byte
contains a value for the relative intensity of red; the
second byte contains a value for the relative
intensity of green; and the third byte contains a
value for the relative intensity of blue. The high-
order byte must be zero. The maximum value for a
single byte is 0xFF (i.e. intensity value is in the
range [0:255]).

“PMITextBackgroundColor” “#” Same as “PMITextForegroundColor”
“PMITextBackgroundOpacity” “#” Unsigned decimal integer representing opacity

percentage. Actual opacity is: decoded# / 100.0
“PMITextShowBorder” “#” Unsigned decimal integer: 0 = = False; 1 = = True

Key PMI Property Atom

Value PMI Property Atom

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 167

“Key” Property Atom Value
String

“Value” Property
Atom Value String
Encoding Format

Decoding Notes

“PMITextSize” “#” Unsigned decimal integer representing text size in
units of pixels.

“PMITextInPlane” “#” Unsigned decimal integer: 0 = = False; 1 = = True
where “1” indicates that text should be displayed in
the plane of the entity so that it rotates with view.

“PMIGeometryColor” “#” Same as “PMITextForegroundColor”
“PMIGeometryWidth” “#” Unsigned decimal integer representing line width in

units of pixels.
CLIP_NORMAL “#,#,#” Used for Entity Type = “0x0114” and Entity Type

Name String = “Section” to specify the normal to
the clipping plane. The clipping normal points
toward the piece of the model that will be clipped
away. Each # is a F64 value using “%lf” format.

CLIP_POSITION “#,#,#” Used for Entity Type = “0x0114” and Entity Type
Name String = “Section” to specify one point on the
clipping plane. Each # is a F64 value using “%lf”
format.

TRANSFORMATION_MATRIX “#,#,#,#,#,#,#,#,
#,#,#,#,#,#,#,#”

Used for Entity Type = “0x0114” and Entity Type
Name String = “Part Transform” to specify a
transformation matrix. Each # is a F32 value using
“%f” format.

6.2.6.2.6.1.1 PMI Property Atom
PMI Property Atom data collection represents the data format for both the key and value data of a PMI Property
key/value pair.

Figure 167: PMI Property Atom data collection

MbString : Value
Value specifies the property atom value encoded into a String. See Table 7: Common Property Keys and Their Value
Encoding formats above for encoding formats of the Value string.

U32 : Hidden Flag
Hidden Flag specifies if the property is “hidden” or not. A JT file reader could use this flag to control whether read
properties should be exposed to the end user of the application reading the JT file. Valid values include the following:

= 0 − Property is not hidden.
= 1 − Property is hidden.

MbString : Value

Version Number > 6

U32 : Hidden Flag

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

168 © ISO 2011 – All rights reserved

6.2.6.2.7 PMI CAD Tag Data
The PMI CAD Tag Data collection contains the list of persistent IDs, as defined in the CAD System, to uniquely identify
individual PMI entities. The existence of this PMI CAD Tag Data collection is dependent upon the value of previously
read data field CAD Tags Flag as documented in 6.2.6.2 PMI Manager Meta Data Element.

If PMI CAD Tag Data collection is present, there will be a CAD Tag for each PMI entity as specified by the below
documented CAD Tag Index Count formula.

Figure 168: PMI CAD Tag Data data collection

Complete description for Compressed CAD Tag Data can be found in 7.1.11 Compressed CAD Tag Data.

I32 : CAD Tag Index Count
CAD Tag Index Count specifies the total number of CAD Tag indices. This value must be equal to the summation of the
previously read count values for all the PMI entities supporting CAD Tags. The formula is as follows:

CAD Tag Index Count = Line Weld Count + Spot Weld Count + SF Count + MP Count + Reference Geometry Count +

Datum Target Count + FCF Count + Locator Count + Dimension Count + DFS Count + Note
Count + Model View Count + Design Group Count + Coord Sys Count + Generic Entity Count

I32 : CAD Tag Index
CAD Tag Index specifies an index into a list of CAD Tags, identifying the CAD Tag belonging to a particular PMI
entity. There will be a total of CAD Tag Index Count number of CAD Tag Indices and the order of the indices will be as
defined by the above documented CAD Tag Index Count formula (i.e. Line Weld CAD Tag Indices are first, followed by
the Spot Weld CAD Tag Indices, followed by the Surface Finish CAD Tag Indices, etc.)

6.2.7 PMI Data Segment
The PMI Manager Meta Data Element (as documented in 6.2.6.2 PMI Manager Meta Data Element) can sometimes also
be represented in a PMI Data Segment. This can occur when a pre JT 8 version file is migrated to JT 8.1 version file. So
from a parsing point of view a PMI Data Segment should be treated exactly the same as a 6.2.6 Meta Data Segment.

7 Data Compression and Encoding
The JT File format utilizes best-in-class compression and encoding algorithms to produce compact and efficient
representations of data. The types of compression algorithms supported by the JT format vary from standard data type
agnostic ZLIB deflation to advanced arithmetic algorithms that exploit knowledge of the characteristics of the data types
they are compressing. Some of the JT format data collections are always stored in a compressed format, whereas other
data collections support multiple compression storage formats that qualitatively vary from “Lossless” compression to
more aggressive strategies that employ “lossy” compression. This support by the JT format of varying qualitative levels
of compression allows producers of JT data to fine tune the trade off between compression ratio and fidelity of the data.

I32 : CAD Tag Index CAD Tag Index
Count

I32 : CAD Tag Index Count

Compressed CAD
Tag Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 169

In some instances, data may be encoded/compressed using multiple techniques applied on top of one another in a serial
fashion (i.e. encoding applied to the output of another encoder). One common example of this multiple encoding is when
an array/vector of floating point data is first quantized into some integer codes and then these resulting integer codes are
further compressed/encoded using a Huffman or Arithmetic CODEC (see 7.2 Encoding Algorithms).

Beyond the data collection specific compression/encoding, some JT format Data Segment types (see 6.1.3 Data Segment)
also support having a ZLIB compression conditionally applied to all the bytes of information persisted within the
segment. So individual fields or collections of data may first have data type specific encoding/compression algorithms
applied to them, and then if their Data Segment type supports it, the resulting data may be additional compressed using a
ZLIB deflation algorithm.

Whether, and at what qualitative level, a particular Data Segment’s data is compressed/encoded is indicated through
compression related data values stored as part of the particular Data Segment storage format. In general, aggressive
application of advanced compression/encoding techniques is reserved for the heavy-weight renderable geometric data
(e.g. triangles and wireframe lines) which can exist in a JT File.

The following sections document the format of the data compression/encoding within the JT file. Along with
documenting the format, a technical description of the various compression/encoding algorithms is included and an
example implementation of the decoding portion of the algorithms can be found within Annex C:Decoding Algorithms –
An Implementation.

7.1 Common Compression Data Collection Formats
For convenience and brevity in documenting the JT format, this section of the reference documents the format for several
common “data compression/encoding” related data collections that can exist in the JT format. You will find references to
these common compression data collections in the 6.2 Data Segments section of the document.

7.1.1 Int32 Compressed Data Packet
The Int32 Compressed Data Packet collection represents the format used to encode/compress a collection of data into a
series of Int32 based symbols. Note that the Int32 Compressed Data Packet collection can in itself contain another Int32
Compressed Data Packet collection if there are any “Out-Of-Band data.” In the context of the JT format data
compression algorithms and Int32 Compressed Data Packet, “out-of-band data” has the following meaning.

CODECs like arithmetic and Huffman (see 7.2 Encoding Algorithms for technical description) exploit the statistics
present in the relative frequencies of the values being encoded. Values that occur frequently enough allow both of these
methods to encode each of the values as a “symbol” in fewer bits that it would take to encode the value itself. Values
that occur too infrequently to take advantage of this property are written aside into the “out-of-band data” array to be
encoded separately. An “escape” symbol is encoded in their place as a placeholder in the primal CODEC (note, see
“Symbol” data field definition in 7.1.1.1.1 Int32 Probability Context Table Entry for futher details on the representation
of “escape” symbol).

Essentially the “out-of-band data” is the high-entropy junk/residue/slag left over after the CODECs have squeezed all the
advantage out that they can. However, this “out-of-band data” is sent back around because sometimes there are different
statistics to be taken advantage of. When you’re down to the really icky “out-of-band” slag, the bitlength CODEC is
invoked. The bitlength CODEC directly encodes all values given to it, does not require a probability context, and hence
never produces additional “out-of-band data”. The byte stops there, in other words.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

170 © ISO 2011 – All rights reserved

Figure 169: Int32 Compressed Data Packet data collection

U8 : CODEC Type
CODEC Type specifies the algorithm used to encode/decode the data. See 7.2 Encoding Algorithms for complete
explanation of each of the encoding algorithms.

= 0 − Null CODEC
= 1 − Bitlength CODEC
= 2 − Huffman CODEC
= 3 − Arithmetic CODEC

I32 : Out-Of-Band Value Count
Out-Of-Band Value Count specifies the number of values that are “Out-Of-Band.” This data field is only present for
Huffman and Arithmetic CODEC Types.

I32 : CodeText Length
CodeText Length specifies the total number of bits of CodeText data (CodeText data field is described below). This data
field is only present if CODEC Type is not equal to “Null CODEC.”

I32 : Value Element Count
Value Element Count specifies the number of values that the CODEC is expected to decode (i.e. it’s like the “length”
field written if you’re just writing out a vector of integers). This data field is only present if CODEC Type is not equal to
“Null CODEC.” Upon completion of decoding the CodeText data field below, the number of decoded symbol values
should be equal to Value Element Count.

U8 : CODEC Type

Int32 Probability Contexts

I32 : Out-Of-Band Value Count

For Huffman and Arithmetic
CODEC Type.

Int32 Compressed
Data Packet

Out-Of-Band Value
Count > 0

I32 : CodeText Length

CODEC Type not equal to
“Null Codec”.

I32 : Value Element Count

VecU32 : CodeText

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 171

VecU32 : CodeText
CodeText is the array/vector of encoded symbols. For CODEC Type not equal to “Null CODEC”, the total number of
bits of encoded data in this array is indicated by the previously described CodeText Length data field.

7.1.1.1 Int32 Probability Contexts
Int32 Probability Contexts data collection is a list of Probability Context Tables. The Int32 Probability Contexts data
collection is only present for Huffman and Arithmetic CODEC Types. A Probability Context Table is a trimmed and
scaled histogram of the input values. It tallies the frequencies of the several most frequently occurring values. It is
central to the operation of the arithmetic CODEC, and gives all the information necessary to reconstruct the Huffman
codes for the Huffman CODEC.

Figure 170: Int32 Probability Contexts data collection

U8 : Probability Context Table Count

U32{32} : Probability Context
Table Entry Count

U32{6} : Number Symbol Bits

U32{6} : Number Occurrence
Count Bits

U32{6} : Number Value Bits

U32{6} : Number Reserved
Field Bits

U32{32} : Min Value

U32{6} : Number Symbol Bits

U32{6} : Number Occurrence
Count Bits

U32{6} : Number Reserved
Field Bits

For First Probability
Context Table in List

Probability
Context Table
Entry Count

Int32 Probability
Context Table Entry

Probability
Context Table

Count

U32{variable}: Alignment Bits

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

172 © ISO 2011 – All rights reserved

U8 : Probability Context Table Count
Probability Context Table Count specifies the number of Probability Context Tables to follow and will always have a
value of either “1” or “2”.

U32{32} : Probability Context Table Entry Count
Probability Context Table Entry Count specifies the number of entries in this Probability Context Table.

U32{6} : Number Symbol Bits
Number Symbol Bits specifies the number of bits used to encode the Symbol range.

U32{6} : Number Occurrence Count Bits
Number Occurrence Count Bits specifies the number of bits used to encode the Occurrence Count range.

U32{6} : Number Value Bits
Number Value Bits specifies the number of bits used to encode the Associated Value range.

U32{6} : Number Reserved Field Bits
Number Reserved Field Bits specifies the number of bits used for the Reserved Field in 7.1.1.1.1 Int32 Probability
Context Table Entry.

U32{32} : Min Value
Min Value specifies the minimum of all Associated Values (i.e. one per table entry) stored in this Probability Context
Table. This value is used to compute the real Associated Value for a Probability Context Table Entry. See Associated
Value description in 7.1.1.1.1 Int32 Probability Context Table Entry.

U32{variable}: Alignment Bits
Alignment Bits represents the number of additional padding bits stored to arrive at the next even multiple of 8 bits.
Values of “0” are stored in the alignment bits.

Note: Data written into the JtFile is always aligned on bytes. Therefore after reading in a block of bit data such as the
probability context tables it is necessary to discard any remaining bits on the last byte that is read in. This is represented
by the “Alignment Bits” entry.

7.1.1.1.1 Int32 Probability Context Table Entry

Figure 171: Int32 Probability Context Table Entry data collection

U32{Number Symbol Bits} : Symbol

U32{Number Occurrence Count Bits} : Occurrence Count

U32{Number Value Bits} : Associated Value

U32{Number Reserved Field Bits} : Reserved Field

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 173

U32{Number Symbol Bits} : Symbol
Symbol is a small integer number associated with a specific value in the context table. It serves only to impose an order
on the entries in the Probability Context Table. The symbol is stored with a “+2” added to the value and thus a reader
must subtract “2” from the read value to get the true symbol value. Complete description for Number Symbol Bits can be
found in 7.1.1.1 Int32 Probability Contexts.

Note: Even though the symbol is written as a U32{Number Symbol Bits} it is possible to end up with a negative number
after subtracting “2” from the read in value. One example that will occur frequently is the escape symbol used for out-
of-band data which will have the value “0” in the file, however it will become “-2”, its true symbol value, after
subtracting “2” from the read in “0” value.

U32{Number Occurrence Count Bits} : Occurrence Count
Occurrence Count specifies the relative frequency of the value. Complete description for Number Occurrence Count Bits
can be found in 7.1.1.1 Int32 Probability Contexts.

Note: Occurrence Counts for all symbols are normalized (converted to a relative frequency) during the write process in
order to ensure the minimum amount of bits possible is used to write them. This has several implications the reader
should be aware of:

 The sum of all Occurrence Counts is not guaranteed to equal the number of symbols to be decoded (see Value
Element Count in section 7.1.1 for number of symbols to be decoded).

 During Arithmetic decoding as described in C.4.2.

o pDriver->numSymbolsToRead() – Refers to the total number of symbols to be decoded (i.e. Value
Element Count in section 7.1.1).

o pCurrContext->totalCount() – Refers to the sum of the “Occurrence Count” values for all the symbols

associated with a Probability Context.

U32{Number Value Bits} : Associated Value
Associated Value is the value (from the input data) that the symbol represents. The CODECs don’t directly encode
values, they encode symbols. Symbols, then, are associated with specific values, so when the CODEC decodes an array
of symbols, you can reconstruct the array of values that was intended by looking up the symbols in the Probability
Context Table. This value is stored with “Min Value” subtracted from the value. Complete descriptions for “Min Value”
and Number Value Bits can be found in 7.1.1.1 Int32 Probability Contexts.

Note: The associated value for an escape symbol is undefined and therefore can be any valid U32 number.

U32{Number Reserved Field Bits} : Reserved Field
Reserved Field is a data field reserved for future JT format expansion. Complete description for Number Reserved Field
Bits can be found in 7.1.1.1 Int32 Probability Contexts.

7.1.2 Float64 Compressed Data Packet
The Float64 Compressed Data Packet collection represents the format used to encode/compress a collection of data into a
series of Float64 based symbols. This compression format also uses the concept of “out-of-band data” in its data
contents definition. In the context of the JT format data compression algorithms and Float64 Compressed Data Packet,
“out-of-band data” has the following meaning.

CODECs like arithmetic and Huffman (see 7.2 Encoding Algorithms for technical description) exploit the statistics
present in the relative frequencies of the values being encoded. Values that occur frequently enough allow both of these
methods to encode each of the values as a “symbol” in fewer bits that it would take to encode the value itself. Values
that occur too infrequently to take advantage of this property are written aside into the “out-of-band data” array. An
“escape” symbol (i.e. value of “-2”) is encoded in their place as a placeholder in the primal CODEC. Essentially the
“out-of-band data” is the high-entropy junk/residue/slag left over after the CODECs have squeezed all the advantage out
that they can.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

174 © ISO 2011 – All rights reserved

Whereas the Int32 Compressed Data Packet (see 7.1.1 Int32 Compressed Data Packet) then sends this “out-of-band data”
back around through a new CODEC looking for different statistics to be taken advantage of, the Float64 Compressed
Data Packet simply writes out the “out-of-band data” array with no additional encoding attempted.

Figure 172: Float64 Compressed Data Packet data collection

U8 : CODEC Type
CODEC Type specifies the algorithm used to encode/decode the data. See 7.2 Encoding Algorithms for complete
explanation of each of the encoding algorithms.

= 0 − Null CODEC
= 1 − Bitlength CODEC
= 2 − Huffman CODEC
= 3 − Arithmetic CODEC

F64 : Value Range Min
Value Range Min specifies the minimum of the value range used to encode the values.

U8 : CODEC Type

Float64 Probability Contexts

F64 : Value Range Min

F64 : Value Range Max

I32 : Out-Of-Band Value Count

VecF64 : Out-Of-Band Values

I32 : CodeText Length

CODEC Type not equal to
“Null Codec”.

I32 : Value Element Count

VecU32 : CodeText

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 175

F64 : Value Range Max
Value Range Max specifies the maximum of the value range used to encode the values.

I32 : Out-Of-Band Value Count
Out-Of-Band Value Count specifies the number of values that are “Out-Of-Band.”

VecF64 : Out-Of-Band Values
Out-Of-Band Values specifies the vector/list of “Out-Of-Band” values.

I32 : CodeText Length
CodeText Length specifies the total number of bits of CodeText data (described below). This data field is only present if
CODEC Type is not equal to “Null CODEC.”

I32 : Value Element Count
Value Element Count specifies the number of values that the CODEC is expected to decode (i.e. it’s like the “length”
field written if you’re just writing out a vector of integers). This data field is only present if CODEC Type is not equal to
“Null CODEC.” Upon completion of decoding the CodeText data field below, the number of decoded symbol values
should be equal to Value Element Count.

VecU32 : CodeText
CodeText is the array/vector of encoded symbols. For CODEC Type not equal to “Null CODEC”, the total number of
bits of encoded data in this array is indicated by the previously described CodeText Length data field.

7.1.2.1 Float64 Probability Contexts
Float64 Probability Contexts data collection is a list of Probability Context Tables. A Probability Context Table is a
trimmed and scaled histogram of the input values. It tallies the frequencies of the several most frequently occurring
values. It is central to the operation of the arithmetic CODEC, and gives all the information necessary to reconstruct the
Huffman codes for the Huffman CODEC.

Figure 173: Float64 Probability Contexts data collection

I32 : Probability Context Table Count
Probability Context Table Count specifies the number of Probability Context Tables to follow and will always have a
value of either “1” or “2”.

I32 : Probability Context Table Entry Count
Probability Context Table Entry Count specifies the number of entries in this Probability Context Table.

I32 : Probability Context Table Count

I32 : Probability Context Table Entry Count

Probability
Context Table
Entry Count

Float64 Probability
Context Table Entry

Probability
Context Table

Count

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

176 © ISO 2011 – All rights reserved

7.1.2.1.1 Float64 Probability Context Table Entry

Figure 174: Float64 Probability Context Table Entry data collection

I32 : Symbol
Symbol is a small integer number associated with a specific value in the context table. It serves only to impose an order
on the entries in the Probability Context Table. Note that a value of “-2” represents the “escape” symbol placeholder
encoded for “out-of-band data” (see 7.1.2 Float64 Compressed Data Packet for additional details).

I32 : Occurrence Count
Occurrence Count specifies the relative frequency of the value.

F64 : Associated Value
Associated Value is the value (from the input data) that the symbol represents. The CODECs don’t directly encode
values, they encode symbols. Symbols, then, are associated with specific values, so when the CODEC decodes an array
of symbols, you can reconstruct the array of values that was intended by looking up the symbols in the Probability
Context Table.

I32 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

7.1.3 Vertex Based Shape Compressed Rep Data
The Vertex Based Shape Compressed Rep Data collection is the compressed and/or encoded representation of the vertex
coordinates, normal, texture coordinate, and color data for a vertex based shape. All vertex based shape elements (e.g.
Tri-Strip Set Shape LOD Element, Polyline Set Shape LOD Element) use this data collection format to compress/encode
their geometric data.

I32 : Occurrence Count

I32 : Symbol

F64 : Associated Value

I32 : Reserved Field

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 177

Figure 175: Vertex Based Shape Compressed Rep Data data collection

Complete description for Quantization Parameters can be found in 6.2.1.1.1.10.2.1.1Quantization Parameters.

I16 : Version Number
Version Number is the version identifier for this Vertex Based Shape Rep Data. Version number “0x0001” is currently
the only valid value.

U8 : Normal Binding
Normal Binding specifies how (at what granularity) normal vector data is supplied (“bound”) for the Shape Rep in either
the Lossless Compressed Raw Vertex Data or Lossy Quantized Raw Vertex Data collections.

= 0 − None. No normal data.
= 1 − Per Vertex. Normal vector for every vertex.
= 2 − Per Facet. Normal vector for every face/polygon.
= 3 − Per Primitive. Shape has a normal vector for each shape primitive (e.g. a 6.2.1.1.1.10.3

Tri-Strip Set Shape Node Element is made up of a collection of independent and
unconnected triangle strips; where each strip constitutes one primitive of the shape and
thus there would be a normal per triangle strip).

U8 : Texture Coord Binding
Texture Coord Binding specifies how (at what granularity) texture coordinate data is supplied (“bound”) for the Shape
Rep in either the Lossless Compressed Raw Vertex Data or Lossy Quantized Raw Vertex Data collections. Valid values
are the same as documented for Normal Binding data field.

U8 : Color Binding
Color Binding specifies how (at what granularity) color data is supplied (“bound”) for the Shape Rep in either the
Lossless Compressed Raw Vertex Data or Lossy Quantized Raw Vertex Data collections. Valid values are the same as
documented for Normal Binding data field..

I16 : Version Number

U8 : Texture Coord Binding

U8 : Normal Binding

U8 : Color Binding

Quantization Parameters

Lossless Compressed
Raw Vertex Data

Bits Per Vertex = = 0

Lossy Quantized Raw
Vertex Data

VecI32{Int32CDP, Stride1} : Primitive List Indices

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

178 © ISO 2011 – All rights reserved

VecI32{Int32CDP, Stride1} : Primitive List Indices
Primitive List Indices is a vector of indices into the uncompressed Raw Vertex Data marking the start/beginning of
primitives. Primitive List Indices uses the Int32 version of the CODEC to compress and encode data.

7.1.3.1 Lossless Compressed Raw Vertex Data
The Lossless Compressed Raw Vertex Data collection contains all the per-vertex information (i.e. UV texture
coordinates, color, normal vector, XYZ coordinate) stored in a “lossless” compression format for all primitives of the
shape. The Lossless Compressed Raw Vertex Data collection is only present when the Quantization Parameters Bits Per
Vertex data field equals “0” (See 6.2.1.1.1.10.2.1.1 Quantization Parameters for complete description).

Figure 176: Lossless Compressed Raw Vertex Data data collection

I32 : Uncompressed Data Size
Uncompressed Data size specifies the uncompressed size of Vertex Data or Compressed Vertex Data in bytes.

I32 : Compressed Data Size
Compressed Data Size specifies the compressed size of Vertex Data or Compressed Vertex Data in bytes. If the
Compressed Data Size is negative, then the Compressed Vertex Data field is not present (i.e. data is not compressed) and
the absolute value of Compressed Data Size should be equal to Uncompressed Data Size value.

U8 : Vertex Data
The Vertex Data field is a packed array of the raw per vertex data (i.e. UV texture coordinates, color, normal vector,
XYZ coordinate). The Vertex Data field is only present if Compressed Data Size value is less than zero.

The existence of texture coordinate, color, and normal vector data within Vertex Data array is dependent upon the
Normal Binding, Texture Coord Binding, and Color Binding values previously read for this shape (see 7.1.3Vertex Based
Shape Compressed Rep Data). Note that XYZ coordinate data is always present.

The per vertex data is packed in Vertex Data array as F32 types using an interleaved data format/order as follows:

{[u,v] [r,g,b] [nx,ny,nz] x,y,z}, {[u,v] [r,g,b] [nx,ny,nz] x,y,z}, …, for all vertices.

Where the data elements have the following meaning:

[u, v] - Texture Coordinates for Vertex
[r, g, b] - Red, Green, Blue color components for Vertex
[nx, ny, nz] - X, Y, Z Normal Vector components for Vertex
x, y, z - X, Y, Z Position Coordinate for Vertex

Given this format of the Vertex Data, the previously read vertex binding information, and the previously read Primitive
List Indices, a reader can then implicitly compute the data stride (length of one vertex entry in Vertex Data), number of
primitives, and number of vertices for the shape.

I32 : Uncompressed Data Size

I32 : Compressed Data Size

U8 : Vertex Data Abs(Compressed
Data Size)

U8 : Compressed Vertex
Data Compressed

Data Size

Compressed Data Size < 0 Compressed Data Size > 0

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 179

U8 : Compressed Vertex Data
The Compressed Vertex Data field represents the same data as documented in Vertex Data field above except that the
data is compressed using the general “ZLIB deflation compression” method. The Compressed Vertex Data field is only
present if Compressed Data Size value is greater than zero. See 7 Data Compression and Encoding for more details on
ZLIB compression and ZLIB library version used.

7.1.3.2 Lossy Quantized Raw Vertex Data
The Lossy Quantized Raw Vertex Data collection contains all the per-vertex information (i.e. UV texture coordinates,
color, normal vector, XYZ coordinate) stored in a “lossy” encoding/compression format for all primitives of the shape.
The Lossy Quantized Raw Vertex Data collection is only present when the Quantization Parameters Bits Per Vertex data
field is NOT equal to “0” (See 6.2.1.1.1.10.2.1.1 Quantization Parameters for compete description).

Figure 177: Lossy Quantized Raw Vertex Data data collection

VecI32{Int32CDP, StripIndex} : Vertex Data Indices
Vertex Data Indices is a vector of indices (one per vertex) into the uncompressed/dequantized unique vertex data arrays
(Vertex Coords, Vertex Normals, Vertex Texture Coords, Vertex Colors) identifying each Vertex’s data (i.e. for each
Vertex there is an index identifying the location within the unique arrays of the particular Vertex’s data). The
Compressed Vertex Index List uses the Int32 version of the CODEC to compress and encode data.

7.1.3.2.1 Quantized Vertex Coord Array
The Quantized Vertex Coord Array data collection contains the quantization data/representation for a set of vertex
coordinates.

Quantized Vertex
Texture Coord Array

Quantized Vertex
Coord Array

Quantized Vertex
Normal Array

Quantized Vertex
Color Array

Normal Binding ! = 0

Texture Coord Binding ! = 0

Color Binding ! = 0

VecI32{Int32CDP, StripIndex} : Vertex Data Indices

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

180 © ISO 2011 – All rights reserved

Figure 178: Quantized Vertex Coord Array data collection

Complete description for Point Quantizer Data can be found in 7.1.4 Point Quantizer Data.

I32 : Vertex Count
Vertex Count specifies the count (number of unique) vertices in the Vertex Codes arrays.

VecU32{Int32CDP, Lag1} : X-Vertex Coord Codes
X Vertex Coord Codes is a vector of quantizer “codes” for all the X-components of a set of vertex coordinates. X-Vertex
Coord Codes uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP, Lag1} : Y-Vertex Coord Codes
Y Vertex Coord Codes is a vector of quantizer “codes” for all the Y-components of a set of vertex coordinates. Y-Vertex
Coord Codes uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP, Lag1} : Z-Vertex Coord Codes
Z Vertex Coord Codes is a vector of quantizer “codes” for all the Z-components of a set of vertex coordinates. Z-Vertex
Coord Codes uses the Int32 version of the CODEC to compress and encode data.

7.1.3.2.2 Quantized Vertex Normal Array
The Quantized Vertex Normal Array data collection contains the quantization data/representation for a set of vertex
normals. Quantized Vertex Normal Array data collection is only present if previously read Normal Binding value is not
equal to zero (See 7.1.3Vertex Based Shape Compressed Rep Data for complete explanation of Normal Binding data
field).

A variation of the CODEC developed by Michael Deering at Sun Microsystems is used to encode the normals. The
variation being that the “Sextants” are arranged differently than in Deering’s scheme [6], for better delta encoding. See
7.2.5 Deering Normal CODEC for a complete explanation on the Deering CODEC used.

I32 : Vertex Count

Point Quantizer Data

VecU32{Int32CDP, Lag1} : X-Vertex Coord Codes

VecU32{Int32CDP, Lag1} : Y-Vertex Coord Codes

VecU32{Int32CDP, Lag1} : Z-Vertex Coord Codes

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 181

Figure 179: Quantized Vertex Normal Array data collection

U8 : Number of Bits
Number of Bits specifies the quantized size (i.e. the number of bits of precision) for the Theta and PSI angles. This value
must satisfy the following condition: “0 <= Number of Bits <= 13”.

I32 : Normal Count
Normal Count specifies the count (number of unique) Normal Codes.

VecU32{Int32CDP, Lag1} : Sextant Codes
Sextant Codes is a vector of “codes” (one per normal) for a set of normals identifying which Sextant of the corresponding
sphere Octant each normal is located in. Sextant Codes uses the Int32 version of the CODEC to compress and encode
data.

VecU32{Int32CDP, Lag1} : Octant Codes
Octant Codes is a vector of “codes” (one per normal) for a set of normals identifying which sphere Octant each normal is
located in. Octant Codes uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP, Lag1} : Theta Codes
Theta Codes is a vector of “codes” (one per normal) for a set of normals representing in Sextant coordinates the
quantized theta angle for each normal’s location on the unit radius sphere; where theta angle is defined as the angle in
spherical coordinates about the Y-axis on a unit radius sphere. Theta Codes uses the Int32 version of the CODEC to
compress and encode data.

VecU32{Int32CDP, Lag1} : Psi Codes
Psi Codes is a vector of “codes” (one per normal) for a set of normals representing in Sextant coordinates the quantized
Psi angle for each normal’s location on the unit radius sphere; where Psi angle is defined as the longitudinal angle in
spherical coordinates from the y = 0 plane on the unit radius sphere. Psi Codes uses the Int32 version of the CODEC to
compress and encode data

U8 : Number of Bits

I32 : Normal Count

VecU32{Int32CDP, Lag1} : Sextant Codes

VecU32{Int32CDP, Lag1} : Octant Codes

VecU32{Int32CDP, Lag1} : Theta Codes

VecU32{Int32CDP, Lag1} : Psi Codes

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

182 © ISO 2011 – All rights reserved

7.1.3.2.3 Quantized Vertex Texture Coord Array
The Quantized Vertex Texture Coord Array data collection contains the quantization data/representation for a set of
vertex texture coordinates. Quantized Vertex Texture Coord Array data collection is only present if previously read
Texture Coord Binding value is not equal to zero (See 7.1.3Vertex Based Shape Compressed Rep Data for complete
explanation of Texture Coord Binding data field).

Figure 180: Quantized Vertex Texture Coord Array data collection

 Complete description for Texture Quantizer Data can be found in 7.1.5 Texture Quantizer Data.

U8 : Suggested Number of Bits
Suggested Number of Bits specifies the suggested number of quantization bits per texture coordinate U and V
components. It is only a suggested value (and has no real value for a JT file loader/reader) because the actual number of
bits used may differ (increased or decreased) depending on the range of values for texture coordinates. The actual
number of quantization bits used is specified within Texture Quantizer Data. Value must be within range [0:24]
inclusive.

VecU32{Int32CDP, Lag1} : U-Texture Coord Codes
U-Texture Coord Codes is a vector of quantizer “codes” for all the U-components of a set of vertex texture coordinates.
U-Texture Coord Codes uses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP, Lag1} : V-Texture Coord Codes
V-Texture Coord Codes is a vector of quantizer “codes” for all the V-components of a set of vertex texture coordinates.
V-Texture Coord Codes uses the Int32 version of the CODEC to compress and encode data.

7.1.3.2.4 Quantized Vertex Color Array
The Quantized Vertex Color Array data collection contains the quantization data/representation for a set of vertex colors.
Quantized Vertex Color Array data collection is only present if previously read Color Binding value is not equal to zero
(See 7.1.3Vertex Based Shape Compressed Rep Data for complete explanation of Color Binding data field).

Texture Quantizer Data

U8 : Suggested Number of Bits

VecU32{Int32CDP, Lag1} : U-Texture Coord Codes

VecU32{Int32CDP, Lag1} : V-Texture Coord Codes

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 183

Figure 181: Quantized Vertex Color Array data collection

Complete description for Color Quantizer Data can be found in 7.1.6 Color Quantizer Data.

U8 : Number of Bits
Number of Bits specifies the quantized size (i.e. the number of bits of precision) for each of the 3 or 4 color components.
This value must satisfy the following condition: “0 <= Number Of Bits <= 8”.

U8 : Number of Color Floats
Number of Color Floats specifies the number of floating point values used to represent the color components. Valid
values include the following:

= 1 − All components packed into a single 32 bit value…8 bits per component.
= 3 − Each RGB/HSV color component representing in its own floating point value. Alpha

always assumed to be 1.
= 4 − Each RGBA/HSVA color component representing in its own floating point value.

U8 : Number of Bits

Color Quantizer Data

U8 : Number of Color Floats

U8 : Component Arrays Flag

Component Arrays Flag = = 0

VecU32{Int32CDP, Lag1} : Hue/Red Codes

VecU32{Int32CDP, Lag1} : Sat/Green Codes

VecU32{Int32CDP, Lag1} : Value/Blue Codes

VecU32{Int32CDP, Lag1} : Alpha Codes

VecU32{Int32CDP, NULL} : Color Codes

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

184 © ISO 2011 – All rights reserved

U8 : Component Arrays Flag
Component Arrays Flag is a flag indicating whether color components are encoded as a single integer or if the encoding
is broken up (separated) into an array for each color component.

= 0 − Encoded as single integer…thus one compressed collection of codes
= 1 − Encoding is broken up (separated) into an array of codes for each color component…thus

a compressed collection of codes for each color component.

VecU32{Int32CDP, Lag1} : Hue/Red Codes
Hue/Red Codes is a vector of quantizer “codes” for all the Hue/Red color components of a set of vertex colors. Whether
HSV or RGB color model is being used (i.e. Hue or Red) is indicated by a flag stored in the Color Quantizer Data.
Hue/Red Codes is only present when data field Component Arrays Flag = = 1. Hue/Red Codes uses the Int32 version of
the CODEC to compress and encode data.

VecU32{Int32CDP, Lag1} : Sat/Green Codes
Sat/Green Codes is a vector of quantizer “codes” for all the Saturation/Green color components of a set of vertex colors.
Whether HSV or RGB color model is being used (i.e. Saturation or Green) is indicated by a flag stored in the Color
Quantizer Data. Sat/Green Codes is only present when data field Component Arrays Flag = = 1. Sat/Green Codes uses
the Int32 version of the CODEC to compress and encode data.

VecU32{Int32CDP, Lag1} : Value/Blue Codes
Value/Blue Codes is a vector of quantizer “codes” for all the Value/Blue color components of a set of vertex colors.
Whether HSV or RGB color model is being used (i.e. Value or Blue) is indicated by a flag stored in the Color Quantizer
Data. Value/Blue Codes is only present when data field Component Arrays Flag = = 1. Value/Blue Codes uses the Int32
version of the CODEC to compress and encode data.

VecU32{Int32CDP, Lag1} : Alpha Codes
Alpha Codes is a vector of quantizer “codes” for all the Alpha color components of a set of vertex colors. Alpha Codes
is only present when data field Component Arrays Flag = = 1. Alpha Codes uses the Int32 version of the CODEC to
compress and encode data.

VecU32{Int32CDP, NULL} : Color Codes
Color Codes is a vector of quantizer “codes” for a set of vertex colors. Color Codes is only present when data field
Component Arrays Flag = = 0. Color Codes uses the Int32 version of the CODEC to compress and encode data.

7.1.4 Point Quantizer Data
A Point Quantizer Data collection is made up of three Uniform Quantizer Data collections; there is a separate Uniform
Quantizer Data collection for the X, Y, and Z values of point coordinates.

Figure 182: Point Quantizer Data data collection

Complete description for X Uniform Quantizer Data, Y Uniform Quantizer Data and Z Uniform Quantizer Data can be
found in 7.1.7 Uniform Quantizer Data.

X Uniform Quantizer Data

Y Uniform Quantizer Data

Z Uniform Quantizer Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 185

7.1.5 Texture Quantizer Data
A Texture Quantizer Data collection is made up of two Uniform Quantizer Data collections; there is a separate Uniform
Quantizer Data collection for the U, and V values of texture coordinates.

Figure 183: Texture Quantizer Data data collection

Complete description for U Uniform Quantizer Data, and V Uniform Quantizer Data can be found in 7.1.7 Uniform
Quantizer Data.

7.1.6 Color Quantizer Data
A Color Quantizer Data collection contains the quantizer information for each of the color components. The Color
Quantizer utilizes a separate Uniform Quantizer Data collection for each of the 4 color components, but if the HSV color
model is being used, then it is not necessary to store a complete Uniform Quantizer Data Collection.

For the HSV model, since the range values for each color component are constant, only the Number of Bits of precision
for each color component’s Uniform Quantizer is stored. The Uniform Quantizer range values for the HSV color
components should always be assumed to be the following:

Component Quantizer Range
Min Max

Hue 0.0 6.0
Saturation 0.0 1.0
Value 0.0 1.0
Alpha 0.0 1.0

U Uniform Quantizer Data

V Uniform Quantizer Data

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

186 © ISO 2011 – All rights reserved

Figure 184: Color Quantizer Data data collection

Complete descriptions for Red Uniform Quantizer Data, Green Uniform Quantizer Data, Blue Uniform Quantizer Data,
and Alpha Uniform Quantizer Data can be found in 7.1.7 Uniform Quantizer Data. These four Uniform Quantizer Data
collections are only present when data field HSV Flag = = 0.

U8 : HSV Flag
HSV Flag is a flag indicating whether color component data is stored in HSV color model form.

= 0 − Color component data stored in RGB color model form.
= 1 − Color component data stored in HSV color model form.

U8 : Number of Hue Bits
Number of Hue Bits specifies the quantized size (i.e. the number of bits of precision) for the Hue component of the color.
Number of Hue Bits data is only present when data field HSV Flag = = 1.

U8 : Number of Saturation Bits
Number of Saturation Bits specifies the quantized size (i.e. the number of bits of precision) for the Saturation component
of the color. Number of Saturation Bits data is only present when data field HSV Flag = = 1.

U8 : Number of Value Bits
Number of Value Bits specifies the quantized size (i.e. the number of bits of precision) for the Value component of the
color. Number of Value Bits data is only present when data field HSV Flag = = 1.

U8 : Number of Alpha Bits
Number of Alpha Bits specifies the quantized size (i.e. the number of bits of precision) for the Alpha component of the
color. Number of Alpha Bits data is only present when data field HSV Flag = = 1.

7.1.7 Uniform Quantizer Data
The Uniform Quantizer Data collection contains information that defines a scalar quantizer/dequantizer
(encoder/decoder) whose range is divided into levels of equal spacing.

Red Uniform Quantizer Data

Green Uniform Quantizer Data

Blue Uniform Quantizer Data

U8 : HSV Flag

U8 : Number of Hue Bits

U8 : Number of Saturation Bits

U8 : Number of Value Bits

U8 : Number of Alpha Bits

Alpha Uniform Quantizer Data

HSV Flag = = 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 187

Figure 185: Uniform Quantizer Data data collection

F32 : Min
Min specifies the minimum of the quantized range.

F32 : Max
Max specifies the maximum of the quantized range.

U8 : Number Of Bits
Number of Bits specifies the quantized size (i.e. the number of bits of precision). In general, this value must satisfy the
following condition: “0 <= Number Of Bits <= 32”.

7.1.8 Compressed Entity List for Non-Trivial Knot Vector
Compressed Entity List for Non-Trivial Knot Vector data collection specifies index identifiers (i.e. indices to particular
entities within a list of entities) for a set of entities that contain Non-Trivial Knot Vectors. The entity types which can
contain non-trivial knot vectors include:

• JT B-Rep NURBS Surfaces
• JT B-Rep PCS NURBS Curves
• JT B-Rep MCS NURBS Curves
• Wireframe MCS NURBS Curves

Note that any one occurrence of Compressed Entity List for Non-Trivial Knot Vector data collection will only contain
index identifiers for one particular type of the above listed entities. The entity type is inferred based on the data
collection which includes/references the Compressed Entity List for Non-Trivial Knot Vector.

A trivial knot vector is one which completely satisfies all conditions of at least one of the following cases:

1. Case-1 for trivial knot vector
a. Number of knots is an even number
b. Knot vector has a [0:1] knot range
c. There are no interior knots (i.e. NumberKnots = = 2 * (NurbsEntityDegree + 1)

2. Case-2 for trivial knot vector

a. Number of knots is an even number.
b. Knot vector has a [0:1] knot range
c. NurbsEntityDegree < 3
d. Difference between successive non-repeating knots (i.e. KnotDelta) is:

i. KnotDelta = 2.0 / (NumberKnots – (2.0 * NurbsEntityDegree))

Any knot vector which does not satisfy one of the above cases for “trivial knot vector” is classified as a “non-trivial knot
vector.”

U8 : Number Of Bits

F32 : Max

F32 : Min

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

188 © ISO 2011 – All rights reserved

Figure 186: Compressed Entity List for Non-Trivial Knot Vector data collection

VecI32 : Entities of Knot Type Exist Flags
Entities of Knot Type Exist Flags, is a vector of flags indicating for each knot vector type whether Entity Index ID data
collections exist/follow for that knot vector type. Knot Vectors are categorized into types based on the following
characteristics: whether the knot count is even or odd and whether knot range is [0:1] or some other [x1:x2] range.

Currently there are four knot vector types, so this Entities of Knot Type Exist Flags vector should be of length four. The
four flags have the following meaning:

[0] − Flag indicating whether Entity IDs data collection exists for “Even Count [0:1] Range”
knot type.
= 0 – No Entity IDs data collection exists.
= 1 – Entity IDs data collection exists.

[1] − Flag indicating whether Entity IDs data collection exists for “Even Count [x1:x2] Range”
knot type.
= 0 – No Entity IDs data collection exists.
= 1 – Entity IDs data collection exists.

[2] − Flag indicating whether Entity IDs data collection exists for “Odd Count [0:1] Range”
knot type.
= 0 – No Entity IDs data collection exists.
= 1 – Entity IDs data collection exists.

VecI32 : Entities of Knot Type Exist Flags

Entities of Knot Type Exist Flags[0] = = 1

VecI32{Int32CDP, Stride1} : Entity Index Codes

Entities of Knot Type Exist Flags[1] = = 1

VecI32{Int32CDP, Stride1} : Entity Index Codes

Entities of Knot Type Exist Flags[2] = = 1

VecI32{Int32CDP, Stride1} : Entity Index Codes

Entities of Knot Type Exist Flags[3] = = 1

VecI32{Int32CDP, Stride1} : Entity Index Codes

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 189

[3] − Flag indicating whether Entity IDs data collection exists for “Odd Count [x1:x2] Range”
knot type.
= 0 – No Entity IDs data collection exists.
= 1 – Entity IDs data collection exists.

VecI32{Int32CDP, Stride1} : Entity Index Codes
Entity Index Codes is a vector of quantizer “codes” representing entity index identifiers for a set of entities (i.e. indices to
particular entities within a list of entities). Entity Index Codes uses the Int32 version of the CODEC to compress and
encode data.

7.1.9 Compressed Control Point Weights Data
Compressed Control Point Weights Data collection is the compressed and/or encoded representation of weight data for
some set of Control Points. All NURBS based geometry use this data collection to compress/encode Control Point
Weight data.

Figure 187: Compressed Control Point Weights Data data collection

I32 : Weights Count
Weights Count specifies the total number of Weights. This count can differ from the Control Point count (see
6.2.3.1.4.1.3 NURBS Surface Control Point Counts) because if the Control Point Dimensionality is non-rational (see data
field NURBS Surface Control Point Dimensionality in 6.2.3.1.4.1 Surfaces Geometric Data), then no Weight values are
stored for the particular Control Point. Weights Count value also does not necessarily equate to the actual number of
Weights stored, since if a particular Control Point’s Weight values is “1”, then no actual Weight value is stored (i.e. JT
file loaders/readers can infer that the Weight Value is “1” for Control Points that don’t have a Weight value stored).

VecI32{Int32CDP, Stride1} : Weight Indices
Weight Indices is a vector of indices representing the index identifiers for the conditional set of weights for which an
actual Weight Values is stored in Weight Values. Weight Indices uses the Int32 version of the CODEC to compress and
encode data.

VecF64{Float64CDP, NULL} : Weight Values
Weight Values is a vector of weight values for the conditional set of weights. Weight Values uses the Float64 version of
the CODEC to compress and encode data.

7.1.10 Compressed Curve Data
Compressed Curve Data collection contains JT B-Rep or Wireframe Rep compressed/encoded geometric Curve data.
Currently only NURBS Curve types are supported as part of this data collection. Complete documentation for JT B-Rep
and Wireframe Rep can be found in sections 6.2.3.1 JT B-Rep Element and 6.2.5.1 Wireframe Rep Element respectively.

I32 : Weights Count

VecI32{Int32CDP, Stride1} : Weight Indices

VecF64{Float64CDP, NULL} : Weight Values

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

190 © ISO 2011 – All rights reserved

Figure 188: Compressed Curve Data data collection

VecI32{Int32CDP, Lag1} : Curve Base Types
Each Curve is assigned a base type identifier. Curve Base Types is a vector of base type identifiers for each Curve in a
list of Curves. Currently only NURBS Curve Base Type is supported, but a type identifier is still included in the
specification to allow for future expansion of the JT Format to support other curve types.

In an uncompressed/decoded form the Curves base type identifier values have the following meaning:

= 1 − Curve is a NURBS curve

Curve Base Types uses the Int32 version of the CODEC to compress and encode data.

Non-Trivial Knot Vector
NURBS Curve Indices

NURBS Curve Control
Point Weights

NURBS Curve Control
Points

VecI32{Int32CDP, Lag1} : Curve Base Types

VecI32{Int32CDP, Lag1} : NURBS Curve Degrees

VecI32{Int32CDP, Lag1} : NURBS Curve Control Point Counts

VecI32{Int32CDP, Lag1} : NURBS Curve Control Point Dimensionality

VecI32{Int32CDP, Lag1} : NURBS Curve Reserved Fields

VecF64{Float64CDP, NULL} : NURBS Curve Knot Vectors

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 191

VecI32{Int32CDP, Lag1} : NURBS Curve Degrees
NURBS Curve Degrees is a vector of Curve degree values for each NURBS Curve in a list of Curves (there is a stored
value for each NURBS Curve in the list). NURBS Curve Degrees uses the Int32 version of the CODEC to compress and
encode data.

VecI32{Int32CDP, Lag1} : NURBS Curve Control Point Counts
NURBS Curve Control Point Counts is a vector of control point counts for each NURBS Curve in a list of curves (there
is a stored value for each NURBS Curve in the list). NURBS Curve Control Point Counts uses the Int32 version of the
CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : NURBS Curve Control Point Dimensionality
NURBS Curve Control Point Dimensionality is a vector of control point dimensionality values for each NURBS Curve in
a list of Curve s(i.e. there is a stored values for each NURBS Curve in the list).

In an uncompressed/decoded form the control point dimensionality values meaning is dependent upon the NURBS Entity
type.

For NURBS UV Curve entities the dimensionality value has the following definition:

= 2 − Non-Rational (each control point has 2 coordinates)
= 3 − Rational (each control point has 3 coordinates)

For NURBS XYZ Curve entities the dimensionality value has the following definition:

= 3 − Non-Rational (each control point has 3 coordinates)
= 4 − Rational (each control point has 4 coordinates)

NURBS Curve Control Point Dimensionality uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : NURBS Curve Reserved Fields
NURBS Curve Reserved Fields is a vector of data reserved for future expansion of the JT format. Each NURBS Curve
in a list of Curves has one reserved data field entry in this NURBS Curve Reserved Fields vector. NURBS Curve
Reserved Fields uses the Int32 version of the CODEC to compress and encode data

VecF64{Float64CDP, NULL} : NURBS Curve Knot Vectors
NURBS Curve Knot Vectors is a list of knot vector values for each NURBS Curve having non-trivial knot vectors in a
list of Curves (i.e. there are stored values for each non-trivial knot vector NURBS Curve in the list). All these NURBS
Curve non-trivial knot vectors are cumulated into this single list in the same order as the Curve appears in the Curve list
(i.e. Curve-N Non-Trivial Knot Vector, Curve-M Non-Trivial Knot Vector, etc.). The NURBS Curves for which knot
vectors are stored (i.e. those containing non-trivial knot vectors) are identified in data collection Non-Trivial Knot Vector
NURBS Curve Indices documented in 7.1.10.1 Non-Trivial Knot Vector NURBS Curve Indices. NURBS Curve Knot
Vectors uses the Float64 version of the CODEC to compress and encode data.

7.1.10.1 Non-Trivial Knot Vector NURBS Curve Indices
Non-Trivial Knot Vector NURBS Curve Indices data collection specifies the Curve index identifiers (i.e. indices to
particular NURBS Curves within a list of Curves) for all NURBS Curves containing non-trivial knot vectors. A
description/definition for “non-trivial knot vector” can be found in 7.1.8 Compressed Entity List for Non-Trivial Knot
Vector.

This Curve index data is stored in a compressed format.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

192 © ISO 2011 – All rights reserved

Figure 189: Non-Trivial Knot Vector NURBS Curve Indices data collection

Complete description for Compressed Entity List for Non-Trivial Knot Vector can be found in 7.1.8 Compressed Entity
List for Non-Trivial Knot Vector.

7.1.10.2 NURBS Curve Control Point Weights
NURBS Curve Control Point Weights data collection defines the Weight values for a conditional set of Control Points
for a list of NURBS Curves. The storing of the Weight value for a particular Control Point is conditional, because if
NURBS Curve Control Point Dimension is “non-rational” or the actual Control Point’s Weight value is “1”, then no
Weight value is stored for the Control Point (i.e. Weight value can be inferred to be “1”).

The NURBS Curve Control Point Weights data is stored in a compressed format.

Figure 190: NURBS Curve Control Point Weights data collection

Complete description for Compressed Control Point Weights Data can be found in 7.1.9 Compressed Control Point
Weights Data.

7.1.10.3 NURBS Curve Control Points
NURBS Curve Control Points is the compressed and/or encoded representation of the Control Point coordinates for each
NURBS Curve in a list of Curves (i.e. there are stored values for each NURBS Curve in the list). Note that these are
non-homogeneous coordinates (i.e. Control Point coordinates have been divided by the corresponding Control Point
Weight values).

Figure 191: NURBS Curve Control Points data collection

VecF64{Float64CDP, NULL} : Control Points
Control Points is a vector of Control Point coordinates for all the NURBS Curves in a list of Curves. All the NURBS
Curve Control Point coordinates are cumulated into this single vector in the same order as the Curve appears in the Curve
list (i.e. Curve-1 Control Points, Curve-2 Control Points, etc.). Control Points uses the Float64 version of the CODEC to
compress and encode data in a “lossless” manner.

7.1.11 Compressed CAD Tag Data
The Compressed CAD Tag Data collection contains the persistent IDs, as defined in the CAD System, to uniquely
identify individual CAD entities (e.g. Faces and Edges of a JT B-Rep, PMI, etc.). Exactly what CAD entity types have
CAD Tags and what order they are stored in Compressed CAD Tag Data is defined by users of this data collection (e.g.
6.2.3.1.6 B-Rep CAD Tag Data, 6.2.6.2.7 PMI CAD Tag Data)

VecF64{Float64CDP, NULL} : Control Points

Compressed Control
Point Weights Data

Compressed Entity List
for Non-Trivial Knot

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 193

 What constitutes a CAD Tag is outside the scope of the JT File format and is indeed part of the CAD system. The JT
File format simply provides a way to store any kind of CAD Tag as provided by the CAD system which produced the
CAD entity.

Figure 192: Compressed CAD Tag Data data collection

I32 : Data Length
Data Length specifies the length in bytes of the Compressed CAD Tag Data collection. A JT file loader/reader may use
this information to compute the end position of the Compressed CAD Tag Data within the JT file and thus skip reading
the remaining Compressed CAD Tag Data.

I32 : Version Number
Version Number is the version identifier for the Compressed CAD Tag Data. Version number “1” is currently the only
valid value.

I32 : CAD Tag Count
CAD Tag Count specifies the number of CAD Tags

VecI32{Int32CDP, Lag1} : CAD Tag Types
CAD Tag Types is a vector of type identifiers for a list of CAD Tags (where each CAD Tag in the list has a type
identifier value).

I32 : Data Length

I32 : Version Number

I32 : CAD Tag Count

CAD Tag Count > 0

If “Type-1” CAD Tags exist
in CAD Tag Types data.

Compressed CAD Tag
Type-2 Data

If “Type-2” CAD Tags exist
in CAD Tag Types data.

VecI32{Int32CDP, Lag1} : CAD Tag Types

VecI32{Int32CDP, Lag1} : CAD Tags Type-1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

194 © ISO 2011 – All rights reserved

In an uncompressed/decoded form the CAD Tag type identifier values have the following meaning:

= 1 − 32 Bit Integer CAD Tag Type
= 2 − 64 Bit Integer CAD Tag Type

CAD Tag Types uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : CAD Tags Type-1
CAD Tags Type-1 is a vector of the Type-1 (i.e. 32 Bit Integer Type) CAD Tags for a list of CAD Tags. CAD Tags
Type-1 uses the Int32 version of the CODEC to compress and encode data. CAD Tags Type-1 is only present if there
are Type-1 CAD Tags in the CAD Tag Types vector. Thus a loader/reader of JT file must first uncompress/decode and
evaluate the previously read CAD Tag Types to determine if there are any Type-1 CAD Tags and if so, then the CAD
Tags Type-1 data vector is present.

7.1.11.1 Compressed CAD Tag Type-2 Data
Compressed CAD Tag Type-2 Data collection contains the Type-2 (i.e. 64 Bit integer Type) CAD Tag data for a list of
CAD Tags.

The Compressed CAD Tag Type-2 Data collection is only present if there are Type-2 CAD Tags in the CAD Tag Types
vector. Thus a loader/reader of JT file must first uncompress/decode and evaluate the previously read CAD Tag Types
vector to determine if there are any Type-2 CAD Tags and if so, then the Compressed CAD Tag Type-2 Data collection
is present.

Figure 193: Compressed CAD Tag Type-2 Data data collection

VecI32{Int32CDP, Lag1} : First I32 of Type-2 CAD Tags
First I32 of Type-2 CAD Tags is a vector of the first 32 bits of each Type-2 CAD Tag in the list of CAD Tags. First I32
Of Type-2 CAD Tags uses the Int32 version of the CODEC to compress and encode data.

VecI32{Int32CDP, Lag1} : Second I32 of Type-2 CAD Tags
Second I32 of Type-2 CAD Tags is a vector of the second 32 bits of each Type-2 CAD Tag in the list of CAD Tags.
Second I32 Of Type-2 CAD Tags uses the Int32 version of the CODEC to compress and encode data.

7.2 Encoding Algorithms
The following sections give a brief technical overview/descriptions of the various encoding algorithms used in the JT
format. Additional information on each of the algorithms can be found within references listed in 2 References and
Additional Information section of this document. Also, a sample implementation of the decoding portion of each
algorithm can be found in Annex C:Decoding Algorithms – An Implementation.

7.2.1 Uniform Data Quantization
Uniform Data Quantization is a lossy encoding algorithm in which a continuous set of input values (floating point data) is
approximated with integral multipliers (i.e. integers) of a common factor. How close the quantization output
approximates the original input data is dependent upon the quantization data range and the number of bits specified to
hold the resulting integer value.

VecI32{Int32CDP, Lag1} : First I32 of Type-2 CAD Tags

VecI32{Int32CDP, Lag1} : Second I32 of Type-2 CAD Tags

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 195

The quantization is considered “uniform” because the algorithm divides the data input range into levels of equal spacing
(i.e. a uniform scale). The form of Uniform Data Quantization used by the JT format is also considered scalar in nature,
in that each input value is treated separately in producing the output integer value.

Given the following definitions:

inputVal: input floating point data to quantize
outputval: resulting quantized output integer value
minInputRange: specified minimum value of input data range
maxInputRange: specified maximum value of input data range
nBits: specified number of bits of precision (quantized size)

The basic algorithm (using C++ style syntax) for Uniform Data Quantization is as follows:

UInt32 iMaxCode = (nBits < 32) ? (0x1 << nBits) - 1 : 0xffffffff;

Float64 encodeMultiplier = Float64(iMaxCode) / (maxInputRange – minInputRange);

UInt32 outputVal = UInt32((inputVal - minInputRange) * encodeMultiplier + 0.5);

Note: For reasons of robustness, “outputVal” must also be explicitly clamped to the range
[0,iMaxCode]. This is because floating-point roundoff error in the calculation of “encodeMultiplier”
can otherwise cause “outputVal” to sometimes come out equal to “iMaxCode + 1”.

Note that all compression algorithms in the following sections operate on quantized integer data.

7.2.2 Bitlength CODEC
This is a very simple compression algorithm that runs an adaptive-width bit field encoding for each value. As each input
value is seen, the number of bits needed to represent it is calculated and compared to the current "field width". The
current field width is then adjusted upwards or downwards by a constant “step_size” number of bits (i.e. 2 bits for the JT
format) to accommodate the input value storage. This increment or decrement of the current field width is indicated for
each encoded value by a prefix code stored with each value.

The prefix code will be one of the following two forms:

• A single '0' bit to denote the same (i.e. current) field width is to be used for the next value.

• A '1' bit followed by a series of one or more bits where each bit indicates whether the field width is to be
incremented (a '1' bit) or decremented (a '0' bit) by the field step_size, followed by a single terminator bit
(which is complement of the previous increment/decrement bit). Note that there can only be increments or
decrements in a given prefix code, never both, and that is why the prefix code terminator bit can be
recognized as bits are read by simply looking for the complement of the previous increment/decrement bit.

Some examples of prefix codes and their interpretation are as follows:

Example 1: Prefix code to maintain same (current) field width.

0
Indicates no bit field width change

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

196 © ISO 2011 – All rights reserved

Example 2: Prefix code to increment field width four times.

Example 3: Prefix code to decrement field width two times.

A pseudo-code sample implementation of bit length decoding is available in Annex C:Decoding Algorithms – An
Implementation.

7.2.3 Huffman CODEC
The Huffman compression algorithm is named after its inventor, David Huffman, and was developed in 1948 while Mr.
Huffman was a Ph.D. student at the Massachusetts Institute of Technology (MIT); the same year as Claude Shannon of
Bell Laboratories published his seminal paper “A mathematical theory of communication” that launched the new field of
Information Theory. In that same class with David Huffman was Peter Elias who reportedly developed the first
articulation of arithmetic coding, but it lay unpublished until 1976, when Jorma Rissanen and Richard Pasco, of IBM,
refined it into a practically useful algorithm.

Huffman compression is a lossless compression algorithm that uses a variable length codeword to encode a source
symbol; that is individual symbols (e.g. characters in a text file) are replaced by bit sequence codes that have a distinct
length. The codes are assigned to the symbols based on the probabilities of the symbol occurring, such that symbols
occurring frequently in a file are given a short sequence while others that are seldom used get a longer bit sequence.

Huffman coding is dependent upon Huffman’s algorithm, which takes a list of weights, and builds an extended and
complete binary tree of minimum weighted path length (as shown in Figure 194: Huffman Tree). For the JT format
usage of Huffman Coding, the list of weights consists of the frequency of symbol occurrence. Although the assignment
of a binary value to the edges which leads you to the left or right child of a tree node may be arbitrary, it must be
consistent in the tree construction, and typically “0” is associated with an edge leading to a left child and “1” is
associated with an edge leading to a right child.

Using this Huffman Tree, variable length codewords are defined for each symbol by concatenating the value associated
with the edges as you follow the path from the root of the tree to the leaf associated with a symbol’s frequency. An
important characteristic of this encoding is that the inverse mapping (i.e. decoding) must be unambiguous, such that there
is only one possible way to decompose a string of codewords into individual symbols. It can be proven that
“unambiguous decoding” is indeed a property of a Huffman Tree due to the fact that by definition, a Huffman Tree is a
complete binary tree.

1001
Indicates bit field width change

Indicates decrement width by step_size
Indicates decrement width by step_size

Termination bit

111110
Indicates bit field width change

Indicates increment width by step_size
Indicates increment width by step_size
Indicates increment width by step_size
Indicates increment width by step_size

Termination bit

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 197

7.2.3.1 Example
Following is an example to demonstrate in practice the basic principles of Huffman coding.

Suppose you want to compress, using Huffman coding, the following sequence/array of integer data:

{1, 3, 4, 1, 2, 1}

There are 6 integer numbers, so in non compressed form (i.e. fixed size integer coding) this sequence requires 24 bytes or
192 bits.

The frequency count of the numbers in the sequence is as follows:

Number Frequency
1 3
2 1
3 1
4 1

Total 6

Letting, as in the JT format usage of Huffman coding, the frequency counts be the weights. If we pair each symbol
(integer) with its weight, and pass this list of weights to the Huffman algorithm we will get a Huffman Tree (with
included edge labels) that looks something like the following:

Figure 194: Huffman Tree

From this tree we get the following Huffman codes for each of the integer numbers:

Number Frequency Huffman code Weighted Code Length
(Frequency * #code_bits)

1 3 0 3
2 1 10 2
3 1 110 3
4 1 111 3

Total 6 - 11

Using the Huffman codes the array/sequence of integers can be compressed into the following bit sequence:

01101110100

6

3 “1”, 3

“2”, 1 2

“3”, 1 “4”, 1

0

0

0

1

1

1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

198 © ISO 2011 – All rights reserved

So the number of bits required to represent the array/sequence of integers in Huffman codeword form is 11 bits (i.e. total
of “Weighted Code length), versus 192 bits in standard fixed-size integer encoding.

A pseudo-code sample implementation of Huffman decoding is available in Annex C:Decoding Algorithms – An
Implementation.

7.2.4 Arithmetic CODEC
Arithmetic encoding is a lossless compression algorithm that replaces an input stream of symbols or bytes with a single
fixed point output number (i.e. only the mantissa bits to the right of the binary point are output from MSB to LSB). The
total number of bits needed in the output number is dependent upon the length/complexity of the input message (i.e. the
longer the input message the more bits needed in the output number). This single fixed point number output from an
arithmetic encoding process must be uniquely decodable to create the exact stream of input symbols that were used to
create it.

Initially all symbols being encoded have a probability value assigned to them based on the likelihood that the symbol will
occur next in the input stream (i.e. the frequency of the symbol in the input stream). Given probability value assignments,
each individual symbol is then assigned an interval range along a nominal 0 to 1 “probability line”, where the size of
each range corresponds to the symbol’s probability value. Note that a particular symbol owns all values within its
assigned range up to, but not including, the range high value, and that it does not matter which symbols are assigned
which segment of the range as long it is done in the same manner by both the encoder and the decoder.

Given the above described input stream probability and interval range assignments, a high level description of the
arithmetic encoding process is as follows:

1. Begin with a “current interval” initialized to [0,1). Note, that in interval range notation (i.e. “[0,1)”), the “[“
symbol indicates inclusive of the interval low limit and “)” symbol indicates exclusive of the interval high limit.

2. Sequentially for each symbol of the input stream, perform two steps
a. Subdivide the current interval into subintervals based on the input stream symbol probability values as

described above.
b. Select the subinterval corresponding to the current input stream symbol being sequentially processed

and make it the new “current interval”.
3. After all input stream symbols have been sequentially processed; output enough bits to distinguish the final

“current interval” from all other possible final intervals.

In pseudo code form, the algorithm to accomplish the above described arithmetic encoding for an input stream message
of any length could look as follows:

Set low to 0.0
Set high to 1.0
While there are still input symbols do
 cur_symbol = get next input symbol
 range = high – low
 high = low + range * high_range(cur_symbol)
 low = low + range * low_range(cur_symbol)
End of While
Output low

So the arithmetic encoding process is simply one in which we narrow the range of possible numbers with every new
sequentially processed input symbol; where the new narrowed range is proportional to the predefined probability values
assigned to each symbol in the input stream.

The arithmetic decoding process is the inverse procedure; where the range is expanded in proportion to the probability of
each symbol as it is extracted. For the arithmetic decoding process we find the first symbol in the message by seeing
which symbol owns the interval range that our encoded message falls in. Then, since we know the low and high range
limit values of the first symbol we can remove their effects by reversing the process that put them in.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 199

In pseudo code form, the algorithm for decoding the incoming number could look as follows:

Get encoded_number
Do
 find symbol whose range straddles the encoded_number
 output the symbol
 range = symbol_high_value – symbol_low_value
 encoded_number = encoded_number – symbol_low_value
 encoded_number = encoded_number / range
until no more symbols

7.2.4.1 Example
Following is an example to demonstrate in practice the basic principles of arithmetic coding.

Suppose you want to compress, using arithmetic coding, the following sequence/array of integer data:

{2, 9, 12, 12, 0, 7, 1, 20, 5, 19}

For this input stream of data, the assigned probability values will be as follows:

Number Probability
0 1/10
1 1/10
2 1/10
5 1/10
7 1/10
9 1/10

12 2/10
19 1/10
20 1/10

Then based on each input numbers probability value, an interval range along a 0 to 1 “probability line” can be assigned to
each input number as follows:

Number Probability Range
0 1/10 [0.00, 0.10)
1 1/10 [0.10, 0.20)
2 1/10 [0.20, 0.30)
5 1/10 [0.30, 0.40)
7 1/10 [0.40, 0.50)
9 1/10 [0.50, 0.60)

12 2/10 [0.60, 0.80)
19 1/10 [0.80, 0.90)
20 1/10 [0.90, 1.00)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

200 © ISO 2011 – All rights reserved

Now proceeding with encoding the example input integer sequence {2, 9, 12, 12, 0, 7, 1, 20, 5, 19}, the first number to be
encoded is “2”; so the final encoded value will be a number that is greater than or equal to 0.20 and less than 0.30. Now
as each subsequent number in the input stream is sequentially processed for encoding, the possible range of the output
number is further restricted. In our example the next number to be encoded is “9” which owns the range [0.50, 0.60)
within the new sub-range of [0.20, 0.30); which now further restricts our output number to the range [0.25, 0.26). If we
continue this logic for the complete input integer sequence we end up with the following:

New integer number Low value High value
 0.0 1.0

2 0.2 0.3
9 0.25 0.26
12 0.256 0.258
12 0.2572 0.2576
0 0.25720 0.25724
7 0.257216 0.257220
1 0.2572164 0.2572168
20 0.25721676 0.2572168
5 0.257216772 0.257216776
19 0.2572167752 0.2572167756

From the above table, are final low values is “0.2572167752” which is the output number that uniquely encodes the
integer number sequence {2, 9, 12, 12, 0, 7, 1, 20, 5, 19}.

Given this encoding scheme, the decoding would simply follow the process previously described. We find the first
number in the sequence by looking up in the probability range for the value, whose range, our encoded number
“0.2572167752” falls within. In our example this equates to the value “2” and so our first decoded value must be “2”.
Then we apply the previously described decoding subtraction and division steps to arrive at a new encoded value of
“0.572167752”. Using this new “0.572167752” encoded value and the same logic of the first step, the second decoded
value will be “9”. We continue this process until there are no more numbers to decode.

In practice, due to floating point size (i.e. number of bits) restrictions and possible differences in floating point formats
on machines, arithmetic encoding is best implemented using 16 bit or 32 bit integer math. Using 16 bit or 32 bit integer
math, an incremental transmission scheme can be implemented, where fixed size integer state variables receive new bits
in at the low end and shift them out the high end, forming a single number that can be as many bits long as are available
on the computer’s storage medium.
Using our example as a guide, define the starting range [0.0, 1.0) to instead be 0 to 0.999 (which is .111 in binary). Then
in order to use integer registers to store these numbers, justify the values so that the implied decimal point is at the left
hand side of the word. Now load the initial range values based on the word size we are using. In the case of a 16 bit
implementation the initial range values will be low equals 0x0000 and high equals 0xFFFF. Since we know these values
will go on forever (e.g. 0.999… will continue with FFs) we can shift those extra bits in as needed with no detrimental
effects.

Going back to our example and using a 5 digit register, we start with the range:

High: 99999
Low: 00000

Applying the previously described encoding algorithm we first calculate the range between the low and high values;
which in this case is 100000 (not 9999 since we assume the high value has an infinite number of 9’s). Next, we calculate
the new high value which in this example will be 30000. But before we store the new high value we must decrement it to
account for the implied digits appended to it; so new high value will be 29999. Applying similar logic to computing the
new low value results in a new range of:

High: 29999 (999…)
Low: 20000 (000…)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 201

In looking at the newly computed high and low range values, it can be seen that the most significant digits of high and
low match. A property of arithmetic coding is that as this encoding process continues, the high and low values will
continue to get closer, but will never match exactly. Given this property, once the most significant digit of high and low
match, it will never change, and thus we can output this most significant digit as the first number in the coded word and
continue working with just 16 bit high and low values. This output process is accomplished by shifting both the high and
low values left by one digit and shifting in a “9” in the least significant digit of the high value.

Applying the previously described encoding algorithm and continuing the above described process of shifting out most
significant digit into the coded word as high and low continually grow closer together looks as follows for encoding our
example integer number sequence {2, 9, 12, 12, 0, 7, 1, 20, 5, 19}:

 High Low Range Cumulative output
Initial State 99999 00000 100000
Encode “2” [0.2, 0.3) 29999 20000
Shift out 2 99999 00000 100000 .2
Encode “9” [0.5, 0.6) 59999 50000 .2
Shift out 5 99999 00000 100000 .25
Encode “12” [0.6, 0.8) 79999 60000 20000 .25
Encode “12” [0.6, 0.8) 75999 72000 .25
Shift out 7 59999 20000 40000 .257
Encode “0” [0.0, 0.1) 23999 20000 .257
Shift out 2 39999 00000 40000 .2572
Encode “7” [0.4, 0.5) 19999 16000 .2572
Shift out 1 99999 60000 40000 .25721
Encode “1” [0.1, 0.2) 67999 64000 .25721
Shift out 6 79999 40000 40000 .257216
Encode “20” [0.9, 1.0) 79999 76000 .257216
Shift out 7 99999 60000 40000 .2572167
Encode “5” [0.3, 0.4) 75999 72000 .2572167
Shift out 7 59999 20000 40000 .25721677
Encode “19” [0.8, 0.9) 55999 52000 .25721677
Shift out 5 59999 20000 40000 .257216775
Shift out 2 .2572167752
Shift out 0 .25721677520

As can be seen in the above table, after all values in the input stream have been encoded and any final matching most
significant digit has been output, the arithmetic coding algorithm requires that two extra digits be shifted out of either the
high or low value to finish up the cumulative output word.

Although the above example incrementally encodes very nicely with the arithmetic coding algorithm, there are certain
cases where the computed high and low values get closer, but never actually converge to one value in the most significant
digit (e.g. High = 0.300001, Low = 0.29992). Thus after a few iterations the difference between high and low becomes
so small that 16 bits is not sufficient to represent any difference between the values (i.e. all calculations return the same
values). This conditions is known as “underflow” and special logic must added to the arithmetic coding algorithm to
recognize that “underflow” is occurring and thus head it off before the computations reach an impasse.

The additional logic for recognizing that “underflow” is occurring would be executed after each recalculation of High
and Low value set, and in pseudo code form this logic would look as follows:

underflow = FALSE
if((High and Low value’s significant digits don’t match but are on adjacent numbers) &&

 (2nd most significant digit of High is “0” and the 2nd most significant digit of low is “9”))
{

underflow = TRUE
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

202 © ISO 2011 – All rights reserved

When/If it is identified that “underflow” is occurring, the encoding algorithm must perform the following steps to stop
the current “underflow”:

• Delete the 2nd most significant digit from both the High and Low value.
• Shift the other digits (those to the right of the deleted 2nd digit) to the left to fill up the space (note that the

most significant digit stays in place).
• Increment a counter to remember that we threw away a digit and don’t know whether it was going to

converge to “0” or “9”.

A before and after example of performing the above steps to the High and Low values when ‘underflow” occurs is as
follows:

 Before After

High 40344 43449
Low 39810 38100
Underflow_counter 0 1

Now as the encoding algorithm continues and the most significant digit of High and Low values once again converge to a
common value, then that value must be output to the coded word along with “Underflow_counter” number of
“underflow” digits that were previously deleted. The underflow digits output to the coded word will either be all 9s or
0s, depending on whether the High and Low value converged to the higher or lower value.

A pseudo-code sample implementation of arithmetic decoding is available in Annex C:Decoding Algorithms – An
Implementation.

7.2.5 Deering Normal CODEC
M. Deering first published his work on geometry compression in 1995 [5] and later helped present a course on the subject
at SIGGRAPH’99 [6]. Although Deering’s approach to geometric compression involves compression of vertices, colors
and normals, the description detailed here will focus solely on compression of normals since this is the only component
of Deering’s approach used in the JT format.

Through both theoretical examination and empirical testing, Deering found that an angular density of 0.01 radians
between normals (about 100,000 normalized normals distributed over unit sphere) gave results that were not visually
distinguishable from results obtained from finer normal representations. This observation reduced the problem of having
to “exactly” represent any general surface normal, to only having to represent about 100,000 specific normals (i.e.
general surface normal replaced by the appropriate one of the 100,000 specific normals).

If there were no run-time memory concerns and no concerns for on disk footprint size, these specific 100,000 normals
could be simply represented in a table that is indexed into, to reference a particular normal. Instead, Deering’s approach
leverages symmetrical properties of the unit sphere to reduce the size of the table and allow any normal to be represented
by, at max, an 18 bit index as summarized below:

• All normals are normalized (i.e. can be represented as points on the surface of the unit sphere).
• Unit sphere is divided into eight symmetrical octants based on sign bits of normal’s X,Y,Z rectilinear

representation (see Figure 195). Using three bits to represent the three sign bits of the normals XYZ
components reduces the problem space to one eighth of the unit sphere

• Each octant of the unit sphere is divided into six identical sextants by folding about the planes of symmetry;
x=y, x=z, and y=z (see Figure 195). The particular sextant can be encoded using another three bits. So now
unit sphere is divided into 48 identically shaped triangle patches reducing the normal look-up table to about
2000 entries (i.e. 100000/48).

• Then, a local rectangular orthogonal two dimensional grid is created on the sextant and all normals within
the sextant are represented as two n-bit angular addresses (i.e. a quantization of two angular values along the
unit sphere) where “n” is in the range from 0 to 6 bits.

• Resulting in a max grand total of 18 bits (3 + 3 + 6 + 6) to represent any normal on the unit sphere.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 203

Figure 195: Sphere divided into eight octants and octant divided into six sextants with each sextant
assigned an identifying three bit code.

Note that the sextant three bit code assignments used by the JT format (as seen in Figure 195) are slightly modified from
the original assignments as specified by Deering.

The representation of all normals within a sextant by two n-bit angular addresses, as summarized above, is based on the
following:

• In spherical coordinates, points on a unit sphere can be parameterized by two angles, θ and φ; where θ is the
angle about the y axis and φ is the longitudinal angle from the y=0 plane.

• Mapping between rectangular and spherical coordinates is:

 x = cosθ * cosφ y = sinφ z = sinθ * cosφ

• All encoding takes place in the positive octant.

• Angles θ and φ can be quantized into two n-bit integers θ’n and φ’n (where “n” is in the range of 0 to 6) and
the relationship between these n-bit integers and angles θ and φ for a given “n” is:
 θ (θ’n) = asin tan (φmax * (n – θ’n) / 2n)

 φ (φ’n) = φmax * φ’n / 2n

Thus to encode (i.e. quantize) a given normal N into θ’n and φ’n:

• N must be first represented (see Figure 195) in the positive octant and appropriate sextant within that octant,
resulting in N’.

• Then N’ must be dotted with all quantized normals in the sextant.
• For a fixed “n”, the corresponding θ’n and φ’n values of the quantized sextant normal that result in the largest

(nearest unity) dot product defines the proper θ’n and φ’n encoding of N.

With this encoding of normal N into θ’n and φ’n n-bit integers the complete bit representation of normal N can now be
defined as follows:

• Uppermost three bits specify the octant.
• Next three bits specify the sextant code as defined in Figure 195.
• Next two n-bit fields specify θ’n and φ’n values respectively.

7.3 ZLIB Compression
ZLIB compression is a lossless data compression algorithm and is essentially the same as that in gzip and Zip. Zlib’s
compression method, called deflation, creates compressed data as a sequence of blocks. The JT format uses Version
1.1.2 of the ZLIB compression library.

X = Z

X

Y

Z

X = Y Y = Z

000 001

010

011 100

101

X < Y

X > Y

X > Z X < Z

Y > Z

Y < Z

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

204 © ISO 2011 – All rights reserved

8 Usage Guide
The proceeding sections of this document specify the mandatory clauses for creating a reference compliant Version 8.1
JT file. This “Usage Guide” section focusing on documenting format conventions that although not required to have a
reference compliant JT file, have become commonplace within JT format translators to the point where these conventions
are considered best practices for constructing JT files.

8.1 Late-Loading Data
From its inception, the JT format was designed to scale from representing data necessary for lightweight web-based
viewing, to representing data necessary for full product digital mockup and 3D product definition. This ability of the JT
format to represent such a robust 3D product definition allows a single JT format based 3D digital asset to be leveraged
across the extended enterprise by many dissimilar applications with varying data needs/requirements.

With this sharing of the single JT format based 3D digital asset by many dissimilar applications, comes the need to be
“performance sensitive” (both in runtime memory footprint and actual data load time) to exactly what, how much, and
when certain JT format data must be loaded. To that end the JT format was designed/structured to support not requiring
all segments of data to be sequentially loaded/read in one pass. This concept of delaying the loading of segments of data
until actually needed is referred to within this JT Format Reference document as “late-loading data”. The JT format has
many structures in support of this concept of late-loading data and it is recommended as a best practice that
writers/loaders of JT data leverage these constructs accordingly. Examples of these JT format constructs in support of
(but not necessarily late-loading data include the following (note that “in support of” does not necessarily mean that the
construct (e.g. TOC Segment) is only used for purposes of late loading data):

• TOC Segment
• Partition Node Element
• Meta Data Node Element
• Late Loaded Property Atom Element

8.2 Bit Fields
In the 6 File Format section of this reference many bit field data descriptions (e.g. 6.2.1.1.1.1.1 Base Node Data “Node
Flags” field) contain the words “All undocumented bits are reserved.” These words should be interpreted to mean that
these undocumented bits should be set to “0” when writing the bit field data to a JT file.

8.3 Reserved Field
In the 6 File Format section of this reference some data fields may be named/documented “Reserved Field” (e.g.
6.2.1.1.1.7.1LOD Node Data ”Reserved Field” field). A “Reserved Field” exists for potential future expansion of the
Format and best practices suggests that these fields should be treated as follows:

• If you are writing a JT file whose data did not originate from reading a previous JT file, then Reserved Fields
should be set to a value a “0” when writing the field to a JT file.

• If you are writing a JT file whose data originated from reading a previous JT file (i.e. rewriting a JT File),

then “Reserved Fields” should be written with the same value that was read from the originating JT file.

8.4 Metadata Conventions
Although there are really no restrictions/limits/requirements on what metadata (i.e. properties) can/must be attached to
nodes in the LSG in order to have a reference compliant JT file, there are some conventions that have been generally
followed in the industry when translating CAD data to the JT file format. See 6.2.1.2 Property Atom Elements section of
this document for complete description of the file Elements used to attach this property information to nodes.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 205

8.4.1 CAD Properties
The following table lists the conventions that CAD data translators typically (although not always) follow in placing
CAD information in a JT file as properties on various LSG nodes. Some of these properties are considered required in
order for the data in the file to be interpreted correctly while other properties are optional. See flowing sub-sections for
additional information on required versus optional properties.

The convention is to place these Units properties on every Part and Assembly grouping node in the LSG. By following
this convention, JT file format readers/writers are provided maximum flexibility in understanding/indicating the
appropriate JT data unit processing for both, monolithic and shattered JT file Assembly structures.

JT Property Key Meaning
JT File

Data Type
Encoded
Data Type

Valid
Values

Required /
Optional

JT_PROP_MEASUREMENT_UNITS Model Units MbString MbString millimeters
centimeters

meters
inches

feet
yards

micrometers
decimeters
kilometers

mils
miles

Required

CAD_MASS_UNITS Units of mass MbString MbString micrograms
milligrams

grams
kilograms

ounces
pounds

Required

CAD_SURFACE_AREA Surface area of solids
within part.

MbString F64 numeric Optional

CAD_VOLUME Volume of solids
within part

MbString F64 numeric Optional

CAD_DENSITY Density of solids
within part (6)

MbString F64 numeric Optional

CAD_MASS Mass or weight of
solids within part

MbString F64 numeric Optional

CAD_CENTER_OF_GRAVITY Center of gravity of
solids within part

MbString 3 space
separated

F64

3 numeric
values

Optional

CAD_PROP_MATERIAL_THICKNESS Sheet thickness
within part

MbString F64 numeric Optional

CAD_PART_NAME Component name
from translator

MbString MbString <string> Optional

CAD_SOURCE CAD prorgam ther
Part originated from

MbString MbString <string> Optional

Table 8: CAD Property Conventions

8.4.1.1 Required Properties
The required unit properties are really necessary for viewers of JT file data to properly interpret numeric data for analysis
operations (e.g. measure) and support the building of assemblies through the reading of multiple JT files in disparate
units. There are two units of measure that are relevant, units of distance and units of weight.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

206 © ISO 2011 – All rights reserved

The JT_PROP_MEASURMENT_UNITS property is used to specify units of distance. The CAD_MASS_UNITS
property is used to specify units for weight. JT_PROP_MEASURMENT_UNITS property is strictly required, while
CAD_MASS_UNITS property is "optionally required". By “optionally required”, we mean, it is required if other
optional metadata intends to specify properties that would depend on these units of measure (e.g. CAD_DENSITY and
CAD_MASS). Notice that the Mass units are specified, instead of the Density units, since Density is a derived unit of
Mass/Volume.

8.4.1.2 Optional Properties
Optional properties can be provided, but if the property is a units based value, then the value must be in units that are
consistent with the JT_PROP_MEASURMENT_UNITS and CAD_MASS_UNITS properties. Thus the units for the
optional units based properties must be as follows:

Optional Property Units
CAD_SURFACE_AREA (JT_PROP_MEASUREMENT_UNITS)2
CAD_VOLUME (JT_PROP_MEASUREMENT_UNITS)3
CAD_DENSITY CAD_MASS_UNITS/(JT_PROP_MEASUREMENT_UNITS)3
CAD_MASS CAD_MASS_UNITS
CAD_CENTER_OF_GRAVITY JT_PROP_MEASUREMENT_UNITS
CAD_PROP_MATERIAL_THICKNESS JT_PROP_MEASUREMENT_UNITS

Table 9: CAD Optional Property Units

Note of caution regarding the node placement for the CAD_DENSITY property. Following the recommended
convention for the placing of CAD properties (see description in 8.4.1CAD Properties) implies that all solids within a
single JT part are of a uniform density, which may not be true in all cases.

8.4.2 Tessellation Properties
When dealing with facetted graphical representations (i.e. LODs) of precise models (e.g. JT B-Rep), depending on the
desired use it is often useful/necessary to know what tessellation tolerances were used to generate the facetted
representation. To that end, two properties are typically stored on Part Node Elements (if part also has precise model) to
indicate the tessellation tolerances used to generate each LOD. These two tessellation properties are as follows

JT Property
Key

Meaning
JT File
Data
Type

Encoded
Data
Type

Valid
Values

Chordal:: Chordal deviation tessellation tolerance in MCS units
for each LOD. Measure of maximum allowable
distance a linear approximation for a curve/surface may
deviate from the true curve/surface. Encoded value
string would look as follows for the case of two LODs:

“0.045603 0.069245”

MbString space
separated

F32 values

Numeric

Angular:: Angular tessellation tolerance for each LOD in degrees.
Two consecutive segments in a linear approximation of
a curve/surface form an angle; this value specifies the
maximum angle allowed. Encoded value string would
look as follows for the case of two LODs:

“30.000000 40.000000”

MbString space
separated

F32 values

Numeric

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 207

8.4.3 Miscellaneous Properties
The below table documents some miscellaneous properties often placed on various nodes in the LSG to communicate
specific information about the node or its contents.

JT Property Key Meaning
JT File
Data
Type

Encoded
Data
Type

Valid Values

PMI_TYPE_TABLE May be attached to Part Node
Element to indicate the list of PMI
type values and associated names for
all PMI types (basically equivalent to
the Entity Type field documented in
Generic PMI Entities). The string is a
“.” and “,” delimited string of the
following form:

“10.Groove Weld,11.Fillet
Weld,12.Plug/Slot
Weld,14.Edge Weld”

MbString <string>

JT_PROP_SHAPE_DATA_TYPE May be attached to Shape Node
Elements to indicate what geometry
type the shape data represents.

MbString <string> “Surface”
“Wire”

JT_PROP_TRISTRIP_DATA_LAYOUT May be attached to Tri-Strip Set
Shape Node Element to indicate that
the Set’s tri-strip primitives are sorted
such that strips of length 1 (i.e.
triangles) come first and then strips of
length 2 (i.e. quads) next and then all
other strips of length greater than 2
follow in no particular order.

MbString <string> “TriStripsSorted”

JT_PROP_ORIGINATING_BREPTYPE May be attached to Part Node
Element to indicate the type of B-Rep
associated with the Part.

MbString <string> “None”
“JtBrep”

“XTBrep”
JT_PROP_NAME May be attached to any form of node

or attribute with which one wants to
associate a textual name (e.g.
Part/Assembly/Instance name,
Material name, Light Set name, etc.).

For Part/Assembly/Instance names
this string has the following encoded
form where “;” is a delimiter and “:’
is a terminator:

For attribute names this string has the
following encoded form:

MbString <string>

“Chrome material”

Name

“AlignmentPin.part;0;1:”

Name
Version #
Instance #

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

208 © ISO 2011 – All rights reserved

8.5 LSG Attribute Accumulation Semantics
For applications producing or consuming JT format data, it is important that the JT format semantics of how attributes
are meant to be applied and accumulated down the LSG are followed. If not followed, then consistency between the
applications in terms of 3D positioning and rendering of LSG model data will not be achieved.

Although each attribute type defines its own application and accumulation LSG semantics (the details of which can be
found in each attribute type sub-section under 6.2.1.1.2 Attribute Elements), there are some general rules which apply:

1. Attributes at lower level in the LSG take precedence and replace or accumulate with attributes set at higher
levels

2. Nodes without associated attributes inherit those of their parents.
3. Attributes inherit only from their parents, thus a node’s attributes do not affect that node’s siblings.
4. The root of a partition inherits the attributes in effect at the referring partition node.
5. Attributes can be declared “final”, which terminates accumulation of that attribute type at that attribute and

propagates the accumulated values there to all descendants of the associated node. Descendants can explicitly
do a one-shot override of “final” using the attribute “force” flag, but do not by default. Note that “force” does
not turn OFF “final” – it is simply a one-shot override of “final” for the specific attribute marked as “forcing.”
An analogy for this “force” and “final” interaction is that “final” is a back-door in the attribute accumulation
semantics, and that “force” is a doggy-door in the back-door!

8.6 LSG Part Structure
The JT Format Reference does not mandate that a particular node hierarchy be used for modeling physical Parts within a
LSG structure. In fact there are many node hierarchies for representing Parts in LSG that will function correctly in most
JT enabled applications. Still, there is a convention that most JT translators follow (and some JT enabled applications
may assume exists) for modeling Parts within a LSG. The convention is to model each Part within a LSG structure with
the following node hierarchy:

Figure 196: JT Format Convention for Modeling each Part in LSG

Part
Node

Element

Group
Node

Element

Shape
Node

Shape
Node

...

Group
Node

Element

Shape
Node

Shape
Node

...

130BRang
e LOD
Node

El t
LOD-0 LOD-N ...

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 209

8.7 Range LOD Node Alternative Rep Selection
Best practices suggest that LSG traversers apply the following strategy, at Range LOD Nodes (see 6.2.1.1.1.8 Range
LOD Node Element), when making alternative representation selection decisions based on Range Limits: The first
alternate representation is valid when the distance between the center and the eye point is less than or equal to the first
range limit (and when no range limits are specified). The second alternate representation is valid when the distance is
greater than the first limit and less than or equal to the second limit, and so on. The last alternate representation is valid
for all distances greater than the last specified limit

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

210 © ISO 2011 – All rights reserved

Annex A: Object Type Identifiers
All objects stored in a JT file are classified by type and thus include an object type identifier as part of their persisted
data. The data format for these Object Type identifiers is a GUID. These Object Type identifiers are consistent for all
objects, of a particular type, in all Version 8.1 JT files.

Table 10: Object Type Identifiers lists the assigned identifier for each Object Type that can exist in a Version 8.1 JT file.

GUID Object Type
0xffffffff, 0xffff, 0xffff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff Identifier to signal End-Of-Elements.

Types Stored Within LSG Segment (Segment Type = 1)
0x10dd1035, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Base Node Element
0x10dd101b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Group Node Element
0x10dd102a, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Instance Node Element
0x10dd102c, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 LOD Node Element
0xce357245, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1 Meta Data Node Element
0xd239e7b6, 0xdd77, 0x4289, 0xa0, 0x7d, 0xb0, 0xee, 0x79, 0xf7, 0x94, 0x94 NULL Shape Node Element
0xce357244, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1 Part Node Element
0x10dd103e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Partition Node Element
0x10dd104c, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Range LOD Node Element
0x10dd10f3, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Switch Node Element

0x10dd1059, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Base Shape Node Element
0x98134716, 0x0010, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83, 0x5d, 0x5a Point Set Shape Node Element
0x10dd1048, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Polygon Set Shape Node Element
0x10dd1046, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Polyline Set Shape Node Element
0xe40373c1, 0x1ad9, 0x11d3, 0x9d, 0xaf, 0x0, 0xa0, 0xc9, 0xc7, 0xdd, 0xc2 Primitive Set Shape Node Element
0x10dd1077, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Tri-Strip Set Shape Node Element
0x10dd107f, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Vertex Shape Node Element

0x4cc7a521, 0x728, 0x11d3, 0x9d, 0x8b, 0x0, 0xa0, 0xc9, 0xc7, 0xdd, 0xc2 Wire Harness Set Shape Node
Element

0x10dd1001, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Base Attribute Element
0x10dd1014, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Draw Style Attribute Element
0xad8dccc2, 0x7a80, 0x456d, 0xb0, 0xd5, 0xdd, 0x3a, 0xb, 0x8d, 0x21, 0xe7 Fragment Shader Attribute Element
0x10dd1083, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Geometric Transform Attribute Element
0x10dd1028, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Infinite Light Attribute Element
0x10dd1096, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Light Set Attribute Element
0x10dd10c4, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Linestyle Attribute Element
0x10dd1030, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Material Attribute Element
0x10dd1045, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Point Light Attribute Element
0x8d57c010, 0xe5cb, 0x11d4, 0x84, 0xe, 0x00, 0xa0, 0xd2, 0x18, 0x2f, 0x9d Pointstyle Attribute Element
0xaa1b831d, 0x6e47, 0x4fee, 0xa8, 0x65, 0xcd, 0x7e, 0x1f, 0x2f, 0x39, 0xdb Shader Effects Attribute Element
0x10dd1073, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Texture Image Attribute Element
0x2798bcad, 0xe409, 0x47ad, 0xbd, 0x46, 0xb, 0x37, 0x1f, 0xd7, 0x5d, 0x61 Vertex Shader Attribute Element

0x10dd104b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Base Property Atom Element
0xce357246, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1 Date Property Atom Element
0x10dd102b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Integer Property Atom Element
0x10dd1019, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Floating Point Property Atom Element
0xe0b05be5, 0xfbbd, 0x11d1, 0xa3, 0xa7, 0x00, 0xaa, 0x00, 0xd1, 0x09, 0x54 Late Loaded Property Atom Element

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 211

GUID Object Type
0x10dd1004, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 JT Object Reference Property Atom

Element
0x10dd106e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 String Property Atom Element

Types Stored Within JT B-Rep Segment (Segment Type = 2)
0x873a70c0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 JT B-Rep Element

Types Stored Within PMI Segment (Segment Type = 3)

Types Stored Within Meta Data Segment (Segment Type = 4)
0xce357249, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1 PMI Manager Meta Data Element
0xce357247, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, 0xbd, 0xc6, 0xe1 Property Proxy Meta Data Element

Types Stored Within Shape LOD Segment (Segment Type = 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)
0x3e637aed, 0x2a89, 0x41f8, 0xa9, 0xfd, 0x55, 0x37, 0x37, 0x3, 0x96, 0x82 Null Shape LOD Element
0x98134716, 0x0011, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83, 0x5d, 0x5a Point Set Shape LOD Element
0x10dd109f, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Polygon Set Shape LOD Element
0x10dd10a1, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Polyline Set Shape LOD Element
0xe40373c2, 0x1ad9, 0x11d3, 0x9d, 0xaf, 0x0, 0xa0, 0xc9, 0xc7, 0xdd, 0xc2 Primitive Set Shape Element
0x10dd10ab, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Tri-Strip Set Shape LOD Element
0x10dd10b0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Vertex Shape LOD Element
0x4cc7a523, 0x728, 0x11d3, 0x9d, 0x8b, 0x0, 0xa0, 0xc9, 0xc7, 0xdd, 0xc2 Wire Harness Set Shape Element

Types Stored Within XT B-Rep Segment (Segment Type = 17)
0x873a70e0, 0x2ac9, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 XT B-Rep Element

Types Stored Within Wireframe Segment (Segment Type = 18)
0x873a70d0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 Wireframe Rep Element

Table 10: Object Type Identifiers

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

212 © ISO 2011 – All rights reserved

Annex B: Semantic Value Class Shader Parameter Values
6.2.1.1.2.12 Vertex Shader Attribute Element and 6.2.1.1.2.13 Fragment Shader Attribute Element contain shader
parameters. These shader parameters can be of a “Semantic” Value Class which indicates that the shader parameter is
implicitly tied/bound to a piece of either OpenGL or JT graphics system state. Table 11 below documents all the possible
“Semantic” Value Class shader parameter Values (i.e. the graphics system state the parameter is bound to).

Table 11: Semantic Value Class Shader Parameter Values
Value Description of Semantically Bound Graphics State Notes

= 0 − Unknown
Related to Current OpenGL State

= 30 − View Transform Matrix Cg only
= 31 − Combined Model-View Transform Matrix Cg only
= 32 − Projection Transform Matrix Cg only
= 33 − Texture Transform Matrix Cg only
= 34 − Combined Model-View-Projection Transform Matrix Cg only
= 35 − View Matrix Transposed Cg only
= 36 − Combined Model-View Transform Matrix Transposed Cg only
= 37 − Projection Transform Matrix Transposed Cg only
= 38 − Texture Transform Matrix Transposed Cg only
= 39 − Combined Model-View-Projection Transform Matrix Transposed Cg only
= 40 − View Transform Matrix Inverse Cg only
= 41 − Combined Model-View Transform Matrix Inverse Cg only
= 42 − Projection Transform Matrix Inverse Cg only
= 43 − Texture Transform Matrix Inverse Cg only
= 44 − Combined Model-View-Projection Transform Matrix Inverse Cg only
= 45 − View Transform Matrix Inverse Transposed Cg only
= 46 − Combined Model-View Transform Matrix Inverse Transposed Cg only
= 47 − Projection Transform Matrix Inverse Transposed Cg only
= 48 − Texture Transform Matrix Inverse Transposed Cg only
= 49 − Combined Model-View-Projection Transform Matrix Inverse

Transposed
Cg only

Related to Current JT State

= 70 − Current Model Transform
= 71 − Current Model Transform Transposed
= 72 − Current Model Transform Inverse
= 73 − Current Model Transform Inverse Transposed
= 75 − Current Material Emissive Color
= 76 − Current Material Diffuse Color
= 77 − Current Material Specular Color
= 78 − Current Material Ambient Color
= 79 − Current Material Shininess
= 80 − Current Fog Color
= 81 − Separate Specular Color Flag
= 82 − Global Ambient Light Color

= 99 − Number of VPCS Lights
= 100 − VPCS Light-0 Diffuse Color
= 101 − VPCS Light-0 Specular Color
= 102 − VPCS Light-0 Ambient Color
= 103 − VPCS Light-0 Attenuation

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 213

Value Description of Semantically Bound Graphics State Notes
= 104 − VPCS Light-0 Position
= 105 − VPCS Light-0 Direction
= 106 − VPCS Light-0 Spot Direction
= 107 − VPCS Light-0 Spot Cone Angle
= 108 − VPCS Light-0 Cosine of Spot Cone Angle
= 109 − VPCS Light-0 Spot Exponent
= 110 − VPCS Light-0 Shadow Opacity
= 120 → 130 − Same as values 100 → 110 except for VPCS Light-1
= 140 → 150 − Same as values 100 → 110 except for VPCS Light-2
= 160 → 170 − Same as values 100 → 110 except for VPCS Light-3
= 180 → 190 − Same as values 100 → 110 except for VPCS Light-4
= 200 → 210 − Same as values 100 → 110 except for VPCS Light-5
= 220 → 230 − Same as values 100 → 110 except for VPCS Light-6
= 240 → 250 − Same as values 100 → 110 except for VPCS Light-7

= 499 − Number of MCS Lights
= 500 → 510 − Same as values 100 → 110 except for MCS Light-0
= 520 → 530 − Same as values 100 → 110 except for MCS Light-1
= 540 → 550 − Same as values 100 → 110 except for MCS Light-2
= 560 → 570 − Same as values 100 → 110 except for MCS Light-3
= 580 → 590 − Same as values 100 → 110 except for MCS Light-4
= 600 → 610 − Same as values 100 → 110 except for MCS Light-5
= 620 → 630 − Same as values 100 → 110 except for MCS Light-6
= 640 → 650 − Same as values 100 → 110 except for MCS Light-7

= 899 − Number of WCS Lights
= 900 → 910 − Same as values 100 → 110 except for WCS Light-0
= 920 → 930 − Same as values 100 → 110 except for WCS Light-1
= 940 → 950 − Same as values 100 → 110 except for WCS Light-2
= 960 → 970 − Same as values 100 → 110 except for WCS Light-3
= 980 → 990 − Same as values 100 → 110 except for WCS Light-4
= 1000 → 1010 − Same as values 100 → 110 except for WCS Light-5
= 1020 → 1030 − Same as values 100 → 110 except for WCS Light-6
= 1040 → 1050 − Same as values 100 → 110 except for WCS Light-7

= 1500 − Current Texture Object-0 Cg only
= 1501 − Current Texture Object-1 Cg only
= 1502 − Current Texture Object-2 Cg only
= 1503 − Current Texture Object-3 Cg only
= 1504 − Current Texture Object-4 Cg only
= 1505 − Current Texture Object-5 Cg only
= 1506 − Current Texture Object-6 Cg only
= 1507 − Current Texture Object-7 Cg only

= 1600 − Current Texture Unit-0 GLSL only
= 1601 − Current Texture Unit-1 GLSL only
= 1602 − Current Texture Unit-2 GLSL only
= 1603 − Current Texture Unit-3 GLSL only
= 1604 − Current Texture Unit-4 GLSL only
= 1605 − Current Texture Unit-5 GLSL only
= 1606 − Current Texture Unit-6 GLSL only
= 1607 − Current Texture Unit-7 GLSL only

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

214 © ISO 2011 – All rights reserved

Value Description of Semantically Bound Graphics State Notes

= 1700 − Texture Channel-0 VCS Texture Coordinate Generation S-Plane
= 1701 − Texture Channel-0 VCS Texture Coordinate Generation T-Plane
= 1702 − Texture Channel-0 VCS Texture Coordinate Generation R-Plane
= 1703 − Texture Channel-0 VCS Texture Coordinate Generation Q-Plane
= 1710 → 1713 − Same as 1700 → 1703 except for Chanel-1 VCS
= 1720 → 1723 − Same as 1700 → 1703 except for Chanel-2 VCS
= 1730 → 1733 − Same as 1700 → 1703 except for Chanel-3 VCS
= 1740 → 1743 − Same as 1700 → 1703 except for Chanel-4 VCS
= 1750 → 1753 − Same as 1700 → 1703 except for Chanel-5 VCS
= 1760 → 1763 − Same as 1700 → 1703 except for Chanel-6 VCS
= 1770 → 1773 − Same as 1700 → 1703 except for Chanel-7 VCS

= 2000 → 2003 − Same as 1700 → 1703 except for Chanel-0 MCS
= 2010 → 2013 − Same as 1700 → 1703 except for Chanel-1 MCS
= 2020 → 2023 − Same as 1700 → 1703 except for Chanel-2 MCS
= 2030 → 2033 − Same as 1700 → 1703 except for Chanel-3 MCS
= 2040 → 2043 − Same as 1700 → 1703 except for Chanel-4 MCS
= 2050 → 2053 − Same as 1700 → 1703 except for Chanel-5 MCS
= 2060 → 2063 − Same as 1700 → 1703 except for Chanel-6 MCS
= 2070 → 2073 − Same as 1700 → 1703 except for Chanel-7 MCS

= 3000 − Texture Channel-0 Matrix
= 3001 − Texture Channel-1 Matrix
= 3002 − Texture Channel-2 Matrix
= 3003 − Texture Channel-3 Matrix
= 3004 − Texture Channel-4 Matrix
= 3005 − Texture Channel-5 Matrix
= 3006 − Texture Channel-6 Matrix
= 3007 − Texture Channel-7 Matrix

= 3100 − Texture Channel-0 Map Resolution
= 3101 − Texture Channel-1 Map Resolution
= 3102 − Texture Channel-2 Map Resolution
= 3103 − Texture Channel-3 Map Resolution
= 3104 − Texture Channel-4 Map Resolution
= 3105 − Texture Channel-5 Map Resolution
= 3106 − Texture Channel-6 Map Resolution
= 3107 − Texture Channel-7 Map Resolution

= 3200 − Texture Channel-0 Map Resolution Inverses (i.e. 1.0 /”Map Resolution”)
= 3201 − Texture Channel-1 Map Resolution Inverses
= 3202 − Texture Channel-2 Map Resolution Inverses
= 3203 − Texture Channel-3 Map Resolution Inverses
= 3204 − Texture Channel-4 Map Resolution Inverses
= 3205 − Texture Channel-5 Map Resolution Inverses
= 3206 − Texture Channel-6 Map Resolution Inverses
= 3207 − Texture Channel-7 Map Resolution Inverses

= 3300 − Texture Channel-0 Blend Color
= 3301 − Texture Channel-1 Blend Color
= 3302 − Texture Channel-2 Blend Color

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 215

Value Description of Semantically Bound Graphics State Notes
= 3303 − Texture Channel-3 Blend Color
= 3304 − Texture Channel-4 Blend Color
= 3305 − Texture Channel-5 Blend Color
= 3306 − Texture Channel-6 Blend Color
= 3307 − Texture Channel-7 Blend Color

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

216 © ISO 2011 – All rights reserved

Annex C: Decoding Algorithms – An Implementation
This Appendix provides a sample C++ implementation for the decoding portion of the various compression CODECs (as
detailed in 7.2 Encoding Algorithms) used in the JT format. This sample code is not intended to be fully functional
decoder class implementations, but is instead intended to demonstrate the fundamentals of implementing the decoding
portion of the CODEC algorithms used in the JT format.

C.1 Common classes
The following sub-sections define some general classes used by all the decoding algorithms.

C.1.1 CntxEntry class

//
// Type used to build probability context tables.
// Used by ProbabilityContext class.
//
class CntxEntry
{
public:

 Int32 iSym; // Symbol
 Int32 cCount; // Number of occurrences
 Int32 cCumCount; // Cumulative number of occurrences
 Int32 iNextCntx = 0; // Next context if this symbol seen
};

C.1.2 ProbabilityContext class

//
// Type used to build probability context tables.
// Used by CodecDriver class.
//
class ProbabilityContext
{
public:

 // Returns total cumulative count for all context entries
 Int32 totalCount();

 // Returns number of context entries
 Int32 numEntries();

 // Returns context entry of index iEntry
 Bool getEntry(Int32 iEntry, CntxEntry& rpEntry);

 // Looks up the next context field given by the context entry
 // with input symbol ‘iSymbol’
 Bool lookupNextContext(Int32 iSymbol, Int32& iNextContext);

 // Looks up the index of the context entry for the given
 // input symbol ‘iSymbol’
 Bool lookupSymbol(Int32 iSymbol, Int32& iOutEntry);

 // Looks up the index of the context entry that falls just above
 // the accumulated count.
 Bool lookupEntryByCumCount(Int32 iCount, Int32& iOutEntry);
};

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 217

C.1.3 CodecDriver class

//
// A class that deals with the conversions from SYMBOL to VALUE and
// provides end-consumer APIs for using the codecs.
//
class CodecDriver
{
public:
 // ---------- Codec Decoding Interface ----------
 // Returns the number of symbols to be read
 Int32 numSymbolsToRead();

 // Returns index of the first context entry and total number of bits
 Bool getDecodeData(Int32& iFirstContext, Int32& nTotalBits);

 // Returns the next encoded symbol and its number of bits
 Bool getNextCodeText(UInt32& uCodeText, Int32& nBits);

 // Adds the decoded symbol back to the driver
 Bool addOutputSymbol(Int32 iSymbol, Int32& iNextContext) ;

 // ---------- Symbol Probability Context Interface ----------
 Bool clearAllContexts();

 // Retrieves a new probability context
 Bool getNewContext(ProbabilityContext& rpCntx);

 // Returns the total number of contexts
 Int32 numContexts();

 // Returns the probability context for a given index
 Bool getContext(Int32 iSymContext, ProbabilityContext& rpCntx);

 // ---------- Predictor Type Residual Unpacking ----------

 typedef enum
 {
 PredLag1 = 0,
 PredLag2 = 1,
 PredStride1 = 2,
 PredStride2 = 3,
 PredStripIndex = 4,
 PredRamp = 5,
 PredXor1 = 6,
 PredXor2 = 7,
 PredNULL = 8
 } PredictorType;

 // Returns the original values from the predicted residual values.
 static Bool unpackResiduals(Vector<Int32>& rvResidual,
 Vector<Int32>& rvVals,
 PredictorType ePredType);

 static Bool unpackResiduals(Vector<Float64>& rvResidual,
 Vector<Float64>& rvVals,
 PredictorType ePredType);

 // Predict values

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

218 © ISO 2011 – All rights reserved

 static Int32 predictValue(Vector<Int32>& vVal,
 Int32 iIndex,
 PredictorType ePredType);

 static Float64 predictValue(Vector<Float64>& vVal,
 Int32 iIndex,
 PredictorType ePredType);
}

Bool CodecDriver::unpackResiduals(Vector<Int32>& rvResidual,
 Vector<Int32>& rvVals,
 PredictorType ePredType)
{
 Int32 iPredicted;

 Int32 len = rvResidual.length();
 rvVals.setLength(len);
 Int32* aVals = (Int32 *) rvVals;
 Int32* aResidual = (Int32 *) rvResidual;

 for(Int32 i = 0; i < len; i++)
 {
 if(i < 4)
 {
 // The first four values are just primers
 aVals[i] = aResidual[i];
 }
 else
 {
 // Get a predicted value
 iPredicted = predictValue(rvVals, i, ePredType);

 if(ePredType == PredXor1 || ePredType == PredXor2)
 {
 // Decode the residual as the current value XOR predicted
 aVals[i] = aResidual[i] ^ iPredicted;
 }
 else
 {
 // Decode the residual as the current value plus predicted
 aVals[i] = aResidual[i] + iPredicted;
 }
 }
 }

 return True;
}

Bool CodecDriver::unpackResiduals(Vector<Float64>& rvResidual,
 Vector<Float64>& rvVals,
 PredictorType ePredType)
{
 if(ePredType == PredXor1 || ePredType == PredXor2)
 return False;

 if(ePredType == PredNULL)
 {
 rvVals = rvResidual;
 return True;
 }

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 219

 Float64 iPredicted;
 Int32 len = rvResidual.length();
 rvVals.setLength(len);

 for(Int32 i = 0; i < len; i++)
 {
 if(i < 4)
 {
 // The first four values are just primers
 rvVals[i] = rvResidual[i];
 }
 else
 {
 // Get a predicted value
 iPredicted = predictValue(rvVals, i, ePredType);

 // Decode the value as the residual plus predicted
 rvVals[i] = rvResidual[i] + iPredicted;
 }
 }

 return True;
}

Int32 CodecDriver::predictValue(Vector<Int32>& vVal,
 Int32 iIndex,
 PredictorType ePredType)
{
 Int32* aVals = (Int32 *) rvVals;
 JtInt32 iPredicted,
 v1 = aVals[iIndex-1],
 v2 = aVals[iIndex-2],
 v3 = aVals[iIndex-3],
 v4 = aVals[iIndex-4];

 switch(ePredType)
 {
 default:
 case PredLag1:
 case PredXor1:
 iPredicted = v1;
 break;

 case PredLag2:
 case PredXor2:
 iPredicted = v2;
 break;

 case PredStride1:
 iPredicted = v1 + (v1 - v2);
 break;

 case PredStride2:
 iPredicted = v2 + (v2 - v4);
 break;

 case PredStripIndex:
 if(v2 - v4 < 8 && v2 - v4 > -8)
 iPredicted = v2 + (v2 - v4);
 else
 iPredicted = v2 + 2;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

220 © ISO 2011 – All rights reserved

 break;

 case PredRamp:
 iPredicted = iIndex;
 break;
 }

 return iPredicted;
}

Float64 CodecDriverBase::predictValue(Vector<Float64>& vVal,
 Int32 iIndex,
 PredictorType ePredType)
{
 Float64* aVals = (Float64 *) rvVals;
 Float64 iPredicted,
 v1 = aVals[iIndex-1],
 v2 = aVals[iIndex-2],
 v3 = aVals[iIndex-3],
 v4 = aVals[iIndex-4];

 switch(ePredType)
 {
 default:
 case PredLag1:
 iPredicted = v1;
 break;

 case PredLag2:
 iPredicted = v2;
 break;

 case PredStride1:
 iPredicted = v1 + (v1 - v2);
 break;

 case PredStride2:
 iPredicted = v2 + (v2 - v4);
 break;

 case PredStripIndex:
 if(v2 - v4 < 8 && v2 - v4 > -8)
 iPredicted = v2 + (v2 - v4);
 else
 iPredicted = v2 + 2;
 break;

 case PredRamp:
 iPredicted = iIndex;
 break;
 }

 return iPredicted;
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 221

C.2 Bitlength decoding classes
The following sub-sections contain a sample implementation of the decoding portion of the Bitlength CODEC
algorithm. A summary technical explnation of the Bitlength CODEC can be found in 7.2.2 Bitlength CODEC.

C.2.1 BitLengthCodec class

class BitLengthCodec
{
public:
 // This method decodes a given stream of symbols into their values.
 // The stream is described by the codec driver
 Bool decode(CodecDriver* pDriver);

 Int32 cStepBits = 2;
};

Bool BitLengthcodec::decode(CodecDriver* pDriver)
{
 Int32 iBit; // Codetext bit number
 Int32 nBits = 0; // Number of codetext bits decoded so far
 Int32 nTotalBits = 0; // Total number of codetext bits expected
 Int32 nValBits = 0; // Number of accumulated value bits
 Int32 iContext = 0; // Probability context number
 Int32 iSymbol; // Decoded symbol value
 UInt32 uVal = 0; // Current chunk of codetext bits
 UInt32 uAccVal = 0; // Number of valid bits returned from
 // getNextCodeText
 UInt32 uLastIncBit = 0; // Used to calculate whether terminator bit
 // is 0 or 1
 Int32 cNumCurBits = 0; // Current field width in bits
 Int32 nAccBits = 0; // Number of bits accum'ed in uAccVal
 Int32 iDecodeState = 0; // State of decoder; see below

 // Get codetext from the driver and loop over it until it's gone!
 pDriver->getDecodeData(iContext, nTotalBits);

 while(nBits < nTotalBits)
 {
 // Get the next 32 bits from the input stream
 pDriver->getNextCodeText(uVal, nValBits);

 // Scan through each bit either walking the Huffman code
 // tree or accumulating escaped bit values.
 Int32 n = min(32, min(nValBits, nTotalBits - nBits));
 for(iBit = 0; iBit < n ; iBit++)
 {
 // Code-accumulation mode is handled is this block
 // as many bits at a time as possible.
 if(iDecodeState == 2)
 {

 // Slice off as many bits as we can all at once.
 Int32 m = min(n - iBit, cNumCurBits - nAccBits);
 if(m < 32)
 {
 uAccVal <<= m;
 uAccVal |= ((uVal >> (32 - m)) & ((1 << m) - 1));
 nAccBits += m;
 iBit += m - 1;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

222 © ISO 2011 – All rights reserved

 // Advance the bit-marching counters
 uVal <<= m;
 nBits += m;
 nValBits -= m;
 }
 else
 {
 uAccVal = uVal;
 nAccBits += m;
 iBit += m - 1;

 // Advance the bit-marching counters
 uVal = 0;
 nBits += m;
 nValBits -= m;
 }

 if(nAccBits >= cNumCurBits)
 {
 // Convert and sign-extend the symbol
 iSymbol = Int32(uAccVal);
 iSymbol <<= (32 - cNumCurBits);
 iSymbol >>= (32 - cNumCurBits);

 // Output the symbol and restart
 pDriver->addOutputSymbol(iSymbol, iContext);
 iDecodeState = 0;
 uAccVal = 0;
 nAccBits = 0;
 }
 }
 else
 {
 // All other decode states are handled one bit at a time
 // inside this block.
 // Get the next bit
 uAccVal = (uVal >> 31);

 switch(iDecodeState)
 {

 // DecodeState = 0: Recognize prefix bit (0=Same size
 // code, 1=Different size code).
 case 0:
 // Recognize "same length" prefix code
 if(uAccVal == 0)
 iDecodeState = 2;
 else
 {
 // Recognize "different length" prefix code
 iDecodeState = 1;
 uLastIncBit = 2;
 }

 uAccVal = 0;
 break;

 case 1: // Length adjustment mode
 // Recognize the terminator bit
 if(uLastIncBit != 2 && (uAccVal ^ uLastIncBit))
 {

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 223

 iDecodeState = 2;
 uLastIncBit = 2;
 }
 else
 {
 // Recognize the "increment" prefix code
 if(uAccVal == 1)
 {
 cNumCurBits += cStepBits;
 }
 else
 {
 // Recognize the "decrement" prefix code
 cNumCurBits -= cStepBits;
 }

 uLastIncBit = uAccVal;
 }

 uAccVal = 0;
 break;
 }

 // Advance the bit-marching counters that keep track of the
 // "current codetext bit", and how many bits are left.
 uVal <<= 1;
 nBits++;
 nValBits--;
 }
 }
 }

 // If the last symbol was zero and the current bit length
 // is also zero, then the above loop terminated before
 // actually decoding the last zero-valued symbol. Test
 // for that condition here and decode it if necessary.
 if(iDecodeState == 2 && cNumCurBits == 0)
 {
 // Output the symbol and restart
 iSymbol = Int32(0);
 pDriver->addOutputSymbol(iSymbol, iContext);
 }

 return True;
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

224 © ISO 2011 – All rights reserved

C.3 Huffman decoding classes
The following sub-sections contain a sample implementation of the decoding portion of the Huffman CODEC algorithm.
A summary technical explnation of the Huffman CODEC can be found in 7.2.3 Huffman CODEC.

C.3.1 HuffCodeData class
HuffCodeData is a helper class for keeping track of a given symbol and the bits used to describe it.

class HuffCodeData
{
public:
 HuffCodeData() :
 iSymbol(0), iBitCode(0), nCodeLen(0)
 {
 }

 HuffCodeData(Int32& symbol,
 UInt32& bitCode,
 Int32& codeLen) :
 iSymbol(symbol), iBitCode(bitCode), nCodeLen(codeLen)
 {
 }

 HuffCodeData(Int32& symbol) :
 iSymbol(symbol), iBitCode(0), nCodeLen(0)
 {
 }

 Bool operator < (HuffCodeData& rhs)
 {
 if(this->iSymbol < rhs.iSymbol)
 return True;
 else
 return False;
 }

 Bool operator == (HuffCodeData& rhs)
 {
 if(this->iSymbol == rhs.iSymbol)
 return True;
 else
 return False;
 }

 Int32 iSymbol;
 Int32 nCodeLen;
 UInt32 iBitCode;
};

C.3.2 HuffTreeNode class
HuffTreeNode is a helper class used in the construction of the Huffman tree. It contains the symbol, its frequency, the
Huffman code and its length, and pointers to the ‘left’ and ‘right’ nodes.

class HuffTreeNode
{
public:
 HuffTreeNode() :
 cSymcounts(0)
 {

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 225

 }

 Bool operator < (HuffTreeNode& rhs)
 {
 if(this->cSymCounts < rhs.cSymCounts)
 return True;
 else
 return False;
 }

 Int32 cSymCounts;
 HuffTreeNode* pLeft;
 HuffTreeNode* pRight;
 HuffCodeData sData;
};

C.3.3 HuffCodecContext class
HuffCodecContext is a class that defines the Huffman context

class HuffCodecContext
{
public:
 HuffCodecContext() :
 cLength(0), nCodeLength(0), uCode(0)
 {
 }

 // Used when constructing the Huffman code
 Int32 cLength; // Length of Huffman code currently
 // under construction.
 UInt32 uCode; // Code under construction

 // Used to store the final Huffman code table
 OrderedVector<HuffCodeData> vCodes; // Ordered by symbol number

 // Used during encoding
 Int32 nCodeLength; // Used to tally up total encoded code length
};

C.3.4 HuffmanCodec class
HuffmanCodec is the class that decodes Huffman encoded data.

class HuffmanCodec
{
public:
 // Decodes the Huffman codetext present in the vInCode entries to
 // a list of symbols, placing the symbols onto the driver object.
 // This method must contruct a Huffman tree from the symbol
 // statistics present on driver object.
 Bool decode(CodecDriver* pDriver);

private:
 // Build Huffman tree for each probability context
 Bool buildHuffmanForest(CodecDriver* pDriver);

 // Build Huffman tree from symbol statistics
 Bool buildHuffmanTree(ProbabilityContext* pCntx,
 HuffTreeNode* pRootNode);

 // Assign Huffman bit-codes to leaves of tree

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

226 © ISO 2011 – All rights reserved

 Bool assignCodeToTree(HuffTreeNode* pRoot,
 HuffCodecContext& rCntxt);

 // Convert codetext vector to symbol vector
 Bool codetextToSymbols(CodecDriver* pDriver);

 Vector<HuffTreeNode*> vpHuffTrees; // Indexed by context number
 Vector<HuffCodecContext> vHuffCntx; // HuffmanCodecContexts
};

Bool HuffmanCodec::decode(CodecDriver* pDriver)
{
 // Build a Huffman tree for each probability context
 buildHuffmanForest(pDriver);

 // Convert codetext to symbols
 codetextToSymbols(pDriver);

 return True;
}

Bool HuffmanCodec::buildHuffmanForest(CodecDriver* pDriver)
{
 HuffTreeNode* pRoot = NULL;
 Int32 nCntx = pDriver->numContexts();
 Int32 i;
 for(i = 0; i < nCntx; i++)
 {
 // Get the i'th context
 ProbabilityContext* pCntx = NULL;
 pDriver->getContext(i, pCntx);

 // Create Huffman tree from probability context
 buildHuffmanTree(pCntx, pRoot);

 // Assign Huffman codes
 assignCodeToTree(pRoot, vHuffCntx[i]);

 // Store the completed Huffman tree
 vpHuffTrees[i] = pRoot;
 }

 return True;
}

Bool HuffmanCodec::buildHuffmanTree(ProbabilityContext* pCntx,
 HuffTreeNode* pRootNode)
{
 HeapVector<HuffTreeNode*> heap;
 HuffTreeNode* pNode = NULL;

 // Initialize all the nodes and add them to the heap.
 Int32 nEntries = pCntx->numEntries();
 for(Int32 i = 0; i < nEntries; i++)
 {
 CntxEntry* pEntry = NULL;
 pCntx->getEntry(i, pEntry);
 pNode->sData.iSymbol = pEntry->iSym;
 pNode->cSymCounts = pEntry->cCount;
 pNode->pLeft = NULL;
 pNode->pRight = NULL;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 227

 heap.add(pNode);
 }

 HuffTreeNode* pNewNode1 = NULL;
 HuffTreeNode* pNewNode2 = NULL;

 while(heap.length() > 1)
 {
 // Get the two lowest-frequency nodes.
 heap.getMin(pNewNode1);
 heap.getMin(pNewNode2);

 //Combine the low-freq nodes into one node.
 pNode->sData.iSymbol = 0xdeadbeef;
 pNode->pLeft = pNewNode1;
 pNode->pRight = pNewNode2;
 pNode.cSymCounts = pNewNode1->cSymCounts + pNewNode2->cSymCounts;

 //Add the new node to the heap.
 heap.add(pNode);
 }

 // Set the root node.
 heap.getMin(pNode);
 pRootNode = pNode;

 return True;
}

Bool HuffmanCodec::assignCodeToTree(HuffTreeNode* pNode,
 HuffCodecContext& rCntxt)
{
 if(pRoot->pLeft != 0)
 {
 rCntxt.uCode <<= 1;
 rCntxt.uCode |= 1;
 rCntxt.cLength++;
 assignCodeToTree(pRoot->pLeft, rCntxt);
 rCntxt.cLength--;
 rCntxt.uCode >>= 1;
 }

 if(pRoot->pRight != 0)
 {
 rCntxt.uCode <<= 1;
 rCntxt.cLength++;
 assignCodeToTree(pRootpRight, rCntxt);
 rCntxt.cLength--;
 rCntxt.uCode >>= 1;
 }

 if(pRoot->pRight != 0)
 return True;

 // Set the code and its length for the node.
 pRoot->sData.iBitCode = rCntxt.uCode;
 pRoot->sData.nCodeLen = rCntxt.cLength;

 // Setup the internal symbol look-up table.
 Int32 null = 0;
 rCntxt.vCodes.insert(HuffCodeData(pRoot->sData.iSymbol,

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

228 © ISO 2011 – All rights reserved

 pRoot->sData.iBitCode,
 pRoot->sData.nCodeLen), null);

 return True;
}

Bool HuffmanCodec::codetextToSymbols(CodecDriver* pDriver)
{
 HuffTreeNode* pHNode = NULL;
 UInt32 mask = 1 << 31;
 Int32 j,
 nBits = 0,
 nTotalBits = 0,
 nValBits = 0,
 iContext = 0;
 UInt32 uVal;

 pDriver->getDecodeData(iContext, nTotalBits);
 pHNode = vpHuffTrees[iContext];

 while(nBits < nTotalBits)
 {
 // Get the next 32 bits from the input stream
 pDriver->getNextCodeText(uVal, nValBits);

 // Scan through each bit either walking the Huffman code
 // tree or accumulating escaped bit values.
 for(j = 0; j < 32 && nBits < nTotalBits && nValBits > 0; j++)
 {
 // March to the next node
 pHNode = (uVal & mask) ? pHNode->pLeft : pHNode->pRight;

 // If the node is a leaf, output a symbol and restart
 if(pHNode->pLeft == 0 && pHNode->pRight == 0)
 {
 pDriver->addOutputSymbol(pHNode->sData.iSymbol, iContext);
 pHNode = vpHuffTrees[iContext];
 }

 uVal <<= 1;
 nBits++;
 nValBits--;
 }
 }

 return True;
}

 STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/PAS 14
30

6:2
01

1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 229

C.4 Arithmetic decoding classes
The following sub-sections contain a sample implementation of the decoding portion of the Arithmetic CODEC
algorithm. A summary technical explnation of the Arithmetic CODEC can be found in 7.2.4 Arithmetic CODEC.

C.4.1 ArithmeticProbabilityRange class

class ArithmeticProbabilityRange
{
public:
 UInt16 low_count;
 UInt16 high_count;
 UInt16 scale;
}

C.4.2 ArithmeticCodec class
ArithmeticCodec class is the class that decodes arithmetic encoded data.

class ArithmeticCodec
{
public:
 ArithmeticCodec() :
 code = 0x0000,
 low = 0x0000,
 high = 0xffff,
 nUnderflowBits = 0,
 bitBuffer =0x00000000,
 nBits = 0
 {
 }

 // Decodes a list of symbols. The codecDriver provides the range
 // info for the symbols to decode. It also stores the symbols as
 // they are decoded.
 Bool decode(CodecDriver* pDriver);

private:
 // Remove the most recently decoded symbol from the front of the
 // list of encoded symbols.
 Bool removeSymbolFromStream(ArithmeticProbabilityRange& sym,
 CodecDriver* pDriver);

 //State variables used in decoding.
 UInt16 code; // Present input code value, for decoding only
 UInt16 low; // Start of the current code range
 UInt16 high; // End of the current code range

 UInt32 bitBuffer; // Temporary i/o buffer
 Int32 nBits; // Number of bits in _bitBuffer
};

Bool ArithmeticCodec::decode(CodecDriver* pDriver)
{
 ArithmeticProbabilityRange newSymbolRange;
 Int32 iCurrContext, nDummyTotalBits, cSymbolsCurrCtx, iCurrEntry;

 Int32 nSymbols = pDriver->numSymbolsToRead(),

 ProbabilityContext* pCurrContext = NULL;
 CntxEntry* pCntxEntry = NULL;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

230 © ISO 2011 – All rights reserved

 // Initialize decoding process
 Int32 nBitsRead = -1;
 pDriver->getNextCodeText(bitBuffer, nBitsRead);

 low = 0;
 high = 0xffff;
 code = (bitBuffer >> 16);

 bitBuffer <<= 16;
 nBits = 16;

 // Begin decoding
 pDriver->getDecodeData(iCurrContext, nDummyTotalBits);
 for(Int32 ii = 0; ii < nSymbols; ii++)
 {
 pDriver->getContext(iCurrContext, pCurrContext);

 cSymbolsCurrCtx = pCurrContext->totalCount();
 UInt16 rescaledCode =
 ((((UInt32)(code - low) + 1) * (UInt32) cSymbolsCurrCtx - 1) /
 ((UInt32)(high - low) + 1));

 pCurrContext->lookupEntryByCumCount((Int32)rescaledCode,
 iCurrEntry);

 pCurrContext->getEntry(iCurrEntry, pCntxEntry);

 newSymbolRange.high_count = pCntxEntry->cCumCount +
 pCntxEntry.cCount;
 newSymbolRange.low_count = pCntxEntry->cCumCount;
 newSymbolRange.scale = cSymbolsCurrCtx;

 removeSymbolFromStream(newSymbolRange, pDriver);

 pDriver->addOutputSymbol(pCntxEntry);

 iCurrContext = pCntxEntry->iNextCntx;
 }

 return True;
}

Bool ArithmeticCodec::removeSymbolFromStream(
 ArithmeticProbabilityRange& sym,
 CodecDriver* pDriver)
{
 // First, the range is expanded to account for the symbol removal.
 UInt32 range = UInt32(high - low) + 1;
 high = low + (UInt32)((range * sym.high_count) / sym.scale - 1);
 low = low + (UInt32)((range * sym.low_count) / sym.scale);

 //Next, any possible bits are shipped out.
 for (;;)
 {
 // If the most signif digits match, the bits will be shifted out.
 if((~(high^low)) & 0x8000)
 {
 }
 else if((low & 0x4000) && !(high & 0x4000))
 {
 // Underflow is threatening, shift out 2nd most signif digit.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 231

 code ^= 0x4000;
 low &= 0x3fff;
 high |= 0x4000;
 }
 else
 {
 // Nothing can be shifted out, so return.
 return True;
 }

 low <<= 1;
 high <<= 1;
 high |= 1;
 code <<= 1;

 if(nBits == 0)
 {
 Int32 nBits = -1;
 pDriver->getNextCodeText(bitBuffer, nBits);
 nBits = 32;
 }

 code |= (UInt16)(bitBuffer >> 31);
 bitBuffer <<= 1;
 nBits--;
 }
}

C.5 Deering Normal decoding classes
The following sub-sections contain a sample implementation of the decoding portion of the Deering Normal CODEC
algorithm. A summary technical explnation of the Deering Normal CODEC can be found in 7.2.5 Deering Normal
CODEC.

C.5.1 DeeringNormalLookupTable class
The DeeringNormalLookupTable class represents a lookup table used by the DeeringNormalCodec class for faster
conversion from the compressed normal representation to the standard 3-float representation. The tables hold
precomputed results of the trig functions called during conversion.

class DeeringNormalLookupTable
{
public:
 DeeringNormalLookupTable();

 // Lookup and return the result of converting iTheta and iPsi to
 // real angles and taking the sine and cosine of both. This gives
 // a slight speedup for normal decoding.
 Bool lookupThetaPsi(Int32 iTheta,
 Int32 iPsi,
 UInt32 numberBits,
 Float32 outCosTheta,
 Float32 outSinTheta,
 Float32 outCosPsi,
 Float32 outSinPsi);

 UInt32 numBitsPerAngle() {return nBits;}

private:
 UInt32 nBits;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

232 © ISO 2011 – All rights reserved

 Vector vCosTheta;
 Vector vSinTheta;
 Vector vCosPsi;
 Vector vSinPsi;
};

DeeringNormalLookupTable::DeeringNormalLookupTable()
{
 UInt32 numberbits = 8;
 nBits = min(numberbits, (UInt32)31);

 Int32 tableSize = (1 << nBits);

 vCosTheta.setLength(tableSize+1);
 vSinTheta.setLength(tableSize+1);
 vCosPsi.setLength(tableSize+1);
 vSinPsi.setLength(tableSize+1);

 Float32 fPsiMax = 0.615479709;
 Float32 fTableSize = (Float32)tableSize;

 for(Int32 ii = 0; ii <= tableSize; ii++)
 {

 Float32 fTheta =
 asin(tan(fPsiMax * Float32(tableSize - ii) / fTableSize));

 Float32 fPsi = fPsiMax * (((Float32)ii) / fTableSize);
 vCosTheta[ii] = cos(fTheta);
 vSinTheta[ii] = sin(fTheta);
 vCosPsi[ii] = cos(fPsi);
 vSinPsi[ii] = sin(fPsi);
 }
}

Bool DeeringNormalLookupTable::lookupThetaPsi(Int32 iTheta,
 Int32 iPsi,
 UInt32 numberBits,

 Float32 outCosTheta,
 Float32 outSinTheta,
 Float32 outCosPsi,
 Float32 outSinPsi)

{
 Int32 offset = nBits - numberBits;

 outCosTheta = vCosTheta[iTheta << offset];
 outSinTheta = vSinTheta[iTheta << offset];
 outCosPsi = vCosPsi[iPsi << offset];
 outSinPsi = vSinPsi[iPsi << offset];

 return True;
}

C.5.2 DeeringNormalCodec class
The DeeringNormalCodec class converts a normal vector to and from the standard 3-float representation and a lower-
precision representation. The precision can be adjusted using the nbits parameter.

class DeeringNormalCodec
{
public:
 DeeringNormalCodec(Int32 numberbits = 6)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 233

 {
 numBits = numberbits;
 }

 // Converts a compressed normal into a vector.
 Bool convertCodeToVec(UInt32 code, Vector& outVec);

 // Converts a compressed normal into a vector.
 Bool convertCodeToVec(UInt32 iSextant,

 UInt32 iOctant,
 UInt32 iTheta,
 UInt32 iPsi,
 Vector& outVec);

 // Separates an encoded normal into its 4 pieces
 Bool unpackCode(UInt32 code,

 UInt32& outSextant,
 UInt32& outOctant,
 UInt32& outTheta,
 UInt32& outPsi);

 private:
 Int32 numBits;
}

Bool DeeringNormalCodec::convertCodeToVec(UInt32 code, Vector& outVec)
{
 UInt32 s=0, o=0, t=0, p=0;
 unpackCode(code, s, o, t, p);

 convertCodeToVec(s, o, t, p, outVec);

 return True;
}

Bool DeeringNormalCode::convertCodeToVec(UInt32 iSextant,
 UInt32 iOctant,
 UInt32 iTheta,
 UInt32 iPsi,
 Vector& outVec)
{
 // Size of code = 6+2*numBits, and max code size is 32 bits,
 // so numBits must be <= 13.

 // Code layout: [sextant:3][octant:3][theta:numBits][psi:numBits]

 outVec.setValues(0,0,0);
 Float32 fPsiMax = 0.615479709;

 UInt32 iBitRange = 1<<numBits;
 Float32 fBitRange = Float32(iBitRange);

 // For sextants 1, 3, and 5, iTheta needs to be incremented
 iTheta += (iSextant & 1);

 Float32 fCosTheta, fSinTheta, fCosPsi, fSinPsi;

 DeeringNormalLookupTable LookupTable;

 if((LookupTable.numBitsPerAngle() < (UInt32)numBits) ||
 !LookupTable.lookupThetaPsi(iTheta, iPsi, numBits,

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

234 © ISO 2011 – All rights reserved

 fCosTheta, fSinTheta,
 fCosPsi, fSinPsi))
 {
 Float32 fTheta = asin(tan(fPsiMax * Float32(iBitRange - iTheta) /
 fBitRange));

 Float32 fPsi = fPsiMax * (iPsi / fBitRange);
 fCosTheta = cos(fTheta);
 fSinTheta = sin(fTheta);
 fCosPsi = cos(fPsi);
 fSinPsi = sin(fPsi);
 }

 Float32 x,y,z;
 Float32 xx = x = fCosTheta * fCosPsi;
 Float32 yy = y = fSinPsi;
 Float32 zz = z = fSinTheta * fCosPsi;

 //Change coordinates based on the sextant
 switch(iSextant)
 {
 case 0: // No op
 break;

 case 1: // Mirror about x=z plane
 z = xx;
 x = zz;
 break;

 case 2: // Rotate CW
 z = xx;
 x = yy;
 y = zz;
 break;

 case 3: // Mirror about x=y plane
 y = xx;
 x = yy;
 break;

 case 4: // Rotate CCW
 y = xx;
 z = yy;
 x = zz;
 break;

 case 5: // Mirror about y=z plane
 z = yy;
 y = zz;
 break;
 };

 //Change some more based on the octant

 //if first bit is 0, negate x component
 if(!(iOctant & 0x4))
 x = -x;

 //if second bit is 0, negate y component
 if(!(iOctant & 0x2))
 y = -y;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 235

 //if third bit is 0, negate z component
 if(!(iOctant & 0x1))
 z = -z;

 outVec.setValues(x,y,z);

 return True;
}

Bool DeeringNormalCodec::unpackCode(UInt32 code,
 UInt32& outSextant,
 UInt32& outOctant,
 UInt32& outTheta,
 UInt32& outPsi)
{
 UInt32 mask = (1<<numBits)-1;

 outSextant = (code >> (numBits+numBits+3)) & 0x7;
 outOctant = (code >> (numBits+numBits)) & 0x7;
 outTheta = (code >> (numBits)) & mask;
 outPsi = (code) & mask;

 return True;
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

236 © ISO 2011 – All rights reserved

Annex D: Parasolid XT Format Reference

November 2008

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 237

Table of Contents
Introduction to the Parasolid XT Format .. 241
Types of File Documented .. 241
Text and Binary Formats .. 242
Standard File Names and Extensions .. 242
Logical Layout ... 243
Schema ... 244
Embedded schemas .. 244

Physical layout .. 245

XT format .. 245

Space compression .. 246
Field types .. 246
Point ... 247
Pointer classes ... 247
Variable-length nodes ... 248
Unresolved indices ... 248
Simple example .. 248
Physical Layout ... 250
Common header .. 250

Keyword Syntax ... 251

Text ... 252
Binary ... 253

bare binary .. 253

typed binary .. 253

neutral binary ... 253

Model Structure ... 255
Topology ... 255
General points .. 255
Entity definitions ... 255

Assembly ... 255

Instance ... 255

Body ... 255

Region .. 256

Shell ... 256

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

238 © ISO 2011 – All rights reserved

Face ... 257

Loop .. 257

Fin ... 257

Edge ... 258

Vertex .. 258

Attributes .. 258

Groups .. 259

Node-ids .. 259

Entity matrix ... 259
Representation of manifold bodies ... 259

Body types .. 259

Schema Definition .. 261
Underlying types ... 261
Geometry ... 261

Curves ... 263
LINE .. 263
CIRCLE ... 264
ELLIPSE .. 265
B_CURVE (B-spline curve) .. 267
INTERSECTION ... 272
TRIMMED_CURVE ... 275
PE_CURVE (Foreign Geometry curve) .. 277
SP_CURVE ... 278

Surfaces ... 279
PLANE .. 280
CYLINDER ... 281
CONE .. 282
SPHERE .. 283
TORUS .. 284
BLENDED_EDGE (Rolling Ball Blend) .. 286
BLEND_BOUND (Blend boundary surface) .. 287
OFFSET_SURF ... 288
B_SURFACE ... 289
SWEPT_SURF .. 294
SPUN_SURF ... 295
PE_SURF (Foreign Geometry surface) ... 296

Point .. 297

Transform ... 298

Curve and Surface Senses ... 299

Geometric_owner ... 299

Topology .. 301

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 239

WORLD ... 301
ASSEMBLY ... 302
INSTANCE .. 304
BODY ... 305
REGION ... 308
SHELL ... 309
FACE .. 310
LOOP ... 311
FIN ... 311
VERTEX .. 312
EDGE ... 313

Associated Data ... 315
LIST ... 315
POINTER_LIS_BLOCK: .. 316
ATT_DEF_ID .. 317
FIELD_NAMES ... 317
ATTRIB_DEF .. 318
ATTRIBUTE .. 321
INT_VALUES ... 323
REAL_VALUES .. 324
CHAR_VALUES ... 324
UNICODE_VALUES .. 324
POINT_VALUES .. 324
VECTOR_VALUES .. 325
DIRECTION_VALUES ... 325
AXIS_VALUES ... 325
TAG_VALUES .. 325
GROUP .. 326
MEMBER_OF_GROUP .. 327

Node Types ... 329
Node Classes .. 332
System Attribute Definitions ... 333
Hatching .. 333

Planar Hatch ... 333

Radial Hatch ... 334

Parametric Hatch ... 334

Density Attributes .. 334
Density (of a body) .. 335

Region Density .. 335

Face Density .. 335

Edge Density ... 336

Vertex Density .. 336

Region .. 336

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

240 © ISO 2011 – All rights reserved

Colour .. 337
Reflectivity ... 337
Translucency ... 337
Name ... 338
Incremental faceting ... 338
Transparency .. 338
Non-mergeable edges .. 338
Group merge behavior .. 339

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 241

Introduction to the Parasolid
XT Format

This Parasolid® Transmit File Format manual describes the formats in which Parasolid represents model
information in external files. Parasolid is a geometric modeling kernel that can represent wireframe, surface,
solid, cellular and general non-manifold models.

Parasolid stores topological and geometric information defining the shape of models in transmit files. These
files have a published format so that applications can have access to Parasolid models without necessarily
using the Parasolid kernel.

This manual documents the Parasolid transmit file format. This format will change in subsequent Parasolid
releases at which time this manual will be updated. As new versions of Parasolid can read and write older
transmit file formats these changes will not invalidate applications written based on the information herein.

Types of File Documented
There are a number of different interface routines in Parasolid for writing transmit files. Each of these routines
can write slightly different combinations of Parasolid data, the ones that are documented herein are:

• Individual components (or assemblies) written using SAVMOD

• Individual components written using PK_PART_transmit

• Lists of components written using PK_PART_transmit

• Partitions written using PK_PARTITION_transmit

The basic format used to write data in all the above cases is identical; there are a small number of node types
that are specific to each of the above file types.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

242 © ISO 2011 – All rights reserved

Text and Binary Formats
Parasolid can encode the data it writes out in four different formats:

1. Text (usually ASCII)

2. Neutral binary

3. Bare binary (this is not recommended)

4. Typed binary

In text format all the data is written out as human readable text, they have the advantage that they are readable
but they also have a number of disadvantages. They are relatively slow to read and write, converting to and
from text forms of real numbers introduces rounding errors that can (in extreme cases) cause problems and
finally there are limitations when dealing with multi-byte character sets. Carriage return or line feed characters
can appear anywhere in a text transmit file but other unexpected non-printing characters will cause Parasolid
to reject the file as corrupt.

Neutral binary is a machine independent binary format.

Bare binary is a machine dependent binary format. It is not a recommended format since the machine type
which wrote it must be known before it can be interpreted.

Typed binary is a machine dependent binary format, but it has a machine independent prefix describing the
machine type that wrote it and so can be read on all machine types.

Standard File Names and Extensions
Due to changing operation system restrictions on file names over the years Parasolid has used several different
file extensions to denote file contents. The recommended set of file extensions is:

• .X_T and .X_B for part files, .P_T and .P_B for partition files.

Extensions that have been used in the past are:

• xmt_txt, xmp_txt - text format files on VMS or Unix platforms

• xmt_bin, xmp_bin - binary format files on VMS or Unix platforms

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 243

Logical Layout

The logical layout of a Parasolid transmit file is:

• A human-oriented text header.

• The initial text header is read and written by applications' Frustrums and is not accessible to Parasolid.
Its detailed format is described in the section `Physical layout'.

• A short flag sequence describing the file format, followed by modeller identification information and user
field size.

• The various flag sequences (mixtures of text and numbers) are documented under `Physical layout';
the content of the modeller identification information is:

the modeller version used to write the file, as a text string of the form:

: TRANSMIT FILE created by modeller version 1200123

This information is used by routines such as PK_PART_ask_kernel_version.

the schema version describing the field sequences of the part nodes as a text string of the form:

SCH_1200123_12006

This example denotes a file written by Parasolid V12.0.123 using schema number 12006: there will be
a corresponding file sch_12006 in the Parasolid schema distribution.

Note that applications writing XT files should use version 1200000 and schema number 12006.

• The user field size is a simple integer.

• The objects (known as ‘nodes’) in the file in an unordered sequence, followed by a terminator.

• Every node in the file is assigned an integer index from 1 upwards (some indices may not be used).
Pointer fields are output as these indices, or as zero for a null pointer.

• Each node entry begins with the node type. If the node is of variable length (see below), this is
followed by the length of the variable field. The index of the node is then output, followed by the fields of
the node. If the file contains user fields, and the node is visible at the PK interface, then the fields are
followed by the user field, in integers.

• The terminator which follows the sequence of nodes is a two-byte integer with value 1, followed by
an index with value 0. The index is output as ‘0’ in a text file, and as a 2-byte integer with value 1 in a
binary file.

• The node with index 1 is the root node of the transmit file as follows:

•

Contents of file Type of root node

Body BODY

Assembly ASSEMBLY

Array of parts POINTER_LIS_BLOCK

Partition WORLD

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

244 © ISO 2011 – All rights reserved

Schema
Parasolid permanent structures are defined in a special language akin to C which generates the appropriate
files for a C compiler, the runtime information used by Parasolid, along with a schema file used during
transmit and receive. The schema file for version 12.0 is named sch_12006 and is distributed with Parasolid. It
is not necessary to have a copy of this file to understand the XT format.

For each node type, the schema file has a node specifier of the form

<nodetype> <nodename>; <description>; <transmit 1/0> <no. of fields> <variable 1/0>

e.g.

29 POINT; Point; 1 6 0

This is followed by a list of field specifiers which say what fields, and in what order, occur in the transmit file.

Field specifiers have the format:

<fieldname>; <type>; <transmit 1/0> <node class> <n_elements>

e.g.

owner; p; 1 1011 1

Nodes and fields with a transmit flag of zero are ephemeral information not written to a transmit file. Only
pointer fields have non-zero node class, in which case it specifies the set of node types to which this field is
allowed to point. The element count is interpreted as follows:

0 a scalar, a single value
1 a variable length field (see below)
n > 1 an array of n values

Note that in the schema file, fins are referred to as ‘halfedges’, and groups are referred to as ‘features’. These
are internal names not used elsewhere in this document.

Embedded schemas
When reading a part, partition, or delta, Parasolid converts any data that it encounters from older versions of
Parasolid to the current format using a mixture of automatic table conversion (driven by the appropriate
schemas), and explicit code for more complex algorithms.

However, backwards compatibility of file information – that is, reading data created by a newer version of
Parasolid into an application (such as data created by a subcontractor) – can never be guaranteed to work
using this method, because the older version does not contain any special-case conversion code.

From Parasolid V14 onwards, parts, partitions and deltas can be transmitted with extra information that is
intended to replace the schema normally loaded to describe the data layout. This information contains the
differences between its schema and a defined base schema (currently V13's SCH_13006).

This enables parts, partitions, and deltas to be successfully read into older versions of Parasolid without loss of
information.

The only fields that are included in this information are those which can be referenced in a cut-down version
of the schema pertaining only to the XT part data that is transmitted. Specifically, a full schema definition can
contain fields that are not relevant in the context of the transmitted data (fields relating to snapshots, for
example), and these fields are excluded.

Fields that are included are referred to as effective fields, and are either transmittable (xmt_code == 1) or
have variable-length (n_elts == 1)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 245

Physical layout
Most of the data are composed of integers, logical flags, and strings, but are of restricted ranges and so
transmitted specially in binary format. The binary representation is given in bold type, such as “integer
(byte)”. This is relevant to applications that attempt to read or write Parasolid data directly. Two important
elements are

• short strings

These are transmitted as an integer length (byte) followed by the characters (without trailing zero).

• positive integers

These are transmitted similarly to the pointer indices which link individual objects together, i.e., small
values 0..32766 are transmitted as a single short integer, larger ones encoded into two.

XT format
Presence of the new format is indicated by a change to the standard header: the archive name is extended by
the number of the base schema, e.g., SCH_1400068_14000_13006, and then the maximum number of node
types is inserted (short).

Transmission then continues as normal, except that when transmitting the first node of any particular type,
extra information is inserted between the nodetype and the variable-length, index data as follows:

• The arrays of effective fields in the base schema node and the current schema node are assembled.

• If the nodetype does not exist in the base schema then it is output as follows:

• number of fields (byte)

• name and description (short strings)

• fields one by one as

name short string

ptr_class Short

n_elts Positive integer

type short string
The field type. Allowed values are
described in “Field types”, below. Omitted
if ptr_class non-zero

xmt_code logical (byte) Omitted for fixed-length (n_elts != 1)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

246 © ISO 2011 – All rights reserved

• If the two arrays match (equal length and all fields match in name, xmt_code, ptr_class, n_elts and
type) then output the flag value 255 (byte 0xff).

• If the two arrays do not match, output the number of effective fields in the current schema (byte), and an
edit sequence as follows.

• Initialize pointers to the first base field and first current field, then while there are still unprocessed
base and current fields, output a sequence of Copy, Delete and Insert instructions

• If the base field matches the current field, output 'C' (char) to indicate an unchanged (Copied)
field and advance to the next base and current fields;

• If the base field does not match any unprocessed current field, output 'D' (char) to indicate a
Deleted field and advance to the next base field;

• Otherwise, output 'I' (char) to indicate an Inserted field, followed by the current field in the above
format, and advance to the next current field.

• If there are any unprocessed current fields, then output an Append sequence, each instruction being 'A'
(char) followed by the field.

• Finally, output 'Z' (char) to signal the end.

Space compression
For text data in transmit formats PK_transmit_format_text_c and PK_transmit_format_xml_c, a new escape
sequence is defined: the 2-character sequence \9 denotes a sequence of nine spaces. At V14, this applies to
attribute definition names, field names, and attribute strings.

Field types
The XT format is not itself a binary protocol, and so does not define data sizes; the only requirement is that a
runtime implementation has sufficient room for the information. The available implementations run with 8bit
ASCII characters, 8bit unsigned bytes (0..255), 16bit short integers (0..65535 or -32768..32767), 32bit
integers (0..4G-1, -2G..2G-1) and IEEE reals. The implementation used in a given binary file is specified by
the "PS<code>" at the start of the file. See the chapter on “Physical Layout” for more information.

The full list of field types used in transmit files is as follows:

u unsigned byte 0-255

c char

l unsigned byte 0-1 (i.e. logical)

 typedef char logical;

n short int

w unicode character, output as a short int

d int

p pointer-index

Small indices (less than 32767) are treated specially in binary files to save space.
See the section below on binary format.

f double

i These correspond to a region of the real line:

 typedef struct { double low, high; }interval;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 247

v array [3] of doubles

These correspond to a 3-space position or direction:

 typedef struct { double x,y,z; } vector;

b array [6] of doubles

These correspond to a 3-spce region:

 typedef struct { interval x,y,z; } box;

Note that the ordering is not the same as presented at Parasolid's external PK or KI
interfaces.

h array [3] of doubles

These represent points of intersection between two surfaces; only the position
vector is written to a transmit file, as Parasolid will recalculate other data as
required. The structure is documented further in the section on intersection curves.

Point
As an example, consider a POINT; its formal description is

struct POINT_s // Point

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union POINT_OWNER_u owner; // $p

struct POINT_s *next; // $p

struct POINT_s *previous; // $p

vector pvec; // $v

};

typedef struct POINT_s *POINT;

Its corresponding schema file entry is

29 POINT; Point; 1 6 0

node_id; d; 1 0 0

attributes_groups; p; 1 1019 0

owner; p; 1 1011 0

next; p; 1 29 0

previous; p; 1 29 0

pvec; v; 1 0 0

Pointer classes
In the above example, the attributes_groups field must be of class ATTRIB_GROUP_cl, the owner must be of
class POINT_OWNER_cl, and the next and previous fields must refer to POINTs. A full list of node types
and node classes is given at the end of the document.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

248 © ISO 2011 – All rights reserved

Each node class corresponds to a union of pointers given in the Schema Definition section.

Variable-length nodes
Variable-length nodes differ from fixed-length nodes in that their last field is of variable length, i.e. different
nodes of the same type may have different lengths. In the schema the length is notionally given as 1, e.g.

struct REAL_VALUES_s // Real values

{

Double values[1]; // $f[]
};

Its schema file entry would be

83 REAL_VALUES; Real values; 1 1 1

values; f; 1 0 1

The number of entries in each such node is indicated by an integer in the transmit file between its nodetype
and index, so an example might be

 83 3 15 1 2 3

Unresolved indices
In some cases a node will contain an index field which does not correspond to a node in the transmit file, in
this case the index is to be interpreted as zero.

Simple example
Here is a reformatted text example of a sheet circle with a color attribute on its single edge:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz**********

PARASOLID !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~0123456789**********

**PART1;MC=osf65;MC_MODEL=alpha;MC_ID=sdlosf6;OS=OSF1;OS_RELEASE=V4.0;FRU=sdl_paras
olid_test_osf64;APPL=unknown;SITE=sdl-cambridge-
u.k.;USER=davidj;FORMAT=text;GUISE=transmit;DATE=29-mar-2000;

**PART2;SCH=SCH_1200000_12006;USFLD_SIZE=0;

**PART3;

END_OF_HEADER*

T51 : TRANSMIT FILE created by modeller version 120000017 SCH_1200000_120060

12 1 12 0 2 0 0 0 0 1e3 1e-8 0 0 0 1 0 3 1 3 4 5 0 6 7 0 body

 70 2 0 1 0 0 4 1 20 8 8 8 1 T list

13 3 3 0 1 0 9 0 0 6 9 shell

 50 4 11 0 9 0 0 0 +0 0 0 0 0 1 1 0 0 plane

 31 5 10 0 7 0 0 0 +0 0 0 0 0 1 1 0 0 1 circle

 19 6 5 0 1 0 0 3 V region

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 249

16 7 6 0 ?10 0 0 5 0 0 1 edge

 17 10 0 11 10 10 0 12 7 0 0 + fin

15 11 7 0 10 9 0 loop

 17 12 0 0 0 0 0 10 7 0 0 - fin (dummy)

14 9 2 13 ?0 0 11 3 4 +0 0 0 0 3 face

 81 1 13 12 14 9 0 0 0 0 15 attribute (variable 1)

 80 1 14 0 16 8001 0 0 0 0 3 5 0 0 FFFFTFTFFFFFF2 attrib_def (variable 1)

83 3 15 1 2 3 real_values (variable 3)

 79 15 16 SDL/TYSA_COLOUR att_def_id (variable 15)

74 20 8 1 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pointer_lis_block

 1 0 terminator

Note that the tolerance fields of the face and edge are unset, and represented as ‘?’ in the text transmit file and
that the annotations in the column ‘body’ to ‘terminator’ give the node type of each line and are not part of the
actual file. If the above file had no trailing spaces, it would be a valid XT file (the leading spaces on some of
the lines are necessary).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

250 © ISO 2011 – All rights reserved

Physical Layout

Parasolid transmit files have two headers:

• a textual introduction containing human-directed information about the part, written by the Frustrum and
not accessible to Parasolid, and

• an internal prefix to the part data, describing to Parasolid the format of the part data and thus not seen
explicitly by an application's Frustrum.

Common header
The Parasolid common header recommended to Frustrum writers consists of:

• A preamble containing all characters in the ASCII printing set. This is used by the KID Frustrum to detect
obvious network corruption, but could be used to attempt to translate a text file from one character set to
another.

• Part 1 data: a sequence of keyword-value pairs, separated by semicolons, of possibly interesting
information. All are optional.

MC = vax, hppa, sparc, ...

 // make of computer

 MC_MODEL = 4090, 9000/780, sun4m, ...

 // model of computer

 MC_ID = ...

 // unique machine identifier

 OS = vms, HP-UX, SunOS, ...

 // name of operating system

OS_RELEASE = V6.2, B.10.20, 5.5.1, ...

 // version of operating system

FRU = sdl_parasolid_test_vax,

 mdc_ugii_v7.0_djl_can_vrh, ...

// frustrum supplier and implementation name

 APPL = kid, unigraphics, ...

// application which is using Parasolid

 SITE = ...

// site at which application is running

 USER = ...

 // login name of user

 FORMAT = binary, text, applio

 // format of file

 GUISE = transmit, transmit_partition

 // guise of file

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 251

 KEY = ...

 // name of key

 FILE = ...

 // name of file

 DATE = dd-mmm-yyyy

// e.g. 5-apr-1998

The ‘part 1’ data is ‘standard’ information which should be accessible to the Frustrum (e.g. by operating
system calls). It is the responsibility of the Frustrum to gather the relevant information and to format it as
described in this specification.

• part 2 data: a sequence of keyword-value pairs, separated by semicolons.

 SCH = SCH_m_n

// name of schema key e.g.SCH_1200000_12006

USFLD_SIZE = m

// length of user field (0 - 16 integer words)

Applications writing XT files must use a schema name of SCH_1200000_12006

• part 3 data: non-standard information, which is only comprehensible to the Frustrum which wrote it.

The ‘part 3’ data is non-standard information, which is only comprehensible to the Frustrum which wrote
it. However, other Frustrum implementations must be able to parse it (in order to reach the end of the
header), and it should therefore conform to the same keyword/value syntax as for ‘part 1’ and ‘part 2’
data. However, the choice and interpretation of keywords for the ‘part 3’ data is entirely at the discretion
of the Frustrum which is writing the header.

• a trailer record.

An example is:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz**********

PARASOLID !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~0123456789****************

**PART1;MC=vax;MC_MODEL=4090;MC_ID=VAX14;OS=vms;OS_RELEASE=V6.2;FRU=sdl_parasoli
d_test_vax;APPL=unknown;SITE=sdl-cambridge
u.k.;USER=ALANS;FORMAT=text;GUISE=transmit;KEY=temp;FILE=TEMP.XMT_TXT;DATE=8-sep-
1997;

**PART2;SCH=SCH_701169_7007;USFLD_SIZE=0;

**PART3;

END_OF_HEADER*

Keyword Syntax
All keyword definitions which appear in the three parts of data are written in the form
 <name>=<value> e.g. MC=hppa;MC_MODEL=9000/710;

where

<name> consists of 1 to 80 uppercase, digit, or underscore characters

<value> consists of 1 or more ASCII printing characters (except space)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

252 © ISO 2011 – All rights reserved

Escape sequences provide a way of being able to use the full (7 bit) set of ASCII printing characters and the
new line character within keyword values. Certain characters must be escaped if they are to appear in a
keyword value:

• Character Escape sequence

newline ^n

space ^_

semicolon ^;

uparrow ^^

The two character escape sequences may be split by a new line character as they are written to file. They must
not cause any output lines to be longer than 80 characters.

Only those characters which belong to the ASCII (7 bit) printing sequence, plus the new line character, can be
included as part of a keyword value.

Text
Parasolid has no knowledge of how files are stored. On writing, Parasolid produces an internal bytestream
which is then split into roughly 80-character records separated by newline characters ('\n'). The newlines are
not significant.

As operating systems vary in their treatment of text data, on reading all newline and carriage return characters
('\r') are ignored, along with any trailing spaces added to the records. However, leading spaces are not ignored,
and the file must not contain adjacent space characters not at the end of a record.

Text XT files written by version 12.1 and later versions use escape sequences to output the following
characters, except for '\n' at the end of each line:

null "\0"

carriage return "\n"

line feed "\r"

backslash "\\"

These characters are not escaped by versions 12.0 and earlier.

The flag sequence is the character ‘T’. This is followed by the length of the modeler version, separated by a
space from the characters of the modeler version, similarly the schema version, finally the userfield size. For
example:

T

51 : TRANSMIT FILE created by modeller version 1200000

17 SCH_1200000_12006

0

NB: because of ignored layout, what Parasolid would read is

T51 : TRANSMIT FILE created by modeller version 120000017 SCH_1200000_120060

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 253

For partition files, the modeller version string would be given as

63 : TRANSMIT FILE (partition) created by modeller version 1200000

All numbers are followed by a single space to separate them from the next entry. Fields of type c and l are not
followed by a space.

Logical values (0,1) are represented as characters F,T.

There are two special numeric values (-32764 for integral values, -3.14158e13 for floating point) which are
used inside Parasolid to mark an ‘unset’ or ‘null’ value, and they are represented in a text transmit file as the
question mark ‘?’. If a vector has one component null, then all three components must be null, and it will be
output in a text file as a single ‘?’.

Binary
There are three types of binary file: `bare' binary, typed binary, and neutral binary. They are distinguished by a
short flag sequence at the beginning of the file. In all cases, the flag sequence is followed by the length of the
modeller version as a 2-byte integer, the characters of the modeller version, the length of the schema version
as a 4-byte integer, the characters of the schema version, and finally the userfield size as a 4-byte integer.

As with text files, there are two special numeric values (-32764 for integral values, -3.14158e13 for floating
point) which are used inside Parasolid to mark an ‘unset’ or ‘null’ value, and they are represented in a text
transmit file as the question mark ‘?’.

bare binary
In bare binary, data is represented in the natural format of the machine which wrote the data. The flag
sequence is the single character 'B' (for ASCII machines, '\102'). The data must be read on a machine
with the same natural format with respect to character set, endianness and floating point format.

typed binary
In typed binary, data is represented in the natural format of the machine that wrote the data. The flag
sequence is the 4-byte sequence “PS” followed by a zero byte and a one byte, i.e., ‘P’ ‘S’ ‘\0’ ‘\1’,
followed by a 3-byte sequence of machine description.

 Byte order Double
representation

Character
representation

0 Big-endian IEEE ASCII

1 Little-endian VAX D-float EBCDIC

neutral binary
In neutral binary, data is represented in big-endian format, with IEEE floating point numbers and
ASCII characters. The flag sequence is the 4-byte sequence "PS" followed by two zero bytes, i.e., 'P'
'S' '\0' '\0'. At Parasolid V9, the initial letters are ASCII, thus '\120' '\123'.

The nodetype at the start of a node is a 2-byte integer, the variable length which may follow it is a 4-byte
integer.

Logical values (0,1) are represented as themselves in 1 byte.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

254 © ISO 2011 – All rights reserved

Small pointer indices (in the range 0-32766) are implemented as a 2-byte integer, larger indices are
represented as a pair, thus:

 if (index < 32767)

{ // case: small index

op_short(index + 1); // offset so is > 0

}

 else

{ // case: big index

op_short(-(index % 32767 + 1)); // remainder: add 1 so > 0

op_short(index / 32767); // nonzero quotient

}

where op_short outputs a 2-byte integer.

The inverse is performed on reading:

 short q = 0, r;

 ip_short(&r);

 if (r < 0)

{

ip_short(&q);

r = -r;

}

 index = q * 32767 + r - 1;

where ip_short reads a 2-byte integer.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 255

Model Structure

Topology
This section describes the Parasolid Topology model, it gives an overview of how the nodes in an XT file are
joined together. In this section the word ‘entity’ means a node which is visible to a PK application – a table of
which nodes are visible at the PK interface appears in the section `Node Types'.

The topological representation allows for:

• Non-manifold solids

• Solids with internal partitions

• Bodies of mixed dimension (i.e. with wire, sheet, and solid `bits')

• Pure wire-frame bodies

• Disconnected bodies

Each entity is described, and its properties and links to other entities given.

General points
In this section a set is called finite if it can be enclosed in a ball of finite radius - not that it has a finite number
of members.

A set of points in 3-dimensional space is called open if it does not contain its boundary.

Back-pointers, next and previous pointers in a chain, and derived pointers are not described explicitly here.
For information on this see the following description of the schema-level model.

Entity definitions

Assembly
An assembly is a collection of instances of bodies or assemblies. It may also contain construction geometry.
An assembly has the following fields:

• A set of instances.

• A set of geometry (surfaces, curves and points).

Instance
An instance is a reference to a body or an assembly, with an optional transform:

• Body or assembly.

• Transform. If null, the identity transform is assumed.

Body
A body is a collection of faces, edges and vertices, together with the 3-dimensional connected regions into
which space is divided by these entities. Each region is either solid or void (indicating whether it represents
material or not).

The point-set represented by the body is the disjoint union of the point-sets represented by its solid regions,
faces, edges, and vertices. This point-set need not be connected, but it must be finite.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

256 © ISO 2011 – All rights reserved

A body has the following fields:

• A set of regions.

A body has one or more regions. These, together with their boundaries, make up the whole of 3-space, and
do not overlap, except at their boundaries. One region in the body is distinguished as the exterior region,
which must be infinite; all other regions in the body must be finite.

• A set of geometry (surfaces, curve and/or points).

• A body-type. This may be wire, sheet, solid or general.

Region
A region is an open connected subset of 3-dimensional space whose boundary is a collection of vertices,
edges, and oriented faces.

Regions are either solid or void, and they may be non-manifold. A solid region contributes to the point-set of
its owning body; a void region does not (although its boundary will).

Two regions may share a face, one on each side.

A region may be infinite, but a body must have exactly one infinite region. The infinite region of a body must
be void.

A region has the following fields:

• A logical indicating whether the region is solid.

• A set of shells. The positive shell of a region, if it has one, is not distinguished.

The shells of a region do not overlap or share faces, edges or vertices.

A region may have no shells, in which case it represents all space (and will be the only region in its body,
which will have no faces, edges or vertices).

Shell
A shell is a connected component of the boundary of a region. As such it will be defined by a collection of
faces, each used by the shell on one `side', or on both sides; and some edges and vertices.

A shell has the following fields:

• A set of (face, logical) pairs.

Each pair represents one side of a face (where true indicates the front of the face, i.e. the side towards
which the face normal points), and means that the region to which the shell belongs lies on that side of the
face. The same face may appear twice in the shell (once with each orientation), in which case the face is a
2-dimensional cut subtracted from the region which owns the shell.

• A set of wireframe edges.

Edges are called wireframe if they do not bound any faces, and so represent 1-dimensional cuts in the
shell's region. These edges are not shared by other shells.

• A vertex.

This is only non-null if the shell is an acorn shell, i.e. it represents a 0-dimensional hole in its region, and
has one vertex, no edges and no faces.

A shell must contain at least one vertex, edge, or face.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 257

Face
A face is an open finite connected subset of a surface, whose boundary is a collection of edges and vertices. It
is the 2-dimensional analogy of a region.

A face has the following fields:

• A set of loops. A face may have zero loops (e.g. a full spherical face), or any number.

• Surface. This may be null, and may be used by other faces.

• Sense. This logical indicates whether the normal to the face is aligned with or opposed to that of the
surface.

Loop
A loop is a connected component of the boundary of a face. It is the 2-dimensional analogy of a shell. As such
it will be defined by a collection of fins and a collection of vertices.

A loop has the following fields:

• An ordered ring of fins.

Each fin represents the oriented use of an edge by a loop. The sense of the fin indicates whether the loop
direction and the edge direction agree or disagree. A loop may not contain the same edge more than once
in each direction.

The ordering of the fins represents the way in which their owning edges are connected to each other via
common vertices in the loop (i.e. nose to tail, taking the sense of each fin into account).

The loop direction is such that the face is locally on the left of the loop, as seen from above the face and
looking in the direction of the loop.

• A vertex.

This is only non-null if the loop is an isolated loop, i.e. has no fins and represents a 0-dimensional hole in
the face.

Consequently, a loop must consist either of:

• A single fin whose owning ring edge has no vertices, or

• At least one fin and at least one vertex, or

• A single vertex.

Fin
A fin represents the oriented use of an edge by a loop.

A fin has the following fields:

• A logical sense indicating whether the fin's orientation (and thus the orientation of its owning loop) is the
same as that of its owning edge, or different.

• A curve. This is only non-null if the fin’s edge is tolerant, in which case every fin of that edge will
reference a trimmed SP-curve. The underlying surface of the SP-curve must be the same as that of the
corresponding face. The curve must not deviate by more than the edge tolerance from curves on other fins
of the edge, and its ends must be within vertex tolerance of the corresponding vertices.

Note that fins are referred to as ‘halfedges’ in the Schema file.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

258 © ISO 2011 – All rights reserved

Edge
An edge is an open finite connected subset of a curve; its boundary is a collection of zero, one or two vertices.
It is the 1-dimensional analogy of a region.

An edge has the following fields:

• Start vertex.

• End vertex. If one vertex is null, then so is the other; the edge will then be called a ring edge.

• An ordered ring of distinct fins.

The ordering of the fins represents the spatial ordering of their owning faces about the edge (with a right-
hand screw rule, i.e. looking in the direction of the edge the fin ordering is clockwise). The edge may have
zero or any number of fins; if it has none, it is called a wireframe edge.

• A curve. This will be null if the edge has a tolerance. Otherwise, the vertices must lie within vertex
tolerance of this curve, and if it is a Trimmed Curve, they must lie within vertex tolerance of the
corresponding ends of the curve. The curve must also lie in the surfaces of the faces of the edge, to within
modeller resolution.

• Sense. This logical indicates whether the direction of the edge (start to end) is the same as that of the
curve.

• A tolerance. If this is null-double, the edge is accurate and is regarded as having a tolerance of half the
modeller linear resolution, otherwise the edge is called tolerant.

Vertex
A vertex represents a point in space. It is the 0-dimensional analogy of a region.

A vertex has the following fields:

• A geometric point.

• A tolerance. If this is null-double, the vertex is accurate and is regarded as having a tolerance of half the
modeller linear resolution.

Attributes
An attribute is an entity which contains data, and which can be attached to any other entity except attributes,
fins, lists, transforms or attribute definitions. An attribute has the following fields:

• Definition. An attribute definition is an entity which defines the number and type of the data fields in a
specific type of attribute, which entities may have such an attribute attached, and what happens to the
attribute when its owning entity is changed. An XT document must not contain duplicate attribute
definitions. Each attribute of a given type should reference the same instance of the attribute definition for
that type. It is incorrect, for example, to create a copy of an attribute definition for each instance of the
attribute of that type. Only those attribute definitions referenced by attributes in the part occur in the
transmit file.

• Owner.

• Fields. These are data fields consisting of one or more integers, doubles, vectors etc.

There are a number of system attribute definitions which Parasolid creates on startup. These are documented
in the section `System Attribute Definitions'. Parasolid applications can create user attribute definitions during
a Parasolid session. These are transmitted along with any attributes that use them.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 259

Groups
A group is a collection of entities in the same part. Groups in assemblies may contain instances, surfaces,
curves and points. Groups in bodies may contain regions, faces, edges, vertices, surfaces, curves and points.
Groups have

• Owning part.

• A set of member entities.

• Type. The type of the group specifies the allowed type of its members, e.g. a ‘face’ group in a body may
only contain faces, whereas a ‘mixed’ group may have any valid members.

Node-ids
All entities in a part, other than fins, have a non-zero integer node-id which is unique within a part. This is
intended to enable the entity to be identified within a transmit file.

Entity matrix
Thus the relations between entities can be represented in matrix form as follows. The numbers represent the
number of distinct entities connected (either directly or indirectly) to the given one.

 Body Region Shell Face Loop Fin Edge Vertex

Body - >0 any any any any any any

Region 1 - any any any any any any

Shell 1 1 - any any any any any

Face 1 1-2 1-2 - any any any any

Loop 1 1-2 1-2 1 - any any any

Fin 1 1-2 1-2 1 1 - 1 0-2

Edge 1 any any any any any - 0-2

Vertex 1 any any any any any any -

Representation of manifold bodies

Body types
Parasolid bodies have a field body_type which takes values from an enumeration indicating whether the body
is

• solid, representing a manifold 3-dimensional volume, possibly with internal voids. It need not be
connected.

• sheet, representing a 2-dimensional subset of 3-space which is either manifold or manifold with boundary
(certain cases are not strictly manifold – see below for details). It need not be connected.

• wire, representing a 1-dimensional subset of 3-space which is either manifold or manifold with boundary,
and which need not be connected. An acorn body, which represents a single 0-dimensional point in space,
also has body-type wire.

• general - none of the above.

A general body is not necessarily non-manifold, but at the same time it is not constrained to be manifold,
connected, or of a particular dimensionality (indeed, it may be of mixed dimensionality).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

260 © ISO 2011 – All rights reserved

Restrictions on entity relationships for manifold body types

Solid, sheet, and wire bodies are best regarded as special cases of the topological model; for convenience we
call them the manifold body types (although as stated above, a general body may also be manifold).

In particular, bodies of these manifold types must obey the following constraints:

• An acorn body must consist of a single void region with a single shell consisting of a single vertex.

• A wire body must consist of a single void region, with one or more shells, consisting of one or more
wireframe edges and zero or more vertices (and no faces). Every vertex in the body must be used by
exactly one or two of the edges (so, in particular, there are no acorn vertices).

So each connected component will be either: closed, where every vertex has exactly two edges; or open,
where all but two vertices have exactly two edges each, and the

A wire is called open if all its components are open, and closed if all its components are closed.

• Solid and sheet bodies must each contain at least one face; they may not contain any wireframe edges or
acorn vertices.

• A solid body must consist of at least two regions; at least one of its regions must be solid. Every face in a
solid body must have a solid region on its negative side and a void region on its positive side (in other
words, every face forms part of the boundary of the solid, and the face normals always point away from
the solid).

• Every edge in a solid body must have exactly two fins, which will have opposite senses. Every vertex in a
solid body must either belong to a single isolated loop, or belong to one or more edges; in the latter case,
the faces which use those edges must form a single edgewise-connected set (when considering only
connections via the edges which meet at the vertex).

These constraints ensure that the solid is manifold.

• All the regions of a sheet body must be void. It is known as an open sheet if it has one region, and a closed
sheet if it has no boundary.

• Every edge in a sheet body must have exactly one or two fins; if it has two, these must have opposite
senses. In a closed sheet body, all the edges will have exactly two fins. Every vertex in a sheet body must
either belong to a single isolated loop, or belong to one or more edges; in the latter case, the faces which
use those edges must either form a single edgewise-connected set where all the edges involved have
exactly two fins, or any number of edgewise-connected sets, each of which must involve exactly two
edges with one fin each (again, considering only connections via the edges which meet at the vertex).

Note that, although the constraints on edges and vertices in a sheet body are very similar to those which
apply to a solid, in this case they do not guarantee that the body will be manifold; indeed, the rather
complicated rules about vertices in an open sheet body specifically allow bodies which are non-manifold
(such as a body consisting of two square faces which share a single corner vertex, say).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 261

Schema Definition

Underlying types

union CURVE_OWNER_u

{

struct EDGE_s *edge;

struct FIN_s *fin;

struct BODY_s *body;

struct ASSEMBLY_s *assembly;

struct WORLD_s *world;

};

union SURFACE_OWNER_u

{

struct FACE_s *face;

struct BODY_s *body;

struct ASSEMBLY_s *assembly;

struct WORLD_s *world;

};

union ATTRIB_GROUP_u

{

struct ATTRIBUTE_s *attribute;

struct GROUP_s *group;

struct
MEMBER_OF_GROUP_s

*member_of_group;

};

typedef union ATTRIB_GROUP_u ATTRIB_GROUP;

Geometry

union CURVE_u

{

struct LINE_s *line;

struct CIRCLE_s *circle;

struct ELLIPSE_s *ellipse;

struct INTERSECTION_s *intersection;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

262 © ISO 2011 – All rights reserved

struct TRIMMED_CURVE_s *trimmed_curve;

struct PE_CURVE_s *pe_curve;

struct B_CURVE_s *b_curve;

struct SP_CURVE_s *sp_curve;

};

typedef union CURVE_u CURVE;

union SURFACE_u

{

struct PLANE_s *plane;

struct CYLINDER_s *cylinder;

struct CONE_s *cone;

struct SPHERE_s *sphere;

struct TORUS_s *torus;

struct BLENDED_EDGE_s *blended_edge;

struct BLEND_BOUND_s *blend_bound;

struct OFFSET_SURF_s *offset_surf;

struct SWEPT_SURF_s *swept_surf;

struct SPUN_SURF_s *spun_surf;

struct PE_SURF_s *pe_surf;

struct B_SURFACE_s *b_surface;

};

typedef union SURFACE_u SURFACE;

union GEOMETRY_u

{

union SURFACE_u surface;

union CURVE_u curve;

struct POINT_s *point;

struct TRANSFORM_s *transform;

};

typedef union GEOMETRY_u GEOMETRY;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 263

Curves
In the following field tables, ‘pointer0’ means a reference to another node which may be null. ‘pointer’ means
a non-null reference.

All curve nodes share the following common fields:

Field name Data type Description

node_id int Integer value unique to curve in part

attributes_groups pointer0 Attributes and groups associated with curve

owner pointer0 topological owner

next pointer0 next curve in geometry chain

previous pointer0 previous curve in geometry chain

geometric_owner pointer0 geometric owner node

sense char sense of curve: ‘+’ or ‘-’ (see end of Geometry
section)

struct ANY_CURVE_s // Any Curve

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union CURVE_OWNER_u owner; // $p

union CURVE_u next; // $p

union CURVE_u previous; // $p

struct
GEOMETRIC_OWNER_s

*geometric_owner; // $p

char sense; // $c

};

typedef struct ANY_CURVE_s *ANY_CURVE;

• LINE
A straight line has a parametric representation of the form:

R(t) = P + t D

where

• P is a point on the line

• D is its direction

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

264 © ISO 2011 – All rights reserved

Field name Data type Description

pvec vector point on the line

direction vector direction of the line (a unit vector)

struct LINE_s == ANY_CURVE_s // Straight line

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union CURVE_OWNER_u owner; // $p

union CURVE_u next; // $p

union CURVE_u previous; // $p

struct
GEOMETRIC_OWNER_s

*geometric_ owner; // $p

char sense; // $c

vector pvec; // $v

vector direction; // $v

};

typedef struct LINE_s *LINE;

CIRCLE
A circle has a parametric representation of the form

R(t) = C+ r X cos(t) + r Y sin(t)

Where

• C is the centre of the circle

• r is the radius of the circle

• X and Y are the axes in the plane of the circle.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 265

Field
name

Data type Description

centre vector Centre of circle

normal vector Normal to the plane containing the circle (a unit vector)

x_axis vector X axis in the plane of the circle (a unit vector)

radius double Radius of circle

The Y axis in the definition above is the vector cross product of the normal and x_axis.

struct CIRCLE_s == ANY_CURVE_s // Circle

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union CURVE_OWNER_u owner; // $p

union CURVE_u next; // $p

union CURVE_u previous; // $p

struct
GEOMETRIC_OWNER_s

*geometric_owner; // $p

char sense; // $c

vector centre; // $v

vector normal; // $v

vector x_axis; // $v

double radius; // $f

};

typedef struct CIRCLE_s *CIRCLE;

• ELLIPSE
An ellipse has a parametric representation of the form

R(t) = C+ a X cos(t) + b Y sin(t)

where

• C is the centre of the circle

• X is the major axis

• r is the major radius

• Y and b are the minor axis and minor radius respectively.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

266 © ISO 2011 – All rights reserved

Field name Data type Description

centre Vector Centre of ellipse

normal Vector Normal to the plane containing the ellipse
(a unit vector)

x_axis Vector major axis in the plane of the ellipse (a unit vector)

major_radius Double major radius

minor_radius Double minor radius

The minor axis (Y) in the definition above is the vector cross product of the normal and x_axis.

struct ELLIPSE_s == ANY_CURVE_s // Ellipse

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union CURVE_OWNER_u owner; // $p

union CURVE_u next; // $p

union CURVE_u previous; // $p

struct GEOMETRIC_OWNER_s *geometric_owner; // $p

vector centre; // $v

char sense; // $c

vector normal; // $v

vector x_axis; // $v

double major_radius; // $f

double minor_radius; // $f

 };

typedef struct ELLIPSE_s *ELLIPSE;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 267

B_CURVE (B-spline curve)
Parasolid supports B spline curves in full NURBS format. The mathematical description of these curves is:

• Non Uniform Rational B-splines as (NURBS)

• and the more simple Non Uniform B-spline

•
• Where:

n = number of vertices (n_vertices in the PK standard form)

V0 …Vn-1 are the B-spline vertices

w0 …wn-1 are the weights

bi (t),I = 0…n-1 are the B-spline basis functions

KNOT VECTORS
The parameter t above is global. The user supplies an ordered set of values of t at specific points. The points
are called knots and the set of values of t is called the knot vector. Each successive value in the set must be
greater than or equal to its predecessor. Where two or more such values are the same we say that the knots are
coincident, or that the knot has multiplicity greater than 1. In this case it is best to think of the knot set as
containing a null or zero length span. The principal use of coincident knots is to allow the curve to have less
continuity at that point than is formally required for a spline. A curve with a knot of multiplicity equal to its
degree can have a discontinuity of first derivative and hence of tangent direction. This is the highest permitted
multiplicity except at the first or last knot where it can go as high as (degree+1) .

In order to avoid problems associated, for example with rounding errors in the knot set, Parasolid stores an
array of distinct values and an array of integer multiplicities. This is reflected in the standard form used by the
PK for input and output of B-curve data.

Most algorithms in the literature, and the following discussion refer to the expanded knot set in which a knot
of multiplicity n appears explicitly n times.

• THE NUMBER OF KNOTS AND VERTICES
The knot set determines a set of basis functions which are bell shaped, and non zero over a span of (degree+1)
intervals. One basis function starts at each knot, and each one finishes (degree +1) knots higher. The control
vectors are the coefficients applied to these basis functions in a linear sum to obtain positions on the curve.
Thus it can be seen that we require the number of knots n_knots = n_vertices + degree + 1

THE VALID RANGE OF THE B-CURVE
So if the knot set is numbered {t0 to tn_knots-1 } it can be seen then that it is only after tdegree that sufficient
(degree + 1) basis functions are present for the curve to be fully defined, and that the B-curve ceases to be
fully defined after tn_knots - 1 - degree.

The first degree knots and the last degree knots are known as the imaginary knots because their parameter
values are outside the defined range of the B-curve.

PROOF/ÉPREUVE

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

268 © ISO 2011 – All rights reserved

PERIODIC B-CURVES
When the end of a B-curve meets its start sufficiently smoothly Parasolid allows it to be defined to have
periodic parametrisation. That is to say that if the valid range were from tdegree to tn_knots - 1 - degree then the
difference between these values is called the period and the curve can continue to be evaluated with the same
point reoccurring every period.

The minimal smoothness requirement for periodic curves in Parasolid is tangent continuity, but we strongly
recommend C degree-1 , or continuity in the (degree-1)th derivative. This in turn is best achieved by repeating the
first degree vertices at the end, and by matching knot intervals so that counting from the start of the defined
range, tdegree, the first degree intervals between knots match the last degree intervals, and similarly matching
the last degree knot intervals before the end of the defined range to the first degree intervals.

CLOSED B-CURVES
A periodic B-curve must also be closed, but is permitted to have a closed Bcurve that is not periodic.

In this case the rules for continuity are relaxed so that only C0 or positional continuity is required between the
start and end. Such closed non-periodic curves are not able to be attached to topology.

RATIONAL B-CURVE
In the rational form of the curve, each vertex is associated with a weight, which increases or decreases the
effect of the vertex without changing the curve hull. To ensure that the convex hull property is retained, the
curve equation is divided by a denominator which makes the coefficients of the vertices sum to one.

Where w0… wn-1 are weights.

Each weight may take any positive value, and the larger the value, the greater the effect of the associated
vertex. However, it is the relative sizes of the weights which is important, as may be seen from the fact that in
the equation given above, all the weights may be multiplied by a constant without changing the equation.

In Parasolid the weights are stored with the vertices by treating these as having an extra dimension. In the
usual case of a curve in 3-d cartesian space this means that vertex_dim is 4, the x, y, z values are multiplied
through by the corresponding weight and the 4th value is the weight itself.

B-SURFACE DEFINITION

The B-surface definition is best thought of as an extension of the B-curve definition into two parameters,
usually called u and v. Two knot sets are required and the number of control vertices is the product of the
number that would be required for a curve using each knot vector. The rules for periodicity and closure given
above for curves are extended to surfaces in an obvious way.

For attachment to topology a B-surface is required to have G1 continuity. That is to say that the surface normal
direction must be continuous.

PROOF/ÉPREUVE

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

© ISO 2011 – All rights reserved 269

Parasolid does not support modelling with surfaces that are self-intersecting or contain cusps. Although they
can be created they are not permitted to be attached to topology.

Field name Data type Description

nurbs Pointer Geometric definition

data Pointer0 Auxiliary information

struct B_CURVE_s == ANY_CURVE_s // B curve

{

int node_id; // $d

union ATTRIB_GROUP_u attributes_groups; // $p

union CURVE_OWNER_u owner; // $p

union CURVE_u next; // $p

union CURVE_u previous; // $p

struct GEOMETRIC_OWNER_s *geometric_owner; // $p

char sense; // $c

struct NURBS_CURVE_s *nurbs; // $p

struct CURVE_DATA_s *data; // $p

};

typedef struct B_CURVE_s *B_CURVE;

The data stored in an XT file for a NURBS_CURVE is

Field name Data type Description

degree Short degree of the curve

n_vertices Int number of control vertices (‘poles’)

vertex_dim Short dimension of control vertices

n_knots Int number of distinct knots

knot_type Byte form of knot vector

periodic Logical true if curve is periodic

closed Logical true if curve is closed

rational Logical true if curve is rational

curve_form Byte shape of curve, if special

bspline_vertices Pointer control vertices node

knot_mult Pointer knot multiplicities node

knots Pointer knots node

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/PAS 14

30
6:2

01
1

https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

	1 Scope
	2 References and Additional Information
	3 Definitions
	3.1 Terms
	3.2 Coordinate Systems

	4 Acronyms and Abbreviations
	5 Notational Conventions
	5.1 Diagrams and Field Descriptions
	5.2 Data Types

	6 File Format
	6.1 File Structure
	6.1.1 File Header
	6.1.2 TOC Segment
	6.1.2.1 TOC Entry

	6.1.3 Data Segment
	6.1.3.1 Segment Header
	6.1.3.2 Data
	6.1.3.2.1 Element Header
	6.1.3.2.2 Element Header ZLIB
	6.1.3.2.3 Object Data

	6.2 Data Segments
	6.2.1 LSG Segment
	6.2.1.1 Graph Elements
	6.2.1.1.1 Node Elements
	6.2.1.1.1.1 Base Node Element
	6.2.1.1.1.1.1 Base Node Data

	6.2.1.1.1.2 Partition Node Element
	6.2.1.1.1.2.1 Vertex Count Range
	6.2.1.1.1.2.2 Node Count Range
	6.2.1.1.1.2.3 Polygon Count Range

	6.2.1.1.1.3 Group Node Element
	6.2.1.1.1.3.1 Group Node Data

	6.2.1.1.1.4 Instance Node Element
	6.2.1.1.1.5 Part Node Element
	6.2.1.1.1.6 Meta Data Node Element
	6.2.1.1.1.6.1 Meta Data Node Data

	6.2.1.1.1.7 LOD Node Element
	6.2.1.1.1.7.1 LOD Node Data

	6.2.1.1.1.8 Range LOD Node Element
	6.2.1.1.1.9 Switch Node Element
	6.2.1.1.1.10 Shape Node Elements
	6.2.1.1.1.10.1 Base Shape Node Element
	6.2.1.1.1.10.1.1 Base Shape Data
	6.2.1.1.1.10.1.1.1 Vertex Count Range
	6.2.1.1.1.10.1.1.2 Node Count Range
	6.2.1.1.1.10.1.1.3 Polygon Count Range

	6.2.1.1.1.10.2 Vertex Shape Node Element
	6.2.1.1.1.10.2.1 Vertex Shape Data
	6.2.1.1.1.10.2.1.1 Quantization Parameters

	6.2.1.1.1.10.3 Tri-Strip Set Shape Node Element
	6.2.1.1.1.10.4 Polyline Set Shape Node Element
	6.2.1.1.1.10.5 Point Set Shape Node Element
	6.2.1.1.1.10.6 Polygon Set Shape Node Element
	6.2.1.1.1.10.7 NULL Shape Node Element
	6.2.1.1.1.10.8 Primitive Set Shape Node Element
	6.2.1.1.1.10.8.1 Primitive Set Quantization Parameters

	6.2.1.1.1.10.9 Wire Harness Set Shape Node Element

	6.2.1.1.2 Attribute Elements
	6.2.1.1.2.1 Base Attribute Element
	6.2.1.1.2.1.1 Base Attribute Data

	6.2.1.1.2.2 Material Attribute Element
	6.2.1.1.2.3 Texture Image Attribute Element
	6.2.1.1.2.3.1 Texture Vers-1 Data
	6.2.1.1.2.3.1.1 Vers-1 Image Format Description
	6.2.1.1.2.3.1.2 Vers-1 Texture Environment

	6.2.1.1.2.3.2 Texture Vers-2 Data
	6.2.1.1.2.3.2.1 Vers-2 Texture Environment
	6.2.1.1.2.3.2.2 Texture Coord Generation Parameters
	6.2.1.1.2.3.2.3 Inline Texture Image Data
	6.2.1.1.2.3.2.3.1 Vers-2 Image Format Description

	6.2.1.1.2.4 Draw Style Attribute Element
	6.2.1.1.2.5 Light Set Attribute Element
	6.2.1.1.2.6 Infinite Light Attribute Element
	6.2.1.1.2.6.1 Base Light Data

	6.2.1.1.2.7 Point Light Attribute Element
	6.2.1.1.2.7.1 Attenuation Coefficients

	6.2.1.1.2.8 Linestyle Attribute Element
	6.2.1.1.2.9 Pointstyle Attribute Element
	6.2.1.1.2.10 Geometric Transform Attribute Element
	6.2.1.1.2.11 Shader Effects Attribute Element
	6.2.1.1.2.12 Vertex Shader Attribute Element
	6.2.1.1.2.12.1 Base Shader Data
	6.2.1.1.2.12.1.1 Shader Parameter

	6.2.1.1.2.13 Fragment Shader Attribute Element

	6.2.1.2 Property Atom Elements
	6.2.1.2.1 Base Property Atom Element
	6.2.1.2.1.1 Base Property Atom Data

	6.2.1.2.2 String Property Atom Element
	6.2.1.2.3 Integer Property Atom Element
	6.2.1.2.4 Floating Point Property Atom Element
	6.2.1.2.5 JT Object Reference Property Atom Element
	6.2.1.2.6 Date Property Atom Element
	6.2.1.2.7 Late Loaded Property Atom Element

	6.2.1.3 Property Table
	6.2.1.3.1 Node Property Table

	6.2.2 Shape LOD Segment
	6.2.2.1 Shape LOD Element
	6.2.2.1.1 Vertex Shape LOD Element
	6.2.2.1.1.1 Vertex Shape LOD Data

	6.2.2.1.2 Tri-Strip Set Shape LOD Element
	6.2.2.1.3 Polyline Set Shape LOD Element
	6.2.2.1.4 Point Set Shape LOD Element
	6.2.2.1.5 Polygon Set Shape LOD Element
	6.2.2.1.6 Null Shape LOD Element

	6.2.2.2 Primitive Set Shape Element
	6.2.2.2.1 Lossless Compressed Primitive Set Data
	6.2.2.2.2 Lossy Quantized Primitive Set Data
	6.2.2.2.2.1 Compressed params1
	6.2.2.2.2.2 Compressed params3
	6.2.2.2.2.3 Compressed params2
	6.2.2.2.2.4 Compressed Colors

	6.2.2.3 Wire Harness Set Shape Element
	6.2.2.3.1 Wire Harness Set
	6.2.2.3.1.1 Entity Counts
	6.2.2.3.1.2 Topological Entities
	6.2.2.3.1.2.1 Harness
	6.2.2.3.1.2.2 Bundle
	6.2.2.3.1.2.3 Wire
	6.2.2.3.1.2.4 Wire Segment
	6.2.2.3.1.2.5 Branch Node

	6.2.2.3.1.3 Geometric Entities
	6.2.2.3.1.3.1 Bundle Spine Curve
	6.2.2.3.1.3.1.1 NURBS XYZ Curve

	6.2.2.3.1.4 Entity Tag Counters

	6.2.3 JT B-Rep Segment
	6.2.3.1 JT B-Rep Element
	6.2.3.1.1 Topological Entity Counts
	6.2.3.1.2 Geometric Entity Counts
	6.2.3.1.3 Topology Data
	6.2.3.1.3.1 Regions Topology Data
	6.2.3.1.3.2 Shells Topology Data
	6.2.3.1.3.3 Faces Topology Data
	6.2.3.1.3.4 Loops Topology Data
	6.2.3.1.3.5 CoEdges Topology Data
	6.2.3.1.3.6 Edges Topology Data
	6.2.3.1.3.7 Vertices Topology Data

	6.2.3.1.4 Geometric Data
	6.2.3.1.4.1 Surfaces Geometric Data
	6.2.3.1.4.1.1 Non-Trivial Knot Vector NURBS Surface Indices
	6.2.3.1.4.1.2 NURBS Surface Degree
	6.2.3.1.4.1.3 NURBS Surface Control Point Counts
	6.2.3.1.4.1.4 NURBS Surface Control Point Weights
	6.2.3.1.4.1.5 NURBS Surface Control Points
	6.2.3.1.4.1.6 NURBS Surface Knot Vectors

	6.2.3.1.4.2 PCS Curves Geometric Data
	6.2.3.1.4.2.1 Trivial PCS Curves

	6.2.3.1.4.3 MCS Curves Geometric Data
	6.2.3.1.4.4 Point Geometric Data

	6.2.3.1.5 Topological Entity Tag Counters
	6.2.3.1.6 B-Rep CAD Tag Data

	6.2.4 XT B-Rep Segment
	6.2.4.1 XT B-Rep Element
	6.2.4.1.1 XT B-Rep Data

	6.2.5 Wireframe Segment
	6.2.5.1 Wireframe Rep Element
	6.2.5.1.1 Wireframe MCS Curves Geometric Data

	6.2.6 Meta Data Segment
	6.2.6.1 Property Proxy Meta Data Element
	6.2.6.1.1 Date Property Value

	6.2.6.2 PMI Manager Meta Data Element
	6.2.6.2.1 PMI Entities
	6.2.6.2.1.1 PMI Dimension Entities
	6.2.6.2.1.1.1 PMI 2D Data
	6.2.6.2.1.1.1.1 PMI Base Data
	6.2.6.2.1.1.1.1.1 2D-Reference Frame

	6.2.6.2.1.1.1.2 2D Text Data
	6.2.6.2.1.1.1.2.1 Text Box
	6.2.6.2.1.1.1.2.2 Text Polyline Data

	6.2.6.2.1.1.1.3 Non-Text Polyline Data

	6.2.6.2.1.2 PMI Note Entities
	6.2.6.2.1.3 PMI Datum Feature Symbol Entities
	6.2.6.2.1.4 PMI Datum Target Entities
	6.2.6.2.1.5 PMI Feature Control Frame Entities
	6.2.6.2.1.6 PMI Line Weld Entities
	6.2.6.2.1.7 PMI Spot Weld Entities
	6.2.6.2.1.7.1 PMI 3D Data

	6.2.6.2.1.8 PMI Surface Finish Entities
	6.2.6.2.1.9 PMI Measurement Point Entities
	6.2.6.2.1.10 PMI Locator Entities
	6.2.6.2.1.11 PMI Reference Geometry Entities
	6.2.6.2.1.12 PMI Design Group Entities
	6.2.6.2.1.12.1 Design Group Attribute

	6.2.6.2.1.13 PMI Coordinate System Entities

	6.2.6.2.2 PMI Associations
	6.2.6.2.3 PMI User Attributes
	6.2.6.2.4 PMI String Table
	6.2.6.2.5 PMI Model Views
	6.2.6.2.6 Generic PMI Entities
	6.2.6.2.6.1 PMI Property
	6.2.6.2.6.1.1 PMI Property Atom

	6.2.6.2.7 PMI CAD Tag Data

	6.2.7 PMI Data Segment

	7 Data Compression and Encoding
	7.1 Common Compression Data Collection Formats
	7.1.1 Int32 Compressed Data Packet
	7.1.1.1 Int32 Probability Contexts
	7.1.1.1.1 Int32 Probability Context Table Entry

	7.1.2 Float64 Compressed Data Packet
	7.1.2.1 Float64 Probability Contexts
	7.1.2.1.1 Float64 Probability Context Table Entry

	7.1.3 Vertex Based Shape Compressed Rep Data
	7.1.3.1 Lossless Compressed Raw Vertex Data
	7.1.3.2 Lossy Quantized Raw Vertex Data
	7.1.3.2.1 Quantized Vertex Coord Array
	7.1.3.2.2 Quantized Vertex Normal Array
	7.1.3.2.3 Quantized Vertex Texture Coord Array
	7.1.3.2.4 Quantized Vertex Color Array

	7.1.4 Point Quantizer Data
	7.1.5 Texture Quantizer Data
	7.1.6 Color Quantizer Data
	7.1.7 Uniform Quantizer Data
	7.1.8 Compressed Entity List for Non-Trivial Knot Vector
	7.1.9 Compressed Control Point Weights Data
	7.1.10 Compressed Curve Data
	7.1.10.1 Non-Trivial Knot Vector NURBS Curve Indices
	7.1.10.2 NURBS Curve Control Point Weights
	7.1.10.3 NURBS Curve Control Points

	7.1.11 Compressed CAD Tag Data
	7.1.11.1 Compressed CAD Tag Type-2 Data

	7.2 Encoding Algorithms
	7.2.1 Uniform Data Quantization
	7.2.2 Bitlength CODEC
	7.2.3 Huffman CODEC
	7.2.3.1 Example

	7.2.4 Arithmetic CODEC
	7.2.4.1 Example

	7.2.5 Deering Normal CODEC

	7.3 ZLIB Compression

	8 Usage Guide
	8.1 Late-Loading Data
	8.2 Bit Fields
	8.3 Reserved Field
	8.4 Metadata Conventions
	8.4.1 CAD Properties
	8.4.1.1 Required Properties
	8.4.1.2 Optional Properties

	8.4.2 Tessellation Properties
	8.4.3 Miscellaneous Properties

	8.5 LSG Attribute Accumulation Semantics
	8.6 LSG Part Structure
	8.7 Range LOD Node Alternative Rep Selection

