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Foreword

ISO (the |

nternational Organization for Standardization) is a worldwide federation of national standards bodies

(ISO member bodies). The work of preparing International Standards is normally carried out through 1SO
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committees. Each member body interested in a subject for which a technical committee has been
P~ o maaittaa H H H a d
e

'nmental, in liaison with ISO, also take part in the work. ISO collaborates closely with™t
hal Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

hal Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

task of technical committees is to prepare International Standards. Draft International Standargls
by the technical committees are circulated to the member bodies for voting~Publication as an
hal Standard requires approval by at least 75 % of the member bodies casting ‘@ vote.

Circumstances, particularly when there is an urgent market requirement for such documents,|a
committee may decide to publish other types of document:

O Publicly Available Specification (ISO/PAS) represents an agréément between technical experts|in
O working group and is accepted for publication if it is approved’by more than 50 % of the members
parent committee casting a vote;

O Technical Specification (ISO/TS) represents an agreement between the members of a techniqal
hittee and is accepted for publication if it is approved\by 2/3 of the members of the committee casting

al

AS or ISO/TS is reviewed after three years®in order to decide whether it will be confirmed for|a
ee years, revised to become an International Standard, or withdrawn. If the ISO/PAS or ISO/TS|is
, it is reviewed again after a further thrge years, at which time it must either be transformed into §n
hal Standard or be withdrawn.

14306 was prepared by Teehhical Committee ISO/TC 184, Automation systems and integratid

>

14306 is based on Siemens JT File Format Reference Version 8.1 Rev-C.
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Introduction

This Publicly Available Specification was transposed by an ad hoc committee focused on

industrial

requirements for 3D product data visualization under the 1ISO/TC 184/SC 4 Harvesting Process, as defined in
SC4 Standing Document (SC4N1198), Procedures for Transposing Externally Developed Specifications into

COoO-DPalivarakbl
O DCTTVCTAOIC ST

The ad hoc committee was formed by members of ISO/TC 184/SC 4 in response to requests{rom
industrial community for information on visualization formats. The group assessed several 3D vis
formats including COLLADA, JT, U3D and X3D against a list of 36 requirements. The final-results

thiat these candidate formats are complementary to the ISO 10303 “STEP” series of standards ¢
visualization data exchange. These formats are not intended for use for CAx data exchange or prg
exchange.

The JT file format presented in this Publicly Available Specification is intended to provide data th
uged for further engineering activities in a PLM domain. The other formats were found to suppo

cgmpliance with this document may involve the use of patent USA’20110199382.

IO takes no position concerning the evidence, validity and.scope of this patent right.

The holder of this patent right has assured ISO that<he is willing to negotiate licences under reaso
the holder of this patent right is registered with ISO. Information may be obtained from:

Siemens PLM Software Product Development
345 Woodcliff Drive

Fairport

NY 14450

USA

Attention is drawn to the pessibility that some of the elements of this document may be the subject
rights other than those._identified above. ISO shall not be held responsible for identifying any or all sy
rights.

he global
ualization
oncluded
bncerning
duct data

At can be
't product

documentation (U3D) and visualisation data exchange based on XML (COLLADA, X3D) in a similar glomain.

The International Organization for Standardization (ISO) draws‘attention to the fact that it is clamed that

nable and

ngn-discriminatory terms and conditions with applicants throughout the world. In this respect, the stgtement of

of patent
ch patent
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UBLICLY AVAILABLE SPECIFICATION ISO/PAS 14306:2011(E)

Industrial automation systems and integration — JT file format

S

pecification for 3D visualization

1] Scope

This Publicly Available Specification defines the syntax and semantics of the JT Version 8.1 file format:

The JT format is an industry focused, high-performance, lightweight, flexible file format for eapturing and r
3 Product Definition data that enables collaboration, validation and visualization throughout the extended
JT| format is the de-facto standard 3D Visualization format in the automotive industry, and’the single most do
vipualization format in Aerospace, Heavy Equipment and other mechanical CAD domains.

re
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A
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S(

dd

The JT format is both robust, and streamable, and contains best-in-class compression for compact an

bresentation. The JT format was designed to be easily integrated into enterprise translation solutions, p

single set of 3D digital assets that support a full range of downstream proceésses from lightweight web-based

I product digital mockups.

its core the JT format is a scene graph with CAD specific node.and attributes support. Facet information (tr,
bred with sophisticated geometry compression techniques. <\isual attributes such as lights, textures, ma
aders (Cg and OGLSL) are supported. Product and Manufaeturing Information (PMI), Precise Part definitio
d Metadata as well as a variety of representation configurations are supported by the format. The JT for
uctured to enable support for various delivery methods-including asynchronous streaming of content.

me of the highlights of the JT format include:

Built-in support for assemblies, sub-assemblies and part constructs

Flexible partitioning scheme, supporting single or multiple files

B-Rep, including integrated support for industry standard Parasolid® (XT) format
Product Manufacturing Information in support of paperless manufacturing initiatives
Precise and imprecise wireframe

Discrete purpose-built.Levels of Detail

Wire harness inforimation

Full array of.viSual attributes: Materials, Textures, Lights, Shaders

Hierarchical.Bounding Box and Bounding Spheres

Advaneed-data compression that allows producers of JT files to fine tune the trade off between compre
and fidelity of the data.

byond the data contents description of the JT Format, the overall physical structure/organization of the for

Triangle sets, Polygon sets, Point sets, Line sets and Implicit Primitive sets (cylinder, cone, sphere, etc..

bpurposing
enterprise.
minant 3D

i efficient
roducing a
viewing to

angles), is
terials and
ns (B-Rep)
mat is also

ssion ratio

mat is also

signed to support operations such as:

Offline optimizations of the data contents

File granularity and flexibility optimized to meet the needs of Enterprise Data Translation Solutions
Asynchronous streaming of content

Viewing optimizations such as view frustum and occlusion culling and fixed-framerate display modes.
Layers, and Layer Filters.

Along with the pure syntactical definition of the JT Format, there is also series of conventions which although not
required to have a reference compliant JT file, have become commonplace within JT format translators. These
conventions have been documented in the “Best Practices” section of this JT format reference.
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This JT format reference does not specifically address implementation of, nor define, a run-time architecture for viewing
and/or processing JT data. This is because although the JT format is closely aligned with a run-time data representation
for fast and efficient loading/unloading of data, no interaction behavior is defined within the format itself, either in the
form of specific viewer controls, viewport information, animation behavior or other event-based interactivity. This
exclusion of interaction behavior from the JT format makes the format more easily reusable for dissimilar application
interoperation and also facilitates incremental update, without losing downstream authored data, as the original CAD
asset revises.

2 References and Additional Information

(1]

(2]

(3]

[4]

(5]

[6]

[7]

(8]

(9]

[10]

[11]

[12]
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Collaboration across the extended enterprise through the adoption of the JT format, a technology thatmakeq it
bossible to view and share product information throughout the product lifecycle. Membership in the|JT Open
Program provides access to the JT Open Toolkit library, which among other things, provides read ‘and wrjte
pccess to JT data and enforces certain JT conventions to ensure data compatibility with_other JT-enabled
ppplications.

JT2Go download (http://www.jt2go.com) --- JT2Go is the no-charge 3D JT viewer from-Siemens. JT2Go piits
BD data at your fingertips by allowing anyone to download the no-charge viewer. JT2Go also allows anyone|to
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http://www.ugs.com/products/open/parasolid/pipeline.shtml) --- ThiS web page provides information on the

Parasolid precise boundary representation format (XT) and how thig XT format fits within the Siemens vision
bf seamless exchange of digital product models across enterprises, between different disciplines, using their
PLM applications of choice.

DpenGL Programming Guide : the official guide to learning OpenGL Version 2, Fifth Edition, by OpenGL
Architecture Review Board, Dave Shreiner, Masony;Woo, Jackie Neider, and Tom Davis (Addison-Weslpy
P005) --- This book gives in-depth explanation ef,the OpenGL Specification and will provide further insight
nto the significance of some of the data (e.g{_Materials, Textures) that can exist in a JT file. Information|in
this book may also serve as a guide for how/one could process the data contained in a JT file to produce/render
bn image on the screen.

Michael Deering, Geometry Compression, Computer Graphics, Proceedings SIGGRAPH ‘95, August 1995,
bp. 13-20.

Michael Deering, Craig-GotsSman, Stefan Gumhold, Jarek Rossignac, and Gabriel Taubin, 3D Geomelry
Compression, Course Netes for SIGGRAPH 2000, July 25, 2000.

DpenGL Shading Lhanguage Specification (http://www.opengl.org/documentation/glsl/) --- OpenGL Shadipg
|_anguage (GL'SL) as defined by the OpenGL Architectural Review Board, the governing body of OpenGL.

Cg Toolkit"Users Manual (http://developer.nvidia.com/object/cg_users manual.html) --- Explains everythipg
you negd-to learn and use the Cg language as well as the Cg runtime library.

Tha f‘g Tutorial-The Dafinitiva Guidae to Drngrnmmnhln Raal-Tima f‘rnphir\c Randima-Fernando-and-Markl J
+H +HHOHeH—HeeHHHY tHGe+0—+ FeRaBte—~eet-+Hh FPHES—aRGHRa+—=eHaR8e-ahRar4a J.

Kilgard, nVIDIA Corporation, Addison Wesley Publishing Company, April 2003

K. Weiler. Topological Structures for Geometric Modeling, PhD thesis, Rensselaer Polytechnic Institute, Troy,
NY, 1986.

C. M. Hoffmann. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann Publishers, Inc., San
Mateo, California, 1989.

Planetmath.org - Huffman Coding (http://planetmath.org/encyclopedia/HuffmanCoding.html) --- This web
page provides a technical overview of Huffman coding which is one form of data encoding used within the JT
format.
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[13] Michael Schindler, Practical Huffman Coding (http://www.compressconsult.com/huffman/#encoding) --- This
web page provides some coding hints for implementing Huffman coding which is one form of data encoding
used within the JT format.

[14] Glen G. Langdon Jr., An Introduction to Arithmetic Coding, IBM Journal of Research and Development,
Volume 28, Number 2, March 1984, pp. 135-149.

[15] Paul G. Howard and Jeffrey Scott Vitter, Practical Implementation of Arithmetic Coding. Image and Text
Compression, ed. J. A. Storer, Kluwer Academic Publishers, April 1992, pp. 85-112.
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downloads, etc.

3| Definitions

3{1 Terms

is assumed that readers of this document are familiar with concepts in the\area of computer graphicq and solid
mpdeling. The intention of this section is not to provide comprehensive definitions, but is to provide a short iftroduction
and clarification of the usage of terms within this document.

—

Assembly — A related collection of model parts, represented in a JT format
logical scene graph as.a.logical graph branch

Agftribute — Objects associated, with nodes in a logical scene graph and
specifying one<of* several appearances, positioning, or rendering
characteristies,of a shape

Boundary Representation — A solid model representation where the solid volume is specified
by  its~“surface boundary (both its geometric and topological
boundaries).

CodeText = A collection of data in encoded form.

Directed Acyclic Graph — A graph is a set of nodes, and a set of edges connecting the nodes
in a tree like structure. A directed graph is one in which every
edge has a direction such that edge (u,v), connecting node-u with
node-v, is different from edge (v,u). A Directed Acyclic Graph is a
directed graph with no cycles; where a cycle is a path (sequence of
edges) from a node to itself. So with a Directed Acyclic Graph
there is no path that can be followed within the graph such that the
first node in the path is the same as the last node in the path.

JT] Enabled Application — Application which supports reading and/or writing reference
compliant JT Format files.

Level of Detail —One alternative graphical representation for some model
component (e.g. part).

Logical Scene Graph — A scene graph representing the logical organization of a model.
Contains shapes and attributes representing the model’s physical
components, properties identifying arbitrary metadata (e.g. names,
semantic roles) of those components, and a hierarchical structure
expressing the component relationships.
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Mipmap — A reduced resolution version of a texture map. Mipmaps are used
to texture a geometric primitive whose screen resolution differs
from the resolution of the source texture map originally applied to
the primitive.

Model — Representation, in JT format, of a physical or virtual product, part,
assembly; or collections of such objects.

Parasolid XT Format — Parasolid boundary representation format

Product anfd Manufacturing Information — Collection of information created on a 3D/2D CAD Model to
completely document the product with respect to design,
manufacturing, inspection, etc. This may includes data such as:

o Dimensions (tolerances for each dimension)

o Geometric tolerances of feature (datums, feature control frames)
o Manufacturing information (surface finish, welding notations)

o Inspection information (key locations points)

e Assembly instructions

e Product information (materials, suppliers, part numbers)

Property —An object associated with a logical scene’ graph node and
identifying arbitrary application or enterprise specific information
(meta-data) related to that node

Quantize — Constrain something to a discrete ‘set of values, such as an integer
or integral multiplier of a common factor, rather than a continuous
set of values, such as a real number.

Scene Graph — In the context of the JT, format, a scene graph is a directed acyclic
graph that arranges’;the logical and often (but not necessarily)
spatial representation of a graphical scene.

Shader — A user-definable program, expressed directly in a target assembly
language;.or in high-level form to be compiled. A shader program
replaces’ a portion of the otherwise fixed-functionality graphics
pipeline with some user-defined function. At present, hardware
manufacturers have made it possible to run a shader for each
vertex that is processed or each pixel that is rendered.

Streaming — In the context of the JT format, streaming refers to both:

0 Loading from disk based medium only the portions of data
that are required by the user to perform the tasks at hand.
The motivation being to more efficiently manage system
memory.

o Transfer of data in a stream of packets, over the internet
on an on-demand basis, where the data is interpreted in
real-time by the application as the data packets arrive. The
motivatiom—bemg—that—the—user—cam—begim—using—or
interacting with the data almost immediately - no waiting
for the entire data file(s) to be transferred before beginning

The desired end result of both being to deliver only the JT data
that the user needs, where the user needs it, when the user needs
it. A “just-in-time” approach to delivering JT format product
data.

Shape — A logical scene graph leaf node containing or referencing the

geometric shape definition data (e.g. vertices, polygons, normals,
etc.) of a model component.
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Texture Channel — A Texture Unit plus the texture environment. In OpenGL® terms,
Texture Channel basically controls “glActiveTexture” [4]

Texture Object —JT format meaning is the same as in OpenGL [4] “A named cache
that stores texture data, such as the image array, associated
mipmaps, and associated texture parameter values: width, height,
border width, internal format, resolution of components,
minification and magnification filters, wrapping modes, border
color, and texture priority.”

Texture Unit —JT format meaning is the same as in OpenGL [4], with ithe
connotation that texture parameters go with the Texture\Unit
(through binding of a texture object) but texture enyironment
(texturing function) does not.

3|2 Coordinate Systems

The data contained within a JT file is defined within one of the following coordinate systems. If not otherwisg specified
infa data field’s description, it should be assumed that the data is defined in Local Coordinate System.

o[ Local Coordinate System (LCS). The coordinate system in which shape geometry is specified. It is the
coordinate system used to specify the “raw” data with no transformséapplied.

«| Node Coordinate System (NCS). Local coordinates transformed by any transforms specified as aftributes at
the node. The NCS is also often referred to as Model Coordinate System (MCS).

o| World Coordinate System (WCS). Node coordinates transformed by transforms inherited from a node’s
parent (i.e. the coordinate system at the root of the graph).

| View Coordinate System (VCS). World coordinates transformed by a view matrix.

4 Acronyms and Abbreviations

Abs Absolute Value

BBox Bounding Box

B-Rep Bolndary Representation

CAE Computer Aided Engineering
Cg C for Graphics

CODEC Coder-Decoder

5D&T Geometric Dimensioning and Tolerancing
5LSL OpenGL Shader Language
5PU Graphics Processing Unit
\U:D G:Ubﬂ.::y UII;qUC :dcllt;f;cl
HSV Hue, Saturation, Value
HSVA Hue, Saturation, Value, Alpha
LCS Local Coordinate System
LOD Level of Detail

LsbFirst Least Significant Byte First
LSG Logical Scene Graph

Max Maximum

MCS Model Coordinate System
Min Minimum

MsbFirst Most Significant Byte First
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N/A Not Applicable

NCS Node Coordinate System

PCS Parameter Coordinate Space
PLM Product Lifecycle Management
PMI Product and Manufacturing Information
RGB Red, Green, Blue

RGBA Red, Green, Blue, Alpha

TOC Table of Contents.

VPCS Viewpoint Coordinate System
URL Uniform Resource | acator
WCS World Coordinate System

5 Notational Conventions

5.1 Diagrams and Field Descriptions

Symbolic diagrams are used to describe the structure of the JT file. The symbols used in these diagrams have the
following neaning:

Rectangles represent a data field of one of the standard data types.

Folders represent a logical collection of one or more of the standard'data types.
W This information is grouped for clarity and the basic data types that.compose the
group are detailed in following sections of the document.

N, Rectangles with the right side corners clipped off represent information that has been
L compressed.

l Arrows convey the ordering of the information;

The forma} used to title the diagram symbols is dependent upon the symbol type as follows:

e Diagram “rectangle box” (i.e. standard data types) symbols are titled using a format of “Data_Type : Field_Namg.
The [pata_Type is an abbreviated data\type symbol as defined in 5.2 Data Types. In the example below the
Data_[Type is “132” (a signed 32 bitinteger) and Field_Name is “Count.”

132 : Count

o Diagram “folder” (i:e: logical data collections) symbols are simply titled with a collection name. In the examgle

belowthe collection name is “Graph Elements.”

D )
Graph Elements

o Diagram “rectangle box with clipped right side corners” (i.e. compressed/encoded data fields) are titled using one of
the following three formats:

1. Data Type; followed by open brace “{“, number of bits used to store value, closed brace “}”, and a colon “:”;
followed by the Field Name. This format for titling the diagram symbol indicates that the data is compressed
but not encoded. The compression is achieved by using only a portion of the total bit range of the data type to
store the value (e.g. if a count value can never be larger than the value “63” then only 6 bits are needed to store
all possible count values). In the example below the Data Type is “U32”, “6” bits are used to store the value,
and Field Name is “Count”
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U32{6}: Count >

2. Data Type followed by open brace “{*, compressed data packet type, “,”, Predictor Type, closed brace “}”, and
a colon “:”; followed by the field name. This format for titling the diagram indicates that a vector of “Data
Type” data (i.e. primal values) is ran through “Predictor Type” algorithm and the resulting output array of
residual values is then compressed and encoded into a series of symbols using one of the two supported
compressed data packet types.

The two supported compressed data packet types are:

0 Int32CDP - The Int32CDP (i.e. Int32 Compressed Data Packet) represents-the”format used to
encode/compress a collection of data into a series of Int32 based symbols. A _coniplete desgription for
Int32 Compressed Data Packet can be found in 7.1.1 Int32 Compressed DataPacket.

0 Float64CDP — The Float64CDP (i.e. Float64 Compressed Data Packet) represents the format used to
encode/compress a collection of data into a series of Float64 based symbols. A complete flescription
for Float64 Compressed Data Packet can be found in 7.1.2 Float64.Compressed Data Packet.

The Int32 Compressed Data Packet type is used for compressing/éncoding both “integer” and “floaf” (through
quantization) data. While the Float64 Compressed Data Packet type is used for compressing/encodinp “double”
data.

In the example below the Data Type is “VecU32”, Intd32>Compressed Data Packet type is used, Lagl Predictor
Type is used, and Field Name is “First Shell Index.”

VecU32{Int32CDRLagl} : First Shell>

As mentioned above (with Predictor Type algorithm), the primal input data values are NOT always what is
encoded/compressed. This is(because the primal input data is first run through a Predictor Type [algorithm,
which produces an output array of residual values (i.e. difference from the predicted value), and this resulting
output array of residualsvalues is the data which is actually encoded/compressed. The JT format supports
several Predictor Type_algorithms and each use of Int32CDP or Float64CDP specifies, using [the above
described notation_format, what Predictor Type algorithm is being used on the data. The JT formaf supported
Predictor Type algorithms are as follows (note that a sample implementation of decoding the predictpr residual
values back inte“the primal values can be found in Annex C:Decoding Algorithms — An Implerpentation):

_Prédictor Type Description
Lagl Predicts as last value
Lag2 Predicts as value before last
Stridel Predicts using stride from last two values
Stride2 Predicts using stride from values 2 and 4 back
Q'rrirr_\lndnv This is a anplnfnl\]/ ampirir\nl prnr‘lir‘fnr Looks at the values two

back and four back in the stream, and uses the stride between these
two values to predict the current value if and only if the stride lays
between -8 and 8 noninclusive, else it predicts the value as the one
two back plus two. In pseudo-code form the predicted values is
computed as follows:

if( val2back - valdback < 8 && val2back - valdback > -8 )
iPredicted = val2back + (val2back - val4back);

else
iPredicted = val2back + 2;
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Predictor Type Description

Ramp Predict value “i” as values “i’s” index

Xorl Predict as last, but use XOR instead of subtract to compute
residual

Xor2 Predict as value before last, but use XOR instead of subtract to
compute residual

NULL No prediction applied

3. “Dbata Type : Field Name™ . This format for titling the diagram symbol indicates that the data IS ,bd
mpressed and encoded. The Data_Type is an abbreviated data type symbol as defined in 5.2 Data Types apd

C
u

Note 1

in the segment. This ZLIB compression applied to all the segment’s data is not indicated in the diagrams through t
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ually represent a vector/array of data. How the data is compressed and encoded into the Data“Type

VecU32 : CodeTex>

hat for some JT file Segment Types there is ZLIB compression also applied t6-all bytes of element data stor

“rectangle box with clipped right side corners”. Instead, one must examine information stored with the fi
nt in the file segment to determine if ZLIB compression is applied/to‘all data in the segment. A complg
btion of the JT format data compression and encoding can bedfound in 6.1.3 Data Segment and 7 D4
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each data collection diagram is detailed descriptions for each entry in the data diagram.

br rectangles this detail includes the abbreviated \data type symbol, field name, verbal data description, a

compression technique/algorithm where appraopriate. If the data field is documented as a collection of flags,

en the field is to be treated as a bit mask where the bit mask is formed by combining the flags using the bing
R operator. Each bits usage is documented, and bit ON indicates flag value is TRUE and bit OFF indicat
bg value is FALSE. Any undocumentedbits are reserved.

pr folders (i.e. data collections)y.if-the collection is not detailed under a sub-section of the particular documg
ction referencing the data eollection, then a comment is included following the diagram indicating where
e document the particular-data collection is detailed.

appears with a branch-in its shaft, then there are two or more options for data to be stored in the file. Whi

red will depend<on-information previously read from the file. The following example shows data field
y (depending 6n-value of A) either data field B, C, or D.

}

132 : A

hd

ry
es

ch
A

A== A==2
A

us:B ul6: C u3s2:D

A
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In cases where the same data type repeats, a loop construct is used where the number of iterations appears next to the
loop line. There are two forms of this loop construct. The first form is used when the number of iterations is not
controlled by some previous read count value. Instead the number of iterations is either a hard coded count (e.g. always
80 characters) or is indicated by some end-of-list marker in the data itself (thus the count is always minimum of 1). This
first form of the loop construct looks as follows:

|

132: A

A

us: B

80

The second form of this loop construct is used when the number of iterations is based on data (e.g. count) prev|ously read
frpm the file. In this case it is valid for there to be zero data iterations (zero count),~This second from qf the loop
cdnstruct looks as follows (data field D is repeated C value times).

|

132:C
1

A

us:D

A 4

5[2 Data Types

The data types that can occur in the JT binary;files are listed in the following two tables.

Table 1: Basic Data Types lists the basic/Standard data types which can occur in JT file.

Table 1: Basic Data Types

Type a2t Description
UChar An Ungsigned 8-bit byte.
us Anyuinsigned 8-bit integer value.
U16 An unsigned 16-bit integer value.
U32 An unsigned 32-bit integer value.
116 A signed two’s complement 16-bit integer value.
132 A signed two’s complement 32-bit integer value.
F32 An IEEE 32-bit floating point number.
F64 An |IEEE 64-bit double precision floating point number

Table 2: Composite Data Types lists some composite data types which are used to represent some frequently occurring
groupings of the basic data types (e.g. Vector, RGBA color). The composite data types are defined in this reference
simply for convenience/brevity in describing the JT file contents.

© 1SO 2011 — All rights reserved 9


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

10

Table 2: Composite Data Types

Type Description Symbolic Diagram
BBoxF32 The BBoxF32 type defines a bounding box using two
CoordF32 types to store the XYZ coordinates for the :
bounding box minimum and maximum corner points. | CoordFs32 : Min Corner|
[CoordF32 : Max Corner]|
CoordF32 | The CoordF32 type defines X, Y, Z coordinate values. So a
COOTUF32 5 TIade up of three F3210ase typeEs.
F32 : Data |<_—| 3
CoqrdF64 | The CoordF64 type defines X, Y, Z coordinate values. So a
CoordF64 is made up of three F64 base types.
P g [For: i [ 5
Dirf32 The DirF32 type defines X, Y, Z components of a direction
vector. So a DirF32 is made up of three F32 base types.
P o [Foz: D[4 4
GUID The GUID type is a 16 byte (128-bit) number. GUID is
stored/written to the JT file using a four-byte word (U32),'2
two-byte words (U16), and 8 one-byte words (U8) sugh as:
{3F2504E0-4F89-11D3-9A-0C-03-05-E8-2C-33-01}
In the JT format GUIDs are used as unique identifiers (e.g.
Data Segment ID, Object Type ID, etc.)
HCpordF32 | The HCoordF32 type defines X, Y, Z, W homogeneous
coordinate values. So an HCo@rdF32 is made up of four F32
base types. - 4
HCpordF64 | The HCoordF64 type)defines X, Y, Z, W homogeneous
coordinate values._So an HCoordF64 is made up of four F64
base types - 4
Mbptring The MbsString type starts with an 132 that defines the number
of characters (NumChar) the string contains. The number of
byfes of character data is “2 * NumChar” (i.e. the strings are
written out as multi-byte characters where each character is
ui1l6 SIZE). UlG: Char |<—| Count
v
Mx4F32 Defines a 4-by-4 matrix of F32 values for a total of 16 F32
values. The values are stored in row major order (right most -
subscript, column varies fastest), that is, the first 4 elements 16
form the first row of the matrix.
PlaneF32 The PlaneF32 type defines a geometric Plane using the
General Form of the plane equation (Ax + By + Cz + D = 0).
The PlaneF32 type is made up of four F32 base types where F32 - Data
the first three F32 define the plane unit normal vector (A, B, _—. 4
C) and the last F32 defines the negated perpendicular distance
(D), along normal vector, from the origin to the plane.
Quaternion | The Quaternion type defines a 3-dimensional orientation (no
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Type Description Symbolic Diagram
translation) in quaternion linear combination form (a + bi + ¢j
+ dk) where the four scalar values (a, b, c, d) are associated -
with the 4 dimensions of a quaternion (1 real dimension, and 3 4

imaginary dimensions). So the Quaternion type is made up of
four F32 base types.

RGB The RGB type defines a color composed of Red, Green, Blue
components, each of which is a F32. So a RGB type is made -
up of three F32 base types. The Red, Green, Blue color 3
values typically range from 0.0 to 1.0.
RGBA The RGBA type defines a color composed of Red, Green,
Blue, Alpha components, each of which is a F32. So a RGBA -
type is made up of four F32 base types. The Red, Green, Blue 4

color values typically range from 0.0 to 1.0. The Alpha value
ranges from 0.0 to 1.0 where 1.0 indicates completely opaque.

String The String type starts with an 132 that defines the number of
characters (NumChar) the string contains. The number of
bytes of character data is “NumChar” (i.e. the strings are 132 : Count
written out as single-byte characters where each character is
U8 size). U8 : Char Cotint

VecF32 The VecF32 type defines a vector/array of F32 basetype. The
type starts with an 132 that defines the count of foHowing F32
base type data. So a VecF32 is made up of one/132followed

by that number of F32. Note that it is valid fer.the 132 count F32 - Data
number to be equal to “0”, indicating no fallowing F32.

132 : Count

unt

VecF64 The VecF64 type defines a vector/array of F64 base type. The
type starts with an 132 that definesthe count of following F64
base type data. So a VecF64 isthade up of one 132 followed

by that number of F64. Note-that it is valid for the 132 count F64 - Data
number to be equal to “0”, indicating no following F64.

132 : Count

Cotint

Vecl32 The Vecl32 type defines a vector/array of 132 base type. The
type starts with an 132 that defines the count of following 132
base type data:\'So a Vecl32 is made up of one 132 followed

by that number of 132. Note that it is valid for the 132 count 132 Data
number te-be equal to “0”, indicating no following 132.

132 : Count

Coyint

VecU32 The-VecU32 type defines a vector/array of U32 base type.
‘Fhe type starts with an 132 that defines the count of following

Tt

132 : Count
U32 base type data. So a VecU32 is made up of one 132 al
followed by that number of U32. Note that it is valid for the U32 - Data
132 count number to be equal to “0”, indicating no following Copint
U32.
6—FHetFormat

All objects represented in the JT format are assigned an “object identifier” (e.g. see 6.2.1.1.1.1.1 Base Node Data, or
6.2.1.1.2.1.1 Base Attribute Data) and all references from one object to another object are represented in the JT format
using the referenced object’s “object identifier”. It is the responsibility of JT format readers/writers to maintain the
integrity of these object references by doing appropriate pointer unswizzling/swizzling as JT format data is read into
memory or written out to disk. Where “pointer swizzling” refers to the process of converting references based on object
identifiers into direct memory pointer references and “pointer unswizzling” is the reverse operation (i.e. replacing
references based on memory pointers with object identifier references).
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6.1 File Structure

A JT file is structured as a sequence of blocks/segments. The File Header block is always the first block of data in the
file. The File Header is followed (in no particular order) by a TOC Segment and a series of other Data Segments. The
one Data Segment which must always exist to have a reference compliant JT file is the 6.2.1 LSG Segment.

The TOC Segment is located within the file using data stored in the File Header. Within the TOC Segment is
information that locates all other Data Segments within the file. Although there are no JT format compliance rules about
where the TOC Segment must be located within the file, in practice the TOC Segment is typically located either
immediately following the File header (as shown in the below Figure) or at the very end of the file following all other

Data Segments.

Figure 1: File Structure

M
File Header

D . A
TOC Segment

A 4
Data Segment <

6.1.1 Hile Header

The File Header is always the first block of data in a JJ-file. The File Header contains information about the JT fjle
version anfl TOC location, which Loaders use to determinie how to read the file. The exact contents of the File Header

are as follgws:

Figure 2: File Header data collection

A

80

A\ 4
UChar : Byte Order

\4
132 : File Attributes

\ 4
132 : TOC Offset

\4
GUID : LSG Segment ID

UChar : Version
An 80-character version string defining the version of the file format used to write this file. The Version string has the

following format:

12 © 1SO 2011 — All rights reserved


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

Version M.n Comment

Where M is replaced by the major version number, n is replaced by the minor version number, and Comment provides
other unspecified information. The version string is padded with spaces to a length of 75 ASCII characters and then the
final five characters must be filled with the following linefeed and carriage return character combination (shown using c-
style syntax):

Version[75] = *
Version[76] = “\n°
Version[77] = “\r
Version[78] = “\n*
Version[79] = * ¢

These final 5 characters (shown above and referred to as ASCll/binary translation detection bytes).can be used by JT file
refders to validate that the JT files has not been corrupted by ASCII mode FTP transfers.

Sq for a JT Version 8.1 file this string will look as follows:

“Version 8.1 JT \n\r\n “

UChar : Byte Order
Defines the file byte order and thus can be used by the loader to determine if there is a mismatch (thus bytq swapping
refjuired) between the file byte order and the machine (on which_the [oader is being run) byte order. Valid|values for
Byte Order are:

0 + Least Significant byte first (LsbFirst)
1t Most Significant byte first (MsbFirst)

132 : File Attributes
All bits in this field are reserved

132 : TOC Offset
Defines the byte offset from the top of. the“file to the start of the TOC Segment.

QuUID : LSG Segment ID
L$G Segment ID specifies the_globally unique identifier for the Logical Scene Graph Data Segment in the file. This ID
alpng with the information.in the TOC Segment can be used to locate the start of LSG Data Segment in the file. This ID
is[needed because withqut it a loader would have no way of knowing the location of the root LSG Data Sedment. All
other Data Segments.must be accessible from the root LSG Data Segment.

6{1.2 TOC Segment
The TOC~Segment contains information identifying and locating all individually addressable Data Segments|within the
i C Segment
'OC Entry
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Figure 3: TOC Segment data collection

132 : Entry Count

]
TOC Entry
Entry Count
v

132 : En|try Count
Entry Coupt is the number of entries in the TOC.

6.1.2.1 [TOC Entry

Each TOQ Entry represents a Data Segment within the JT File. The essential function of a TOG.Entry is to map a
Segment IP to an absolute byte offset within the file.

Figure 4: TOC Entry data collection

GUID : Segment ID

\ 4
132 : Segment Offset

\ 4
132 : Segment Length

\ 4
U32 : Segnient Attributes

GUID : pegment ID
Segment ID is the globally unique identifier for the segment.

132 : Segment Offset
Segment Qffset defines the byte effset from the top of the file to start of the segment.

132 : Segment Length
Segment Llength is thetotal size of the segment in bytes.

U32 : Segment Attributes
Segment Attributes is a collection of segment information encoded within a single U32 using the following bit allocatign.

=]

Bits 0 - 23 | Reserved for future use.
Bits 24 - 31 | Segment type. Complete list of Segment types can be found in Table 3: Segment
Types.

6.1.3 Data Segment

All data stored in a JT file must be defined within a Data Segment. Data Segments are “typed” based on the general
classification of data they contain. See Segment Type field description below for a complete list of the segment types.
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Beyond specific data field compression/encoding, some Data Segment types also have a ZLIB compression conditionally
applied to all the Data bytes of information persisted within the segment. Whether ZLIB compression is conditionally
applied to a segment’s Data bytes of information is indicated by information stored with the first “Element” in the
segment. Also Table 3: Segment Types has a column indicating whether the Segment Type may have ZLIB
compression applied to its Data bytes.

All Data Segments have the same basic structure.

Figure 5: Data Segment data collection

Segment Header

6/1.3.1 Segment Header
Sdgment Header contains information that determines how the remainder of the Segment is interpreted by the Ipader.

Figure 6: Segment Header data collection

GUID : Segment ID

v
132 : Seqment Type

\ 4
1321:.Segment Length

QuID : Segment ID
GJobal Unique Identifier for the segment.

132 : Segment Type
Sdgment Type defines a‘bread classification of the segment contents. For example, a Segment Type of “1” denotes that
thp segment containsdzogical Scene Graph material; “2” denotes contents of a B-Rep, etc.

The complete listof segment types is as follows:

Table 3: Segment Types

N ZL 1B Compression Conditionally
>Typp Data Contents Applied to all of the Segment’s
Element Data

1 Logical Scene Graph Yes

2 JT B-Rep Yes

3 PMI Data Yes

4 Meta Data Yes

6 Shape No

7 Shape LODO No

8 Shape LOD1 No

9 Shape LOD?2 No

10 Shape LOD3 No
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ZLIB Compression Conditionally
Type Data Contents Applied to all of the Segment’s
Element Data
11 Shape LOD4 No
12 Shape LOD5 No
13 Shape LOD6 No
14 Shape LOD7 No
15 Shape LODS8 No
16 Shape LOD9 No
lF—TXFB-Rep Yes
1B Wireframe Representation Yes

132 : Se

Segment Llength is the total size of the segment in bytes. This length value includes all segment Data bytes plus t
Segment H

segment’s

6.1.3.2
The interp

Although

section. This structure is a list or-multiple lists of Elements where each Element has the same basic structure whi
consists of some fixed length header information describing the type of object contained in the Element, followed

Some varig

Individual

compressipn/encoding\dpplied to them as indicated through compression related data values stored as part of t

particular
conditional

types supq

Note: Segment Types 7-16 all identify the contents as LOD Shape data, where the increasing type number is

Note: The more generic Shape Segment type (i.e. Segment Type “6”) is used when-the-Shape Segment has one

intended to convey some notion of how high an LOD the specific shape segment represents.The lower t
type in this 7-16 range the more detailed the Shape LOD (i.e. Segment Type “7” is the mestidetailed Sha
LOD Segment). For the rare case when there are more than 10 LODs, LOD9 and greater. are all assigned
Segment Type “16”.

or more of the following characteristics:

Not a descendant of an LOD node.

Is referenced by (i.e. is a child of) more than one LOD node.
Shape has its own built-in LODs

No way to determine what LOD a Shape Segment represents.

o

gment Length

TOC Entry.

Data

he Data section is Segment Type dependent there is a common structure which often occurs within the D3

ble length object type specific data.
data fields_‘ef~an Element data collection (and its children data collections) may have advanc

Element’s.'storage format. In addition, another level of compression (i.e. ZLIB compression) may
ly applied to all bytes of information stored for all Elements within a particular Segment. Not all Segmg

Segment ig
not is indic

Segment.

16

eader bytes (i.e. it is the size of the complete segment)*and should be equal to the length value stored with this

etation of the Data section depends oh.the Segment Type. See 6.2 Data Segments for complete description for
all Data Sqgment that may be contained in adT file.

ne

ta
Ch
Dy

bd
he
be
nt
le

ort-ZLIB compression on all Segment data as indicated in Table 3: Segment Types.

An in-depth description of JT file compression/encoding techniques can be found in 7 Data Compression.

ated by data values stored in the Element Header ZLIB data collection of the first Element within the

or
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Figure 7: Data data collection

For Segment Types that do NOT support For Segment Types that support ZLIB
ZLIB compression on all Segment Data. compression on all Segment Data
(see Table 3: Segment Types.) (see Table 3: Segment Types.)
Element Header Element Header ZLIB
D N SRS —vy @@
ObjectData ObfectData

U
)
th

T

V

ard then skip (read'pass) the bytes of unknown data using knowledge of number of bytes encompassing the

(r‘=ad pass) Elemient Length number of bytes.

1.3.2.1 Element Header

ement Header contains data defining the length in bytes of the Element along with informatien describing
be contained in the Element.

Figure 8: Element Header data collectign

132 : Element Length

4
GUID : Object Type ID

\ 4
UChar : Object Base Type

2 : Element Length
ement Length is the total length in bytes of the.element Object Data.

UID : Object Type ID
bject Type ID is the globally unique identifier for the object type. A complete list of the assigned GUID fo
bes stored in a JT file can be found,in Annex A: Object Type Identifiers.

[Char : Object Base Fype
Dject Base Type identifies-the base object type. This is useful when an unknown element type is encounterg
b best the loader can-do-is to read the known Object Base Type data bytes (base type object data is always wj

pe data and the“unknown types Length field. If the Object Base Type is unknown then the loader should s

hlid Object Base Types include the following:

2011(E)

the object

I all object

d and thus
Fitten first)
bject Base
mply skip

©

Iaple 4. ODject base 1ypes
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Object Description Object Base Type’s Data
Base Format
Type
255 Unknown Graph Node Object none
0 Base Graph Node Object 6.2.1.1.1.1.1 Base Node Data
1 Group Graph Node Object 6.2.1.1.1.3.1Group Node Data
2 Shape Graph Node Object 6.2.1.1.1.10.1.1 Base Shape Data
3 Base Attribute Object 6.2.1.1.2.1.1 Base Attribute Data
4 Shape LOD none
5 Base Property Object 6.2.1.2.1.1 Base Property Atom Data

17
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Object Description Object Base Type’s Data
Base Format
Type
6 JT Object Reference Object 6.2.1.2.5 JT Object Reference Property

Atom Element without the Element
Header ZLIB data collection.

8 JT Late Loaded Property Object 6.2.1.2.7 Late Loaded Property Atom
Element without the Element Header
ZLIB data collection.

Q 'ItBacn (nr\nn) noene

6.1.3.2.2 Element Header ZLIB

Element Header ZLIB data collection is the format of Element Header data used by all Elements within-Segment Typ
that support ZLIB compression on all data in the Segment. See Table 3: Segment Types for information on whethe

particular fegment Type supports ZLIB compression on all data in the Segment.

Figure 9: Element Header ZLIB data collection

If first Element

within file Segment

A 4

U32 : Compfession Flag

\ 4

132 : Compressed Data Length

A 4

U8 : Compression Algorithm

»)
<

\ 4
Element Header

Complete |description for Elémenht Header can be found in 6.1.3.2.1Element Header.

indicates that ZLIB compression is ON for all element data in the Segment, then the Element Header data collection

also compressed accordingly.

U32 : Cpmpréession Flag

Compression Flag is a flag indicating whether ZLIB compression is ON/OFF for all data elements in the file Segme

Valid valups-include the following:

Note that if Compression Fl

— ZLIB compression is ON

=2
1=2| — ZLIB compression is OFF.

132 : Compressed Data Length

Compressed Data Length specifies the compressed data length in number of bytes. Note that data field Compression

Algorithm is included in this count.

U8 : Compression Algorithm

Compression Algorithm specifies the compression algorithm applied to all data in the Segment. Valid values include the

following:

18
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=1 | — No compression
= — ZLIB compression

6.1.3.2.3 Object Data

The interpretation of the Object Data section depends upon the Object Type ID stored in the Element Header (see
6.1.3.2.1 Element Header).

6[2 Data Segments

6{2.1 LSG Segment

L$G Segment contains a collection of objects (i.e. Elements) connected through directed references to form|a directed
adyclic graph structure (i.e. the LSG). The LSG is the graphical description of the model and>contains graphics shapes
arjd attributes representing the model’s physical components, properties identifying arbitrary metadata (gg. names,
semantic roles) of those components, and a hierarchical structure expressing the compongnt-relationships. The|“directed”
ndture of the LSG references implies that there is by default “state/attribute” inheritance from ancestor to desc¢ndant (i.e.
predecessor to successor). It is the responsibility of the loader to insure that the gcyclic property of the resultjng LSG is
mAintained.

The first Graph Element in a LSG Segment should always be a Partition Node. The LSG Segment type supports ZLIB
cdmpression on all element data, so all elements in LSG Segment usecthe*Element Header ZLIB form of elenjent header
dgta.

Figure 10: LSG Segment data collection
N

Segment Header

O A 4

Graph Elements  |¢ Until End-Of-Elements marker
reached. See Table 10: Object
Type Identifiers for marker ID.

y

A
Property Atom < .
Elements Until End-Of-Elements marker

reached. See Table 10: Object
Property Table

Type Identifiers for marker ID.
Complete description for Segment Header can be found in 6.1.3.1Segment Header.

0

6.2.1.1 Graph Elements

Graph Elements form the backbone of the LSG directed acyclic graph structure and in doing so serve as the JT model’s
fundamental description. There are two general classifications of Graph elements, Node Elements and Attribute
Elements.

Node Elements are nodes in the LSG and in general can be categorized as either an internal or leaf node. The leaf nodes

are typically shape nodes used to represent a model’s physical components and as such either contain or reference some
graphical representation or geometry. The internal nodes define the hierarchical organization of the leaf nodes, forming
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both spatial and logical model relationships, and often contain or reference information (e.g. Attribute Elements) that is

inherited d

own the LSG to all descendant nodes.

Attribute Elements represent graphical data (like appearance characteristics (e.g. color), or positional transformations)

that can be

attached to a node, and inherit down the LSG.

Each of these general Graph Element classifications (i.e. Node/Attribute Elements) is sub-typed into specific/concrete
types based on data content and implied specialized behavior. The following sub-sections describe each of the Node and
Attribute Element types.

6.2.1.1.

Node Elen
certain typ
other collg
shape, pro

6.2.1.1.
Object Ty

Base Nod4
implied L

Complete

6.2.1.1.

| Node Elements

nents represent the relationships of a model’s components. The model’s component hierarchy is formed
es of Node Elements containing collections of references to other Node Elements who in turn may-referen
ctions of Node Elements. Node Elements are also the holders (either directly or indirectly)-.of geomet
berties, and other information defining a model’s components and representations.

|.1 Base Node Element
pe ID: 0x10dd1035, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbh, 0x59,-0x97

Element represents the simplest form of a node that can exist within the LLSG. The Base Node Element has
G semantic behavior nor can it contain any children nodes.

Figure 11: Base Node Element data collection

‘ Element Header ZLIB |

Base Node Data

jescription for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

| .1.1 Base Node Data

Figure 12: Base Node Data data collection

132 : Object ID

\ 4

a

c

U32 : Node Flags

20

e

132 : Attribute Count

132 : Attribute Object ID

A

Attribute Count
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132 : Object ID
Obiject ID is the identifier for this Object. Other objects referencing this particular object do so using the Object ID.

U32 : Node Flags
Node Flags is a collection of flags. The flags are combined using the binary OR operator. These flags store various state
information of the node object. All undocumented bits are reserved.

0x00000001 | — Ignore Flag

= 0 — Algorithms traversing the LSG structure should include/process this node.

= 1 - Algorithms traversing the LSG structure should skip the whole subgraph rootedl
at this node. Essentially the traversal should be pruned.

132 : Attribute Count
tribute Count indicates the number of Attribute Objects referenced by this Node Object, ©/A~hode may|have zero
tribute Object references.

132 : Attribute Object ID
Aftribute Object ID is the identifier for a referenced Attribute Object.

6/2.1.1.1.2 Partition Node Element
Opject Type ID: 0x10dd103e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80; 0xc7, Oxbb, 0x59, 0x97
A

Partition Node represents an external JT file reference and provides a means to partition a model into multipje physical
JT| files (e.g. separate JT file per part in an assembly). Whenthe referenced JT file is opened, the Partition Node’s
children are really the children of the LSG root node for the'dnderlying JT file. Usage of Partition Nodes i LSG also
aifls in supporting JT file loader/reader “best practice” of late loading data (i.e. can delay opening and Ipading the
externally referenced JT file until the data is needed).
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Figure 13: Partition Node Element data collection

Element H

eader ZLIB

Complete

Complete

132 : P&
Partition Plagsis-a

state information of the Partition Node Object such as indicating the presence of

are reserved.

132 : Partition Flags

it

MbString :

File Name

(Partition Flags & 0x00000001) = =

A

y

A 4

BBoxF32 : Reserved Field

BBoxF32 : Transformed BBox

&
<

y

F32

. Area

D e NI

Vertex Count Range

y

D e N

Node Count Range

A

e N

Polygon Count Range

y

(Partition Flags & 0x00000001) '=0

A

y

BBoxF32 : Untransformed BBox

A

jescription for‘Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

escription for Group Node Data can be found in 6.2.1.1.1.3.1Group Node Data.

tous

| 0x00000001 | — Untransformed bounding box is written.

MbString : File Name

File Name is the relative path portion of the Partition’s file location. Where “relative path” should be interpreted to mean
the string contains the file name along with any additional path information that locates the partition JT file relative to the
location of the referencing JT file

22
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BBoxF32 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion

BBoxF32 : Transformed BBox

The Transformed BBox is an NCS axis aligned bounding box and represents the transformed geometry extents for all
geometry contained in the Partition Node. This bounding box information may be used by a renderer of JT data to
determine whether to load the data contained within the Partition node (i.e. is any part of the bounding box within the
view frustum).

F32 : Area
Afea is the total surface area for this node and all of its descendents. This value is store in NCS coordinate|space (i.e.
vglues scaled by NCS scaling).

BBoxF32 : Untransformed BBox
The Untransformed BBox is only present if Bit 0x00000001 of Partition Flags data field is ©ON. The Untjansformed
BBox is an LCS axis-aligned bounding box and represents the untransformed geometny ‘€xtents for all geometry
cqntained in the Partition Node. This bounding box information may be used by a renderer of JT data to| determine
whether to load the data contained within the Partition node (i.e. is any part of thé>bounding box withinp the view
fristum).

2.1.1.1.2.1 Vertex Count Range

6

Vertex Count Range is the aggregate minimum and maximum vertex~count for all descendants of the Partition Node.
There is a minimum and maximum value to accommodate descendant branches having LOD nodes, which erjcompass a
rahge of count values within the branch, and to accommedate nodes that can themselves generaje varying
representations. The minimum value represents the least veftex count that can be achieved by the Partition Node’s
dgscendants. The maximum value represents the greatest Gértex count that can be achieved by the Partitijon Node’s
dgscendants.

Figure 14:Vertex Count Range data collection

132 : Min Count

\ 4
132 : Max Count

132 : Min Count
Mlin Count is the leastvertex count that can be achieved by the Partition Node’s descendants.

132 : Max Count
Mlax Count iSthe maximum vertex count that can be achieved by the Partition Node’s descendants.
6

2.X11.2.2 Node Count Range

Npde-Count Range is the aggregate minimum and maximum count of all node descendants of the Partition Ngde. There
is a minimum and maximum value to accommodate descendant branches having LOD nodes, which encompass a range
of descendant node count values within the branch. The minimum value represents the least node count that can be
achieved by the Partition Node’s descendants. The maximum value represents the greatest node count that can be
achieved by the Partition Node’s descendants.

The data format for Node Count Range is the same as that described in 6.2.1.1.1.2.1Vertex Count Range.
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6.2.1.1.1.2.3 Polygon Count Range

Polygon Count Range is the aggregate minimum and maximum polygon count for all descendants of the Partition Node.
There is a minimum and maximum value to accommodate descendant branches having LOD nodes, which encompass a
range of count values within the branch, and to accommodate nodes that can themselves generate varying
representations. The minimum value represents the least polygon count that can be achieved by the Partition Node’s
descendants. The maximum value represents the greatest polygon count that can be achieved by the Partition Node’s
descendants.

The data format for Polygon Count Range is the same as that described in 6.2.1.1.1.2.1Vertex Count Range.

6.2.1.1.1.3 Group Node Element
Object Tylpe ID: 0x10dd101b, Ox2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97

Group Nogles contain an ordered list of references to other nodes, called the group’s children. Group nodes may contgin

zero or mgre children; the children may be of any node type. Group nodes may not contain references’to themselves for
their ancegtors.

Figure 15: Group Node Element data collection

| Element Header ZLIB |

A
Group Node Data

Complete flescription for Element Header ZLIB can be found in:6.1.3.2.2 Element Header ZLIB.

6.2.1.1.1.3.1 Group Node Data

Figure 16: Group Node Data data collection

m
Base Node Data

A\ 4
132 : Child Count

A

132 : Child Node Object ID

Child Count

»

Complete description for Base Node Data can be found in 6.2.1.1.1.1.1Base Node Data.

132 : Child Count

Child Count indicates the number of child nodes for this Group Node Object. A node may have zero children.

132 : Child Node Object ID
Child Node Object ID is the identifier for the referenced Node Object.
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6.2.1.1.1.4 Instance Node Element
Object Type ID: 0x10dd102a, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97

An Instance Node contains a single reference to another node. Their purpose is to allow sharing of nodes and assignment
of instance-specific attributes for the instanced node. Instance Nodes may not contain references to themselves or their
ancestors.

For example, a Group Node could use Instance Nodes to instance the same Shape Node several times, applying different
material properties and matrix transformations to each instance. Note that this could also be done by using Group Nodes
instead of Instance Nodes, but Instance Nodes require fewer resources.

Figure 17: Instance Node Element data collection

| Element Header ZLIB |

Base Node Data

v
132 : Child Node Object ID

Complete description for Element Header ZLIB can be found in.6.:1.3.2.2 Element Header ZLIB.

Complete description for Base Node Data can be found ins6:2:1.1.1.1.1Base Node Data.

32 : Child Node Object ID
Child Node Object ID is the identifier for the instanced Node Object.

6/2.1.1.1.5 Part Node Element

Opject Type ID: 0xce357244, 0x38fh,0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, Oxbd, 0xc6, Oxel
A

w

Part Node Element represents,the root node for a particular Part within a LSG structure. Every unique Part represented
thin a LSG structure should have a corresponding Part Node Element. A Part Node Element typically|references
(using Late Loaded Praperty Atoms) additional Part specific geometric data and/or properties (e.g. B-Rep|data, PMI
dgta).

Q)

Figure 18: Part Node Element data collection

‘ Element Header ZLIB |

A 4
Meta Data Node Data

\ 4
116 : Version Number

\ 4
132: Reserved Field
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Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Meta Data Node Data can be found in 6.2.1.1.1.6.1Meta Data Node Data.

116 : Version Number
Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for

Part nodes.

I132: Reserved Field
Reserved Field is a data field reserved for future JT format expansion

6.2.1.1.1.6 Meta Data Node Element
Object Tylpe ID: 0xce357245, 0x38fh, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, Oxbd, 0xc6, Oxel

The Meta|Data Node Element is a node type used for storing references to specific “late loaded” meta-data (e|g.
properties| PMI). The referenced meta-data is stored in a separate addressable segment of the\dT File (see 6.2.6 Méta
Data Segnjent) and thus the use of this Meta Data Node Element is in support of the JT file_loader/reader “best practice”
of late loagling data (i.e. storing the referenced meta-data in separate addressable segment.of the JT file allows a JT fjle
loader/readler to ignore this node’s meta-data on initial load and instead late-load the rfiede’s meta-data upon demand o
that the as§ociated meta-data does not consume memaory until needed).

Figure 19: Meta Data Node Element.data collection

| Element Header ZLIB |

\ 4
Meta Data Node Data

Complete glescription for Element Header ZLIB.can be found in 6.1.3.2.2 Element Header ZLIB.

6.2.1.1.1.6.1 Meta Data Noede’Data

Figure 20: Meta Data Node Data data collection

Complete

\ 4
116 : Version Number

Complete description for Group Node Data can be found in 6.2.1.1.1.3.1Group Node Data.

116 : Version Number
Version Number is the version identifier for this data. Version number “0x0001” is currently the only valid value.

6.2.1.1.1.7 LOD Node Element
Object Type ID: 0x10dd102c, 0x2ac8, 0x11d1, 0x9b, 0x6h, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97

26 © I1SO 2011 - All rights reserved


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

An LOD Node holds a list of alternate representations. The list is represented as the children of a base group node,
however, there are no implicit semantics associated with the ordering. Traversers of LSG may apply semantics to the
ordering as part of alternative representation selection.

Each alternative representation could be a sub-assembly where the alternative representation is a group node with an
assembly of children.

Figure 21: LOD Node Element data collection

| Element Header ZLIB |

\ 4
LOD Node Data

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

6/2.1.1.1.7.1 LOD Node Data

Figure 22: LOD Node Data data collection

Complete

A 4
VecF32 : Reserved Field

\ 4
132 : Reserved Field

Complete description for Group Node Data can be found in 6.2.1.1.1.3.1Group Node Data.

VeCcF32 : ReservedField
Reserved Field is a véctor data field reserved for future JT format expansion.

2 : Reseryed Field
pserved Field is a data field reserved for future JT format expansion.

d

6(2:2.1.1.8 Range L OD Node Element
Object Type ID: 0x10dd104c, 0x2ac8, 0x11d1, 0x9b, 0x6h, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97

Range LOD Nodes hold a list of alternate representations and the ranges over which those representations are
appropriate. Range Limits indicate the distance between a specified center point and the eye point, within which the

corresponding alternate representation is appropriate. Traversers of LSG consult these range limit values when making
an alternative representation selection.
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Figure 23: Range LOD Node Element data collection
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Object Ty
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\ 4
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Jescription for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZL IB!

Hescription for LOD Node Data can be found in 6.2.1.1.1.7.1 L OD Node Data

: Range Limits

ing alternate representation is appropriate. It is not required that the.count of range limits is equivalent to t
alternative representations. These values are considered “soft values” in that loaders/viewers of JT data &
w these values away and compute new values based on their desired LOD selection semantics.

ion selection decisions based on Range Limits: Thefirst alternate representation is valid when the distan
e center and the eye point is less than or equal to the’first range limit (and when no range limits are specifie
[ alternate representation is valid when the distan¢e is greater than the first limit and less than or equal to t
it, and so on. The last alternate representation:is-valid for all distances greater than the last specified limit.

32 : Center
cifies the X,Y,Z coordinates for the NCS center point upon which alternative representation selection ¢
bmputations are based. Typicallythis location is the center of the highest-detail alternative representatig

pw values based on their deSired LOD selection semantics

.9 Switch Node Element
pe ID: 0x10dd10f3, Ox2ac8, 0x11d1, 0x9b, Ox6h, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97

N Node.iSwery much like a Group Node in that it contains an ordered list of references to other nodes, call
n nodes:* The difference is that a Switch Node also contains additional data indicating which child (one
G-traverser should process/traverse.

e
n.
nd

bd
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Figure 24: Switch Node Element data collection

Element Header ZLIB

:2011(E)

C

C

11
Vi
S

13
S4
<

116 : Version Number

v
132 : Selected Child

bmplete description for Element Header ZLIB can be found in 6.1.3.2.2 Element HeaderZLIB.

pmplete description for Group Node Data can be found in 6.2.1.1.1.3.1Group NodeData.

6 : Version Number

vitch nodes.

2 : Selected Child
lected Child is the index for the selected child node. ValidSelected Child values reside within the following
Selected Child < Child Count”. Where “-1” indicates that.no child is to be selected and “Child Count” is th

vdlue from 6.2.1.1.1.3.1Group Node Data.
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2.1.1.1.10 Shape Node Elements

ape Node Elements are “leaf” nodes within the LSG structure and contain or reference the geometric shape
ta (e.g. vertices, polygons, normals, etc.).

5ing Late Loaded Property Atoms) Shape LOD Segments within the file for the actual geometric shape defi

pring the geometric shape-definition data within separate independently addressable data segments in the JT

T file reader to be structured to support the “best practice” of delaying the loading/reading of associated dat
tually needed. Campléte descriptions for Late Loaded Property Atom Elements and Shape LOD Segme
und in 6.2.1.2.7 Katé'l oaded Property Atom Element and 6.2.2 Shape LOD Segment respectively.

There are several types of Shape Node Elements which the JT format supports. The following sub-sections do

rious Shape’Node Element types.

ersion Number is the version identifier for this node. Version numbef/‘0x0001” is currently the only valig value for

range: “-1
p data field

definition

pically Shape Node Elements-do:not directly contain the actual geometric shape definition data, but insteax reference

ition data.
ile, allows
A until it is
nts can be

cument the

21 14 .14 101 1) o

6 [ [\ | Al =1 +
L. L L L 1VULL DAottT OlldpgtT INUUT LITITITII

Object Type ID: 0x10dd1059, Ox2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97

Base Shape Node Element represents the simplest form of a shape node that can exist within the LSG.

©

ISO 2011 — All rights reserved
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Figure 25: Base Shape Node Element data collection

| Element Header ZLIB |

\ 4
Base Shape Data

Complete

6.2.1.1.1110.1.1 Base Shape Data

Figure 26: Base Shape Data data collection

Base Node Data

\ 4
BBoxF32 : Transformed BBox

\ 4
BBoxF32 : Untransformed BB0ox

F32 : Area

_— Y
Vertex Count Range

- —v @@
Node Count Range

o ¥ @@
Polygon Count Range

132 —Size

\4
F32 : Compression Level

Complete description for Base Node Data can be found in 6.2.1.1.1.1.1Base Node Data

BBoxF32 : Transformed BBox

The Transformed BBox is an axis-aligned NCS bounding box and represents the transformed geometry extents for all
geometry contained in the Shape Node.
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The Untransformed BBox is an axis-aligned LCS bounding box and represents the untransformed geometry extents for
all geometry contained in the Shape Node.

F32 : Area
Area is the total surface area for this node and all of its descendents. This value is stored in NCS coordinate space (i.e.
values scaled by NCS scaling).

132 Size
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e specifies the in memory length in bytes of the associated/referenced Shape LOD Element. This Sizena
evancy to the on-disk (JT File) size of the associated/referenced Shape LOD Element. A value of zeroNing
P in memory size is unknown. See 6.2.2.1Shape LOD Element for complete description of Shape LOD Ele
e loaders/readers can leverage this Size value during late load processing to help pre-determinécif-there i
bmory to load the Shape LOD Element.

32 : Compression Level

bmpression Level specifies the qualitative compression level applied to the associatedireferenced Shape LOI
e 6.2.2.1Shape LOD Element for complete description of Shape LOD Elements)<This compression level
alitative representation of the compression applied to the Shape LOD Element. ) The absolute compressig
bm this qualitative level) applied to the Shape LOD Element is physically, represented in the JT format by
pred with both the Shape Node and the Shape LOD Element (e.g. 6.2.1.1.4.10.2.1.1Quantization Parameters

lue has no
icates that
ments. JT
sufficient

D Element.
value is a
n (derived
other data
, and thus

not necessary to understand how to map this qualitative value{to “absolute compression values i order to

compress/decode the data
=0.0 | — “Lossless” compression used.
=0.1 | — “Minimally Lossy” compression dsed. This setting generally results in modest

compression ratios with little ifsany visual difference when compared to the same
images rendered from “Lossless”scompressed Shape LOD Element.

=0.5 | — “Moderate Lossy” compression used. The setting results in more data loss than
“Minimally Lossy”. and™ thus higher compression ratio is obtained. Some visual
difference will likely-be noticeable when compared to the same images rendered from
“Lossless” compressed Shape LOD Element.

=10 | — “Aggressive)Lossy” compression used. With this setting as much data as possible will
be thrown away, resulting in highest compression ratio, while still maintaining a
modestly useable representation of the underlying data. Visual differences may be
evident when compared to the same images rendered from “Lossless” compressed
Shape LOD Element.

2.1.1.1.10.1.1.1 Vertex Count Range

X imum vaIue to accommodate shape types that can themselves generate varymg representatlons The mini

vertex count that can be achleved by the Shape Node

Figure 27: Vertex Count Range data collection

132 : Min Count

\4
132 : Max Count

ISO 2011 — All rights reserved
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31


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

132 : Min Count
Min Count is the least vertex count that can be achieved by this Shape Node.

132 : Max Count
Max Count is the maximum vertex count that can be achieved by this Shape Node. A value of “-1” indicates maximum
vertex count is unknown.

6.2.1.1.1.10.1. 1 2 Node Count Range

Node Coup A aRe-Met—es of-the-Shape—Node:
minimum aIue represents the Ieast node count that can be achleved by the Shape Node’s descendants The maximym
value reprpsents the greatest node count that can be achieved by Shape Node’s descendants. For Shape Nodes the
minimum and maximum count values should always be equal to “1”.

The data format for Node Count Range is the same as that described in 6.2.1.1.1.10.1.1.1Vertex Count Range.

6.2.1.1.1.10.1.1.3 Polygon Count Range

Polygon Cpunt Range is the aggregate minimum and maximum polygon count for this ShapeyNode. There is a minimym
and maximum value to accommodate shape types that can themselves generate varying-répresentations. The minimym
value reprgsents the least polygon count that can be achieved by the Shape Node. The maximum value represents the
greatest pdlygon count that can be achieved by the Shape Node.

The data format for Polygon Count Range is the same as that described in 6.2.1.71.10.1.1.1Vertex Count Range.

6.2.1.1.1.10.2 Vertex Shape Node Element
Object Tyfpe ID: 0x10dd107f, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00; 0x80, 0xc7, Oxbb, 0x59, 0x97

Vertex Shape Node Element represents shapes defined by collections of vertices.

Figure 28: Vertex Shape Node Element data collection

‘ Element Header ZLIB |

Vertex Shape Data

Complete flescription forElement Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.
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2.1.1.1.10.2.1 Vertex Shape Data

Figure 29: Vertex Shape Data data collection

/L
Base Shape Data

C

w

as

13
T4
th
fig

13
C
as

\ 4
132 : Texture Coord Binding

v
132 : Color Binding

A
Quantization Parameters

pmplete description for Base Shape Data can be found in 6.2.1.1:1,10.1.1 Base Shape Data.

2 : Normal Binding

brmal Binding specifies how (at what granularity) normal vector data is supplied (“bound”) for the sh
sociated/referenced Shape LOD Element. See 6.2:2:4Shape LOD Element for complete description of S
ements.

ppe in the
hape LOD

=0 | — None. Shape has no normial data.

=1 | — Per Vertex. Shape has:anormal vector for every vertex.

=2 | — Per Facet. Shape has-a normal vector for every face/polygon.

=3 | — Per Primitive..Shape has a normal vector for each shape primitive (e.g. a normal for each
tri-strip in ariystrip set).

2 : Texture Coord Binding

b associated/referenced Shape LOD Element. Valid values are the same as documented for 132 : Normal B

xture Coord Binding-specifies how (at what granularity) texture coordinate data is supplied (“bound”) for the shape in

nding data

Id.

2 : Color'Binding
plor , Binding specifies how (at what granularity) color data is supplied (“bound”) for the shal
sociated/referenced Shape LOD Element. Valid values are the same as documented for 132 : Normal Bi

pe in the
hding data

fid

Id

6.2.1.1.1.10.2.1.1 Quantization Parameters

Quantization Parameters specifies for each shape data type grouping (i.e. Vertex, Normal, Texture Coordinates, Color)
the number of quantization bits used for given qualitative compression level. Although these Quantization Parameters
values are saved in the associated/referenced Shape LOD Element, they are also saved here so that a JT File loader/reader
does not have to load the Shape LOD Element in order to determine the Shape quantization level. See 6.2.2.1Shape LOD

El

©

ement for complete description of Shape LOD Elements.
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Figure 30: Quantization Parameters data collection

U8 : Bits Per Vertex

v
U8 : Normal Bits Factor

v
U8 - Bits Per Texture Coord

U8 : Bit
Bits Per V|
[0:24] incl

U8 : No

\ 4
U8 : Bits Per Color

5 Per Vertex
ertex specifies the number of quantization bits per vertex coordinate component. Value“must be within ran
Lisive.

rmal Bits Factor

Normal Bits Factor is a parameter used to calculate the number of quantization bits for'normal vectors. Value must

within ran
following

us8 : Bit
Bits Per T

je [0:13] inclusive . The actual number of quantization bits per normal is-computed using this factor and t
formula: “BitsPerNormal = 6 + 2 * Normal Bits Factor”

5 Per Texture Coord
exture Coord specifies the number of quantization bits per texture coordinate component. Value must

within range [0:24] inclusive.

U8 : Bit
Bits Per ¢
inclusive.

6.2.1.1.
Object Ty

A Tri-Stri
constitutes

5 Per Color
olor specifies the number of quantization bits~per color component. Value must be within range [0:2

|.10.3 Tri-Strip Set Shape Node Element
pe ID: 0x10dd1077, 0x2ac8, 0x&1d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97

one primitive of the set‘and is defined by one list of vertex coordinates.

Figure 31: Tri-Strip Set Shape Node Element data collection

Element Header ZLIB

D Set Shape Node Element-defines a collection of independent and unconnected triangle strips. Each stfi

e

Vertex Shape Data

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Vertex Shape Data can be found in 6.2.1.1.1.10.2.1Vertex Shape Data.

6.2.1.1.1.10.4 Polyline Set Shape Node Element

Object Ty

34

pe ID: 0x10dd1046, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97

© 1SO 2011 — All rights reserv:
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A Polyline Set Shape Node Element defines a collection of independent and unconnected polylines. Each polyline
constitutes one primitive of the set and is defined by one list of vertex coordinates.

Figure 32: Polyline Set Shape Node Element data collection

Element Header ZLIB

ﬁ_\J%
Vertex Shape Data

\ 4
F32 : Area Factor

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header-ZLIB.

Complete description for Vertex Shape Data can be found in 6.2.1.1.1.10.2.1Vertex-Shape Data.

B2 : Area Factor
ea Factor specifies a multiplier factor applied to a Polyline Set computed surface area. In JT data viewer applications
bre may be LOD selection semantics that are based on screen coverage calculations. The so-called “surfacg area” of a
Iyline is computed as if each line segment were a square. This Ared Factor turns each edge into a narrow rectangle.
hlid Area Factor values lie in the range (0,1].

<ZT s>

2.1.1.1.10.5 Point Set Shape Node Element
pject Type ID: 0x98134716, 0x0010, 0x0818, 0x1970x98, 0x08, 0x00, 0x09, 0x83, 0x5d, 0x5a

> oo

Point Set Shape Node Element defines a collection of independent and unconnected points. Each point congtitutes one
primitive of the set and is defined by one veftex coordinate.

Figure 33: Point Set Shape Node Element data collection

| Element Header ZLIB

‘ Vertex Shape Data

\ 4
F32 : Area Factor

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Vertex Shape Data can be found in 6.2.1.1.1.10.2.1Vertex Shape Data.
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F32 : Area Factor

Area Factor specifies a multiplier factor applied to the Point Set computed surface area. In JT data viewer applications
there may be LOD selection semantics that are based on screen coverage calculations. The computed “surface area” of a
Point Set is equal to the larger (i.e. whichever is greater) of either the area of the Point Set’s bounding box, or “1.0”.
Area Factor scales the result of this “surface area” computation..

6.2.1.1.1.10.6 Polygon Set Shape Node Element
Object Type ID: 0x10dd1048, 0x2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97

1=}

A Polygorln Set Shape Node Element defines a collection of independent and unconnected polygons. Each polygpn

constituteg one primitive of the set and is defined by one list of vertex coordinates.

Figure 34: Polygon Set Shape Node Element data collection

| Element Header ZLIB |

Vertex Shape Data

Complete flescription for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete flescription for Vertex Shape Data can be found in 6.2.1.1.1.10:21Vertex Shape Data.

6.2.1.1.1.10.7 NULL Shape Node Element
Object Tylpe ID: 0xd239e7hb6, 0xdd77, 0x4289, 0xa0, 0x7d,\0xb0, Oxee, 0x79, Oxf7, 0x94, 0x94

7

A NULL [Shape Node Element defines a shape which has no direct geometric primitive representation (i.e. it|i
empty/NULL). NULL Shape Node Elements areroften used as “proxy/placeholder” nodes within the serialized LYG
when the dctual Shape LOD data is run time generated (i.e. not persisted).

Figure 35: NULL Shape Node Element data collection

Element Header ZLIB

f_ﬁ%
Base Shape Data

A 4

116 - \ersion-Number

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Shape Data can be found in 6.2.1.1.1.10.1.1 Base Shape Data.

116 : Version Number
Version Number is the version identifier for this node. Version number “0x0001” is currently the only valid value for
NULL Shape Node Element.
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6.2.1.1.1.10.8 Primitive Set Shape Node Element
Object Type ID: 0xe40373c1, 0x1ad9, 0x11d3, 0x9d, Oxaf, 0x0, 0xa0, 0xc9, 0xc7, Oxdd, Oxc2

A Primitive Set Shape Node Element represents a list/set of primitive shapes (e.g. box, cylinder, sphere, etc.) who’s
LODs can be procedurally generated. “Procedurally generate” means that the raw geometric shape definition data (e.g.
vertices, polygons, normals, etc) for LODs is not directly stored; instead some basic shape information is stored (e.g.
sphere center and radius) from which LODs can be generated.

Primitive Set Shape Node Elements actually do not even directly contain this basic shape definition data, but instead

reference (using Late Loaded Property Atoms) Primitive Set Shape Elements within the file for the actual basic shape

ddfinition data. Storing the basic shape definition data within separate independently addressable data segmen
file, allows a JT file reader to be structured to support the “best practice” of delaying the loading/reading.of
dgta until it is actually needed. Complete descriptions for Late Loaded Property Atom Elements and Primitive
Element can be found in 6.2.1.2.7 Late Loaded Property Atom Element and 6.2.2.2 Primitivé~Set Shap

s inthe JT
associated
Set Shape
e Element

reppectively.

Figure 36: Primitive Set Shape Node Element data collection

| Element Header ZLIB |

\ 4
Base Shape Data

A\ 4
132 : Texture Coord.Binding

A 4
132 : Celor Binding

y
Primitive Set
Quantization Parameters

A 4

116 : Version Number

Version Number = =

\4
132 : Texture Coord Gen Type

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Shape Data can be found in 6.2.1.1.1.10.1.1 Base Shape Data.

132 : Texture Coord Binding
Texture Coord Binding specifies how (at what granularity) texture coordinate data is supplied (“bound”) for the shape in
the associated/referenced Shape LOD Element. Valid values are as follows:

© 1SO 2011 — All rights reserved
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=0 | — None. Shape has no texture coordinate data.
=1 | — Per Vertex. Shape has texture coordinates for every vertex.

132 : Color Binding
Color Binding specifies how (at what granularity) color data is supplied (“bound”) for the shape in the

associated/referenced Shape LOD Element. Valid values are the same as documented for Texture Coord Binding data
field.

116 : Versiaon Number

Version Nimber is the version identifier for this element. The value of this Version Number indicates the format ofrddta
fields to fdllow.

=0 — Version 0 Format
=1 - Version 1 Format

132 : Tekture Coord Gen Type
Texture Coord Gen Type specifies how texture coordinates are to be generated.

=0 — Single Tile...Indicates that a single copy of a texture image will be @pplied to significant
primitive features (i.e. cube face, cylinder wall, end cap) no matter how eccentrically
shaped.

=1 — Isotropic...Implies that multiple copies of a texture image mady be mapped onto eccentric
surfaces such that a mapped texel stays approximately sqaare:

6.2.1.1.1]10.8.1 Primitive Set Quantization Parameters

Primitive $et Quantization Parameters specifies for the two-shape data type grouping (i.e. Vertex, Color) the number of
quantizatign bits used for given qualitative compression level.” Although these Quantization Parameters values are savpd
in the assofiated/referenced Shape LOD Element, they are-also saved here so that a JT File loader/reader does not have|to
load the Shape LOD Element in order to determine-the Shape quantization level. See 6.2.2.1Shape LOD Element for
complete description of Shape LOD Elements.

Figure 37:-Rrimitive Set Quantization Parameters data collection

U8 : Bits Per Vertex

v
U8 : Bits Per Color

U8 : Bits PerVertex
Bits Per Vertex specifies the number of quantization bits per vertex coordinate component. Value must be within ranpe
[0:24] inclusive-

U8 : Bits Per Color
Bits Per Color specifies the number of quantization bits per color component. Value must be within range [0:24]
inclusive.

6.2.1.1.1.10.9 Wire Harness Set Shape Node Element
Object Type ID: 0x4cc7a521, 0x728, 0x11d3, 0x9d, 0x8b, 0x0, 0xa0, 0xc9, 0xc7, Oxdd, Oxc2
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A Wire Harness Set Shape Node Element represents a list of wire harness shapes. Where a wire harness is defined as a
single manufactured wire unit consisting of several physical electrical wires all bound together into a branching structure
of wire bundles that terminate at connectors. A Wire Harness Set Shape Node Element is meant to procedurally generate
its LODs. “Procedurally generate” means that the raw geometric shape definition data (e.g. vertices, polygons, normals,
etc) for LODs is not directly stored; instead some descriptive shape information is stored from which LODs can be
generated (if desired) at load time.

Wire Harness Set Shape Node Elements actually do not even directly contain this description shape definition data, but
instead reference (using Late Loaded Property Atoms) Wire Harness Set Shape Element within the file for the actual
descriptive shape definition data. Storing the descriptive shape definition data within separate independently addressable
dgta—segments—mthe—JTfite;attows a3 fite Teader tobe—structured—to—supportthe—“best practice*—ofdglaying the
lopding/reading of associated data until it is actually needed. Complete descriptions for Late Loaded Progerty Atom
Elements and Wire Harness Set Shape Element can be found in 6.2.1.2.7 Late Loaded Property Atom Element and
6.p.2.3 Wire Harness Set Shape Element respectively.

Figure 38: Wire Harness Set Shape Node Element data collection

| Element Header ZLIB |

A 4
Base Shape Data

Complete description for Element Header ZLIB can be found in 6.1:3.2.2 Element Header ZLIB.

Complete description for Base Shape Data can be found in6:2:1.1.1.10.1.1 Base Shape Data.

2.1.1.2 Attribute Elements

6
Aftribute Elements (e.g. color, texture, material, lights, etc.) are placed in LSG as objects associated with nodes.
Agftribute Elements are not nodes themselves; but can be associated with any node.

Fgr applications producing or consuming’JT format data, it is important that the JT format semantics of how attributes
are meant to be applied and accumulated down the LSG are followed. If not followed, then consistency bgtween the
afplications in terms of 3D positioning and rendering of LSG model data will not be achieved.

To that end each attribute type defines its own application and accumulation semantics, but in general attributgs at lower
leyels in the LSG take-precedence and replace or accumulate with attributes set at higher levels. Nodps without
aspociated attributes inherit those of their parents. Attributes inherit only from their parents, thus a node’s attributes do
ngt affect that node*s/siblings. The root of a partition inherits the attributes in effect at the referring partition node.

Aftributes can’be declared “final” (see 6.2.1.1.2.1.1Base Attribute Data), which terminates accumulation of that attribute
type at that-attribute and propagates the accumulated values there to all descendants of the associated node. Dgscendants
can explicitly do a one-shot override of “final” using the attribute “force” flag (see 6.2.1.1.2.1.1Base Attribute] Data), but
dq net by default. Note that “force” does not turn OFF “final” — it is simply a one-shot override of “final” for the specific
attribu ing. y i i i i =door in the
attribute accumulation semantics, and that “force” is a doggy-door in the back-door!

6.2.1.1.2.1 Base Attribute Element
Object Type ID: 0x10dd1001, Ox2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97

Base Attribute Element represents the simplest form of an attribute that can exist within the LSG. A Base Attribute
Element within a LSG has no implied appearance or positioning semantics.
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Complete descri

6.2.1.1.]

132 : Ob
Object ID s

U8 : Ste
State Flagp
informatio
are reservdd.

p.1.1 Base Attribute Data

ject ID

te Flags

h for Attribute Elements; such as indicating that the attributes accumulation is final. All undocumented bjts

Figure 39: Base Attribute Element data collection

| Element Header ZLIB |

Base Attribute Data

Figure 40: Base Attribute Data data collection

132 : Object ID

\ 4
U8 : State Flags

\ 4
U32 : Field Inhibit Flags

the identifier for this Object. Other objects referencing this particular object do so using the Object ID.

is a collection of flags. The flags areneombined using the binary OR operator and store various stjte

OxOLl | — Accumulation Final flag:
Provides a means to terminate a particular attribute type’s accumulation at any node of the LSG
and thereby force all descendants to have that value of the attribute.
=0 - Accumulation is to occur normally
=1 - Accurmulation is “final”
0x02 | — Accumulation Force flag.
Provides a way to assign nodes in LSG, attributes that must not be overridden by ancestors.
=0 Accumulation of this attribute obeys ancestor’s Final flag setting.
=1 - Accumulation of this attribute is forced (overrides ancestor’s Final flag setting)
0x04 | — Accumulation Ignore Flag

Provides a way to indicate that the attribute is to be ignored (not accumulated).
=0 - Attribute is to be accumulated normally (subject to values of Force/Final flags)
= 1 — Attribute is to be ignored.

U32 : Field Inhibit Flags

Field Inhibit Flags is a collection of flags. The flags are combined using the binary OR operator and store the per
attribute value accumulation flag. Each value present in an Attribute Element is given a field number ranging from 0 to
31. If the field’s corresponding bit in Inhibit Flags is set, then the field should not participate in attribute accumulation.
All bits are reserved.

40
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See each particular Attribute Element (e.g. Material Attribute Element) for a description of bit field assignments for each
attribute value.

6.2.1.1.2.2 Material Attribute Element
Object Type ID: 0x10dd1030, Ox2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97

Material Attribute Element defines the reflective characteristics of a material. JT format LSG traversal semantics dictate
that material attributes accumulate down the LSG by replacement.

The Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit assignments for the Material Attribute El¢ment data
figlds, are as follows:

Field Inhibit Flag Bit Data Field(s) Bit Applies To Kol
0 Ambient Common RGB Value, Ambient Color

Diffuse Color

Specular Common RGB Value, Specular Color

Emission Common RGB Value, Emission Color

Blending Flag, Source Blending Factor, Destination Blending Factor

Override Vertex Color Flag

Gl IWIN|F-

© 1SO 2011 — All rights reserved 41


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

Figure 41: Material Attribute Element data collection

| Element Header ZLIB |

A 4
Base Attribute Data

U16 : Data Flags

\ 4
RGBA : Ambient Color

F32 : Ambient Common
RGB Value

\ 4
RGBA : Diffuse Color

) 4
F32 : Specular Common v
RGB Value RGBA : Specular Color
Y \ 4

F32 : Emission Common
RGB Value

RGBA : Emission Color

v
F325'Shininess

Complete glescription for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete flescription far-Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

Ul6 : Data Rlags
Data Flagq is.a collection of flags and factor data. The flags and factor data are combined using the binary OR operatfr.
The flags $tore information to be used for interpreting how to read subsequent Material data fields. All undocumentgd
bits are reserved.

The Ambient/Emission/Specular Pattern Flags are used to optimize color data storage size to a single F32 for the
common case where the color is defined as [c, ¢, ¢, 1.0] (i.e. RGB values are the same “c” value and Alpha is always
“1.07).

0x0001 | — Pattern flag bits are used flag (i.e. Ambient/Emission/Specular pattern flags)
= 0 - Pattern bits are to be ignored.
=1 - Pattern bits are valid.
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0x0002 | — Ambient Pattern Flag
=0 - Ambient data stored as four F32.
=1 - Ambient data stored as one F32 and resultant color equals [c, c, ¢, 1.0]

0x0004 Emission Pattern Flag
=0 - Emission data stored as four F32.
=1 - Emission data stored as one F32 and resultant color equals [c, c, ¢, 1.0]

0x0008 Specular Pattern Flag
= 0 — Specular data stored as four F32.
=1 — Specular data stored as one F32 and resultant color equals [c, ¢, ¢, 1.0]

0x0010 Blending Flag. Blending is a color combining operation in the graphics pipeline that-happéns
just before writing a color to the framebuffer. If Blending is ON then incoming@ragment
RGBA color values are used (based on Source Blend Factor) and existing framebuffer’s
RGBA color values are used (based on Destination Blend Factor) to blend between the
incoming fragment RGBA and the current frame buffer RGBA to arriye at'a new RGBA c¢lor
to write into the framebuffer. If Blending is OFF then incoming fragment RGBA color is
written directly into framebuffer unmodified (i.e. completely overtiding existing framebuffler
RGBA color). Additional information on how one might leverage the Blending Flag and
Blending Factors to render an image can be found in the reférences listed in section 2
References and Additional Information.
=0 - Blending OFF.
=1 - Blending ON

0x0020 Override Vertex Colors Flag. If ON, then a shape’s per vertex colors are to be overridden py
the accumulated Material color.
=0 - Override OFF
=1 -Override ON

0x07CO0 Source Blend Factor (stored in-kits 6 — 10 or in binary notation 0000011111000000). If
Blending Flag enabled, this.alue indicates how the incoming fragment’s (i.e. the source)
RGBA color values are totbe used to blend with the current framebuffer’s (i.e. the destination)
RGBA color values, Additional information on the interpretation of the Blending Factor
values and how one\might leverage them to render an image can be found in reference [4]
listed in sectiom2 References and Additional Information.
=0 - Interpret Same as OpenGL GL_ZERO Blending Factor
=1 - Interpret same as OpenGL GL_ONE Blending Factor
= 2 — Interpret same as OpenGL GL_DST_COLOR Blending Factor
= 3 €lnterpret same as OpenGL GL._SRC_COLOR Blending Factor
4.~ Interpret same as OpenGL GL_ONE_MINUS_DST_COLOR Blending Factor
35 — Interpret same as OpenGL GL_ONE_MINUS_SRC_COLOR Blending Factor
= 6 — Interpret same as OpenGL GL_SRC_ALPHA Blending Factor
=7 — Interpret same as OpenGL GL_ONE_MINUS_SRC_ALPHA Blending Factor
= 8 — Interpret same as OpenGL GL_DST_ALPHA Blending Factor
=9 — Interpret same as OpenGL GL_ONE_MINUS_DST_ALPHA Blending Factor
=10 — Interpret same as OpenGL GL_SRC_ALPHA_SATURATE Blending Factor
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43


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

OxF800 | — Destination Blend Factor (stored in bits 11 — 15 or in binary notation 1111100000000000). ).

If Blending Flag enabled, this value indicates how the current framebuffer’s (the destination)
RGBA color values are to be used to blend with the incoming fragment’s (the source) RGBA
color values. Additional information on the interpretation of the Blending Factor values and
how one might leverage them to render an image can be found in reference [4] listed in
section 2 References and Additional Information.

=0 - Interpret same as OpenGL GL_ZERO Blending Factor

=1 - Interpret same as OpenGL GL_ONE Blending Factor

=2 — Interpret same as OpenGL GL_DST_COLOR Blending Factor

=3 - Interpret same as OpenGL GL._SRC_COLOR Blending Factor

= — INETPret same a5 OpPenGL GL_ONE_MTNUS_DST_COLOR Biending Factor
=5 — Interpret same as OpenGL GL_ONE_MINUS_SRC_COLOR Blending Factor
= 6 — Interpret same as OpenGL GL_SRC_ALPHA Blending Factor

=7 — Interpret same as OpenGL GL_ONE_MINUS_SRC_ALPHA Blending Factor
= 8 — Interpret same as OpenGL GL_DST_ALPHA Blending Factor

=9 — Interpret same as OpenGL GL_ONE_MINUS_DST_ALPHA Blending Facter
=10 — Interpret same as OpenGL GL_SRC_ALPHA_SATURATE Blending Factor

F32 : Ainbient Common RGB Value

Ambient (

Red, Greef, and Blue are all equal to this same value; R = G = B = value). Also the Alpha component is always assum

to be equa

RGBA :
Ambient
if Ambien

ommon RGB Value is the assigned value for the Red, Green, and Blue components of the ambient color (i

to “1.0”. Ambient Common RGB Value is only present if Ambient Pattern' Flag equals 1.

Ambient Color
olor specifies the ambient red, green, blue, alpha color values ofithe material. Ambient Color is only presg
Pattern Flag equals 0.

RGBA :
Diffuse Cd

F32: Sf
Specular d

Red, Greef, and Blue are all equal to this same valug; R = G = B = value). Also the Alpha component is always assum

to be equa

RGBA
Specular
if Speculal

Diffuse Color
lor specifies the diffuse red, green, blue, alpha coloralues of the material.

pecular Common RGB Value
ommon RGB Value is the assigned value-for the Red, Green, and Blue components of the specular color (i

to “1.0”. Specular Common RGB Value is only present if Specular Pattern Flag equals 1.

Specular Color
olor specifies the specular red, green, blue, alpha color values of the material. Specular Color is only presg
Pattern Flag equals 0.

F32 : Emission Comimnon RGB Value

Emission

Red, Greef, and Blue arg-all equal to this same value; R = G = B = value). Also the Alpha component is always assum

to be equa

RGBA:

Common RGB¢Value is the assigned value for the Red, Green, and Blue components of the emissive color (i

to “1.0™ Emission Common RGB Value is only present if Emission Pattern Flag equals 1.

Emission Color

bd

e

e.
bd

e.
bd

Emission

Colar specifies the emissive red, green, blue, alpha color values of the material. Emission Color is only prese

if Emission Pattern Flag equals 0.

F32 : Shininess
Shininess is the exponent associated with specular reflection and highlighting. Shininess controls the degree with which
the specular highlight decays. Only values in the range [1,128] are valid.

6.2.1.1.2.3 Texture Image Attribute Element
Object Type ID: 0x10dd1073, Ox2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97
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Texture Image Attribute Element defines a texture image and its mapping environment. JT format LSG traversal
semantics dictate that texture image attributes accumulate down the LSG by replacement.

Note that additional information on the interpretation of the various Texture Image Attribute Element data fields can be
found in the OpenGL references listed in section 2 References and Additional Information.

The Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit assignments for the Texture Image Attribute Element
data fields, are as follows:

Field Inhibit Flag Bit Data Field(s) Bit Applies To

U IexXture 1ype, Imadge Texel Ddld, |V|ipmap 1MdJe 1 EeXel Dadld, EXtermat ol0lMage
Name, Shared Image Flag

Border Mode, Border Color

Mipmap Minification Filter, Mipmap Magnification Filter

S-Dimen Wrap Mode, T-Dimen Wrap Mode, R-Dimen Wrap Mode

Blend Type, Blend Color

Texture Transform

Tex Coord Gen Mode, Tex Coord Reference Plane, Environment’ Mapping Flag

OO WIN|F-

Internal Compression Level

Figure 42: Texture Image Attribute Element data collection

| Element Header ZLIB |

A 4
Base Attribute Data

v
1161 VErsion Number

Y
Texture Vers-1 Data
Version Number = =
A
Texture Vers-2 Data

A

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

116 : Version Number
Version Number is the version identifier for this element. The value of this Version Number indicates the format of data

fields to follow.

=1 - Version-1 Format
=2 | — Version-2 Format
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6.2.1.1.2.3.1 Texture Vers-1 Data

Texture Vers-1 Data format is stored in JT file if the Texture Image Element is a vanilla/basic texture image (i.e. if
texture does not use any advanced features as described in 6.2.1.1.2.3.2 Texture Vers-2 Data).

Figure 43: Texture Vers-1 Data data collection

132 : Number of Bytes

Number of Bytes = =0

Vers-1 Image Format
Description

\ 4
UChar : Image Texel Data[%

v
Vers-1 Texture
Environment

Complete fletails for Vers-1 Image Format Description can be found in 6.2:1.1.2.3.1.1 Vers-1 Image Format Descriptio.

Number of Bytes

Complete fletails for Vers-1 Texture Environment can be found in_6:2:1.1.2.3.1.2 Vers-1 Texture Environment.

132 : Number of Bytes
Number of Bytes specifies the length, in bytes, of the on-disk representation of the texture image. The texture image in a
JT file is [a single monolithic/contiguous block of data-beginning with the highest-level mip image, and processing
through the mipmaps down to a one-by-one texel image. If there are no mipmaps, then the number of bytes is fol a
single textpre image. If Number of Bytes is zeratheh no other data is stored.

UChar | Image Texel Data
Image Texel Data is the single monoljthic/contiguous block of image data. The length of this field in bytes is specifipd
by the valye of data field Number of Bytes.

6.2.1.1.2|13.1.1 Vers<I)image Format Description

The Vers4l Image Format Description is a collection of data defining the pixel format, data type, size, and otHer
miscellanepus charaeteristics of the monolithic block of image data.

46 © 1SO 2011 — All rights reserved


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

Figure 44: Vers-1 Image Format Description data collection

U32 : Pixel Format

v
U32 : Pixel Data Type

\ 4

P WS . Lot
11O . UNTICTISIOTIAITLY

A 4
U32 : Mipmaps Flag

\ 4
U32 : Shared Image Flag

UB2 : Pixel Format
Pilxel format specifies the format of the texture image pixel data. Depending on the format, anywhere from
elements of data exists per texel.

ne to four

No format specified..Texture mapping is not applied.

=0

A red color component followed by green and blue color components

A red color component followed by green, blue, and alpha color components

A single luminance component

A luminance component followed by an alpha color component.

A single stencil index.

A'single depth component

A-single red color component

A single green color component

A single blue color component

A single alpha color component

A blue color component, followed by green and red color components

A blue color component, followed by green , red, and alpha color components

U32 : Pixel Data Type
Pixel Data Type specifies the data type used to store the per texel data. If the Pixel Format represents a multi component
value (e.g. red, green, blue) then each value requires the Pixel Data Type number of bytes of storage (e.g. a Pixel Format
Type of “1” with Pixel Data Type of “7” would require 12 bytes of storage for each texel).

No type specified. Texture mapping is not applied.

Signed 8-bit integer

Single-precision 32-bit floating point

Unsigned 8-bit integer

Single bits in unsigned 8-bit integers
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=5 | — Unsigned 16-bit integer

=6 | — Signed 16-bit integer

=7 | — Unsigned 32-bit integer
8 | — Signed 32-hit integer

= 16-hit floating point according to IEEE-754 format (i.e. 1 sign bit, 5 exponent bits, 10
mantissa bits)

[16 : Dimensionality
Dimensionality specifies the number of dimensions the texture image has. Valid values include:

=1| — One-dimensional texture

=2 | — Two-dimensional texture

132 : Width
Width spegifies the width dimension (number of texel columns) of the texture image in number of pixels;
132 : Helight
Height spdcifies the height dimension (number of texel rows) of the texture image in numberof pixels. Height is “1” for
one-dimengsional images.
U32 : Mipmaps Flag
Mipmaps Flag is a flag indicating whether the texture image has mipmaps.

=0| — No mipmaps

=1| - Yes has mipmaps. Image Texel Data is assumed to cehtain multiple textures, each a

mipmap of the base texture. All texture in power of two must be provided between the
base texture and a one-by-one texture.

U32 : Shared Image Flag
Shared Image Flag is a flag indicating whether this texture image is shareable with other Texture Image Elemgnt
attributes.

=0| — Image is not shareable with other Texture Image Elements.

=1| — Image is shareable with other Texture Image Elements.
6.2.1.1.2|13.1.2 Vers-1 Texture Environment
The Vers{l Texture Environiment is a collection of data defining various aspects of how a texture image is to pe
mapped/agplied to a surfaee.
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Figure 45: Vers-1 Texture Environment data collection

132 : Mipmap Magnification Filter

\ 4
132 : Mipmap Minification Filter

A 4

\ 4
132 : T-Dimen Wrap Mode

\ 4
132 : Texture Function Data

v
RGBA : Blend Color

A\ 4
Mx4F32 : Texture Transform

132 : Mipmap Magnification Filter
Mlipmap Magnification Filter specifies the texture filtering method to apply when a single pixel on screen maps to a tiny
pqrtion of a texel.

=0 |- None.
=1 | — Nearest. Texel with.ceofdinates nearest the center of the pixel is used.
=2 | — Linear. A weighted-linear average of the 2 x 2 array of texels nearest to the center of the

pixel is used. For one-dimensional texture is average of 2 texels. For three dimensional
texel is 2 x 2x2 array.

132 : Mipmap Minification Filter
Mlipmap Minification Rilter specifies the texture filtering method to apply when a single pixel on screen mapg to a large
cqllection of texels,

= 0vsfo— None.
= — Nearest. Texel with coordinates nearest the center of the pixel is used.
=2 | — Linear. A weighted linear average of the 2 x 2 array of texels nearest to the center of the

pixel is used. For one-dimensional texture is average of 2 texels. For three-dimensional
texture is 2 X 2 X 2 array.

=3 | — WNearest in Mipmap. WIithin an mdividual mipmap, the texel With coordinates nearest the
center of the pixel is used.
=4 | — Linear in Mipmap. Within an individual mipmap, a weighted linear average of the 2 x 2

array of texels nearest to the center of the pixel is used. For one-dimensional texture is
average of 2 texels. For three-dimensional texture is 2 X 2 X 2 array

=5 | — Nearest between Mipmaps. Within each of the adjacent two mipmaps, selects the texel
with coordinates nearest the center of the pixel and then interpolates linearly between
these two selected mipmap values.

=6 | — Linear between Mipmaps. Within each of the two adjacent mipmaps, computes value
based on a weighted linear average of the 2 x 2 array of texels nearest to the center of the
pixel and then interpolates linearly between these two computed mipmap values.
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132 : S-Dimen Wrap Mode
S-Dimen Wrap Mode specifies the mode for handling texture coordinates S-Dimension values outside the range [0, 1].

=0 | — None.
=1 | — Clamp. Any values greater than 1.0 are set to 1.0; any values less than 0.0 are set to 0.0
=2 | — Repeat Integer parts of the texture coordinates are ignored (i.e. retains only the fractional

component o texture coordinates grater than 1.0 and only one-minus the fractional
component of values less than zero). Resulting in copies of the texture map tiling the

surface

=3 — Mirror Repeat Like Repeat,except the surface tiles “flip_flnp" rpcnlfing in_an
alternating mirror pattern of surface tiles.

=4 | — Clamp to Edge. Border is always ignored and instead texel at or near the edge is chosen

for coordinates outside the range [0, 1]. Whether the exact nearest edge texel or some
average of the nearest edge texels is used is dependent upon the mipmap filtering value.
=5 | — Clamp to Border. Nearest border texel is chosen for coordinates outside the range.[0,1].
Whether the exact nearest border texel or some average of the nearest border texels is
used is dependent upon the mipmap filtering value.

132 : T-Dimen Wrap Mode
T-Dimen Wrap Mode specifies the mode for handling texture coordinates T-Dimensiom_vatues outside the range [0, 1].
Same modg values as documented for S-Dimen Wrap Mode.

132 : Tekture Function Data
Texture Kunction Data contains information indicating how the Walues in the texture map are to pe
modulatedfcombined/blended with the original color of the surface or some. other alternative color to compute the final
color to be painted on the surface. This information is encoded within a*single 132 using the following bit allocations.

Bits 0 - 2 Texture Environment Mode. Additional information on the interpretation of the
Texture Environment Mode values and-how one might leverage them to render an
image can be found in reference [4]\listed in section 2 References and Additional
Information.

=0 - None.

=1 — Decal. Interpretisame as OpenGL GL_DECAL environment mode.

=2 — Modulate. Interpret same as OpenGL GL_MODULATE environment
mode.

=3 — Replage. HInterpret same as OpenGL GL_REPLACE environment mode.

=4 — Blend, .Tnterpret same as OpenGL GL_BLEND environment mode.

=5 — Add:” Interpret same as OpenGL GL_ADD environment mode.

=6 £-Combine. Interpret same as OpenGL GL_COMBINE environment mode.

Bit 3 Environment Mapping Flag. Note that if this flag is ON (i.e. = 1), then applications

processing this JT data for 3D graphical visualization should automatically turn ON

texture coordinate generation for spherical environment maps.

=0-OFF

=1-0ON

Bifs-4 - 31 Reserved for future use.

RGBA : Blend Color
Blend Color specifies the color to be used for “Blend” Texture Environment Mode operations.

Mx4F32 : Texture Transform
Texture Transform defines the texture coordinate transformation matrix. A renderer of JT data would typically apply this
transform to texture coordinates prior to applying the texture.

6.2.1.1.2.3.2 Texture Vers-2 Data
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Texture Vers-2 Data collection supports texturing effects not representable in the Texture Vers-1 Data format (e.g.
multiple textures (i.e. channels), texture image storage location external to the JT file, three-dimensional textures, other
than unsigned-byte data formats, mirror and edge/border coordinate clamp modes, etc.). Any Texture Image Attribute
Element using the Texture Vers-2 Data format will contain a “degenerate” Texture Vers-1 Data block, where Number of
Bytes data field has a value of “0”.

Figure 46: Texture Vers-2 Data data collection

132 - prf!!Eg !¥Ep
Y

Vers-2 Texture
Environment

Texture Coord
Generation Parameters

v
132 : Texture Channel

v
U32 : Reserved Figld

Y
U32 : Inline_Image Storage Flag

v
132 : Image Count

Inline Image Storage Flag == Inline Image Storage Flag ==

Inline TextureNmage
Data

»
»

A
\ 4

MbString : External Storage Name

Count Count <

Complete details for Vers-2 Texture Environment can be found in 6.2.1.1.2.3.2.1 Vers-2 Texture Environment.

Complete details for Texture Coord Generation Parameters can be found in 6.2.1.1.2.3.2.2 Texture Coord Generation
Parameters.

Complete details for Inline Texture Image Data can be found in_6.2.1.1.2.3.2.3 Inline Texture Image Data.

132 : Texture Type
Texture Type specifies the type of texture.

[=0 [ - None. |
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=1 | — One-Dimensional. A one-dimensional texture has a height (T-Dimension) and depth (R-
Dimension) equal to “1” and no top or bottom border.

=2 | — Two-Dimensional. A two-dimensional texture has a depth (R-Dimension) equal to “1.”

=3 | — Three-Dimensional. A three-dimensional texture can be thought of as layers of two-
dimensional sub image rectangles arranged in a sequence.

=4 | — Bump Map. A bump map texture is a texture where the image texel data (e.g. RGB color
values) represents surface normal XYZ components.

=5 | — Cube Map. A cube map texture is a texture cube centered at the origin and formed by a
set of six two-dimensional texture images.

132 : Tekture Channel
Texture Channel specifies the texture channel number for the Texture Image Element. For purposes of multi-texturir
the JT comcept of a texture channel corresponds directly to the OpenGL concept of a “texture unit.” The Textu
lue must be between 0 and 31 inclusive. Best practices suggest that renderer of JT data ignore all:but channgl-

Channel v
0 if the re
assume tha

U32: R
Reserved §

U32 : Inline Image Storage Flag

Inline Ima

nderer does not support multi-textured geometry. Also for purposes of blending, renderer of*JT data shoy
t higher numbered texture channels “blend over” lower numbered ones.

bserved Field
Field is a data field reserved for future JT format expansion.

e Storage Flag is a flag that indicates whether the texture image is stored_within the JT File (i.e. inline) or

some othef external file.

=0 | — Texture image stored in an external file.

=1 | — Texture image stored inline in this JT file.
132 : Impge Count
Image Coynt specifies the number of texture images. A “Cube-Map” Texture Type must have six images while all otl
Texture Types should only have one image.
MbString : External Storage Name
External Storage Name is a string identifying the'name of an external texture image storage. External Storage Name|i
only presept if data field Inline Image Storage Flag equals “0.” If present there will be data field Image Count numi
of Externgl Storage Name instances. This External Storage Name string is a relative path based name for the textu
image filej Where “relative path” should>be interpreted to mean the string contains the file name along with a
additional path information that locate$ the texture image file relative to the location of the referencing JT file.

6.2.1.1.2

The Vers-
mapped/af]

3.2.1 Vers-2-Texture Environment

P Texture Enyikerniment is a collection of data defining various aspects of how a texture image is to
plied to a surface.

ga
re

in
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Figure 47: Vers-2 Texture Environment data collection

132 : Border Mode

\ 4
132 : Mipmap Magnification Filter

A 4

PP-V- N W T P LY L L
ToZ . IVITPITIdD IVITIITCaduuri FIII.UI

v
132 : S-Dimen Wrap Mode

\ 4
132 : T-Dimen Wrap Mode

\4
132 : R-Dimen Wrap Mode

132 : Internal Compression Level

v
RGBA : Blend Color

v
RGBA : Border Color

\ 4
Mx4F32 : Texture Transform

132 : Border Mode
BorderMode specifies the texture border mode.
=0 | — No border.
=1 | — Constant Border Color. Indicates that the texture has a constant border color whose
value is defined in data field Border Color.
=2 | — Explicit. Indicates that a border texel ring is present in the texture image definition.

132 : Mipmap Magnification Filter
Mipmap Magnification Filter specifies the texture filtering method to apply when a single pixel on screen maps to a tiny
portion of a texel.

=0 | — None.
=1 | — Nearest. Texel with coordinates nearest the center of the pixel is used.
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=2 | — Linear. A weighted linear average of the 2 x 2 array of texels nearest to the center of the
pixel is used. For one-dimensional texture is average of 2 texels. For three dimensional
texel is 2 x 2 x 2 array.

132 : Mipmap Minification Filter
Mipmap Minification Filter specifies the texture filtering method to apply when a single pixel on screen maps to a large
collection of texels.

=0 | — None.
=1 | — Nearest. Texel with coordinates nearest the center of the pixel is used
=2 | — Linear. A weighted linear average of the 2 x 2 array of texels nearest to the center of the

pixel is used. For one-dimensional texture is average of 2 texels. For three-dimensional
texture is 2 x 2 x 2 array.

=3 | — Nearest in Mipmap. Within an individual mipmap, the texel with coordinates nearestcthe
center of the pixel is used.
=4 | — Linear in Mipmap. Within an individual mipmap, a weighted linear average of the'2 x 2

array of texels nearest to the center of the pixel is used. For one-dimensional-texture is
average of 2 texels. For three-dimensional texture is 2 x 2 x 2 array

=5 | — Nearest between Mipmaps. Within each of the adjacent two mipmaps, selects the texel
with coordinates nearest the center of the pixel and then interpolates-linearly between
these two selected mipmap values.

=6 | — Linear between Mipmaps. Within each of the two adjacent mipmaps, computes value
based on a weighted linear average of the 2 x 2 array of texels nearest to the center of the
pixel and then interpolates linearly between these two camputed mipmap values.

132 : S-Dimen Wrap Mode
S-Dimen Wrap Mode specifies the mode for handling texture coordinates S-Dimension values outside the range [0, 1].

=0 | — None.
= — Clamp. Any values greater than 1.0 are'set to 1.0; any values less than 0.0 are set to 0.0
=2 | — Repeat Integer parts of the texture:coordinates are ignored (i.e. retains only the fractional

component o texture coordinates-grater than 1.0 and only one-minus the fractional
component of values less than.zero). Resulting in copies of the texture map tiling the

surface

=3 | — Mirror Repeat. Like\\Répeat, except the surface tiles “flip-flop” resulting in an
alternating mirror pattern of surface tiles.

=4 | — Clamp to Edge. ‘Border is always ignored and instead texel at or near the edge is chosen

for coordinates outside the range [0, 1]. Whether the exact nearest edge texel or some
average ofthénearest edge texels is used is dependent upon the mipmap filtering value.
=5 | — Clamp,to‘Border. Nearest border texel is chosen for coordinates outside the range [0, 1].
Whether’'the exact nearest border texel or some average of the nearest border texels is
used-is dependent upon the mipmap filtering value.

132 : T-Dimep-Wrap Mode
T-Dimen WrapsMode specifies the mode for handling texture coordinates T-Dimension values outside the range [0, 1].
Same mode_values as documented for S-Dimen Wrap Mode.

132 : R-Dimen Wrap Mode
R-Dimen Wrap Mode specifies the mode for handling texture coordinates R-Dimension values outside the range [0, 1].
Same mode values as documented for S-Dimen Wrap Mode.

132 : Blend Type

Blend Type contains information indicating how the values in the texture map are to be modulated/combined/blended
with the original color of the surface or some other alternative color to compute the final color to be painted on the
surface. Additional information on the interpretation of the Blend Type values and how one might leverage them to
render an image can be found in reference [4] listed in section 2 References and Additional Information.
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=0 | — None.

=1 | — Decal. Interpret same as OpenGL GL_DECAL environment mode.

=2 | — Modulate. Interpret same as OpenGL GL_MODULATE environment mode.
=3 | — Replace. Interpret same as OpenGL GL_REPLACE environment mode.

=4 | — Blend. Interpret same as OpenGL GL_BLEND environment mode.

= — Add. Interpret same as OpenGL GL_ADD environment mode.

=6 | — Combine. Interpret same as OpenGL GL_COMBINE environment mode.

132 : Internal Compression Level

In|
in
on

dq

M
T4
trg

6

T4
b

automatically generated for each of the\d.ecomponents (S, T, R, Q) of a texture coordinate.

Figure-48: Texture Coord Generation Parameters data collection

A

132 : Tex Coord Gen Mode

\ 4
PlaneF32 : Tex Coord Reference Plane[*

ernal COmpression LeVel SPEcITies a data Compression ninyrecommendation that a J1 1ile foader 15 free to] follow for
ernally (in memory) storing texel data. This setting does not affect how image texel data is actually stered|in JT files
other externally referenced files.

=0 | — None. No compression of texel data.

=1 | — Conservative. Lossless compression of texel data.

=2 | — Moderate. Texel components truncated to 8-bits each.

= — Aggressive. Texel components truncates to 4-bits each (or 5 bits for,RGB images).
GBA : Blend Color
end Color specifies the color to be used for the “Blend” mode of Blend Typeoperations.
GBA : Border Color
prder Color specifies the constant border color to use for “Clamp_te@ Border” style wrap modes when the tekture itself
es not have a border.
x4F32 : Texture Transform
xture Transform defines the texture coordinate transformation matrix. A renderer of JT data would typicallyf apply this
nsform to texture coordinates prior to applying the texture.
2.1.1.2.3.2.2 Texture Coord Generation Parameters
xture Coord Generation Parameters contairis. information indicating if and how texture coordinate compongnts should

0

Ir-
J

- o a0 AN Al
< . TTA CUUTU UOTIT IVIUOUT

Tex Coord Gen Mode specifies the texture coordinate generation mode for each component (S, T, R, Q) of texture
coordinate. There are four mode values stored, one for each component of texture coordinate. The mode values are
stored in S, T, R, Q order.

©

=0 | — None. No texture coordinates automatically generated.

=1 | — Model Coordinate System Linear. Texture coordinates computed as a distance from a
reference plane specified in model coordinates.

=2 | — View Coordinate System Linear. Texture coordinates computed as a distance from a
reference plane specified in view coordinates.

=3 | — Sphere Map. Texture coordinates generated based on spherical environment mapping.
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=4 | — Reflection Map. Texture coordinates generated based on cubic environment mapping.

= — Normal Map. Texture coordinates computed/set by copying vertex normal in view
coordinatesto S, T, R.

PlaneF32 : Tex Coord Reference Plane

Reference Plane specifies the reference plane used for “Model Coordinate System Linear” and “View Coordinate System
Linear” texture coordinate generation modes. There are four Reference Planes stored, one for each component of texture
coordinate. The Reference Planes are stored in S, T, R, Q order. Even if a components “Tex Coord Gen Mode” is one
that does not require a reference plane, dummy reference planes are still stored in JT file.

6.2.1.1.2|13.2.3 Inline Texture Image Data

Inline Texture Image Data is a collection of data defining the texture format properties and image texel data-for ohe
texture imgge. Inline Texture Image Data is only present if data field Inline Image Storage Flag equals "> If presgnt
there will e data field Image Count number of Inline Texture Image Data instances.

Figure 49: Inline Texture Image Data data collection

Vers-2 Image Format
Description

\ 4
132 : Total Image Data Size

A

132 : Mipmap Image Byte Count

A Mipmaps
UChar : Mipmap Image Texel Data Count

A

Mipmap Image
Byte Count

A 4

Complete |description for Vers-2 \Image Format Description can be found in_6.2.1.1.2.3.2.3.1Vers-2 Image Fornjat
Descriptiop.

132 : Tofal Image Data Size
Total Imape Data Size specifies the total length, in bytes, of the on-disk representation for all mipmap images. This byte
total does fot include'the 132 : Mipmap Image Byte Count data field storage (4 bytes per) for each mipmap.

132 : Mipmap Image Byte Count

UChar : Mipmap Image Texel Data
Mipmap Image Texel Data is the mipmap’s block of image data. The length of this field in bytes is specified by the
value of data field Mipmap Image Byte Count.

6.2.1.1.2.3.2.3.1 Vers-2 Image Format Description

The Vers-2 Image Format Description is a collection of data defining the pixel format, data type, size, and other
miscellaneous characteristics of the texel image data.
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Figure 50: Vers-2 Image Format Description data collection

U32 : Pixel Format

v
U32 : Pixel Data Type

A 4

U
Pi

4 e - L
IJ.6 . JHTIETISIOTNIAILY

\ 4
116 : Row Alignment

\ 4
116 : Number Border Texels

\ 4
U32\.wShared Image Flag

\ 4
116 : Mipmaps Count

32 : Pixel Faormat
ixel format speCifiés the format of the texture image pixel data. Depending on the format, anywhere from
ements of data’exists per texel.

ne to four

No format specified. Texture mapping is not applied.

A red color component followed by green and blue color components

A ! 1 ST () 1l L) } -
A TEU LUTUT CUTTIPUTIETTU TUTTUWEU Uy YT ECll, UITUT, dllu diplid CUTUT COTTIPUTIETILS

A single luminance component

A luminance component followed by an alpha color component.

A single stencil index.

A single depth component

A single red color component

A single green color component

A single blue color component

o

A single alpha color component

[y

A blue color component, followed by green and red color components

[od R Bad R Kol BN K22 KO BN Kt A ) Y Rl K =)

N

A blue color component, followed by green , red, and alpha color components
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U32: Pi

xel Data Type

Pixel Data Type specifies the data type used to store the per texel data. If the Pixel Format represents a multi component
value (e.g. red, green, blue) then each value requires the Pixel Data Type number of bytes of storage (e.g. a Pixel Format

Type of “1

” with Pixel Data Type of “3” would require 3 bytes of storage for each texel).

=3 | - Unsigned 8-bit integer |

116 : Dimensionality

Dimension

ality specifies the number of dimensions the texture image has. Valid values include:

=1| — One-dimensional texture

=2 | — Two-dimensional texture

116 : RO
Row Align

to “1” them all bytes are used (i.e. no bytes are wasted at end of row). If set to “2”, then if necéssary, an extra wast

byte(s) is/
(multiple q
(using Cs

w Alignment
ment specifies the byte alignment for image data rows. This data field must have a value of\1, 2, 4, or 8. If

f four for Row Alignment equal “4” and multiple of eight for row alignment equal~“8”). The actual formd
ntax) to determine number of bytes per row is as follows:

BytesPerRow = (numBytesPerPixel * ImageWidth + RowAlignmnet — 1)(& ~(RowAlignment — 1)

re stored at the end of the row so that the first byte of the next row has an address that is a multiple of “

et
bd
711
la

116 : Width
Width spegifies the width dimension (number of texel columns) of the texture image in number of pixels.
116 : Hejight
Height spdcifies the height dimension (number of texel rows) of the‘texture image in number of pixels. Height is “1” {
one-dimengional images.
116 : Depth
Depth spegifies the depth dimension (number of texel.slices) of the texture image in number of pixels. Depth is “1” for
one-dimengional and two-dimensional images.
116 : Number Border Texels
Number Bprder Texels specifies the numberof border texels in the texture image definition. Valid values are “0” or “1
U32 : Shared Image Flag
Shared Image Flag is a flag indicating whether this texture image is shareable with other Texture Image Elemsg
attributes.
= 0| — Imageis not shareable with other Texture Image Elements.
= 1| —<Image is shareable with other Texture Image Elements.
116 : Mi Jmaps Count
Mipmaps C

greater tha

n “1” |nd|cates that mlpmaps are present aII the way down toa 1-by-1 texel

6.2.1.1.2.4 Draw Style Attribute Element
Object Type ID: 0x10dd1014, Ox2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97

Draw Style Attribute Element contains information defining various aspects of the graphics state/style that should be
used for rendering associated geometry. JT format LSG traversal semantics dictate that draw style attributes accumulate
down the LSG by replacement.
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The Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit assignments for the Draw Style Attribute Element data
fields, are as follows:

Field Inhibit Flag Bit Data Field(s) Bit Applies To

0 Two Sided Lighting Flag

Back-face Culling Flag

Outlined Polygons Flag

Lighting Enabled Flag

Flat Shading Flag

QB |WIN|F-

C

C

V

©

Separate Specular Flag

Figure 51: Draw Style Attribute Element data collection

| Element Header ZLIB |

A 4
Base Attribute Data

v
U8 : Vers-0 Data Flags

v
116 : Version Nunriber

Version Number = = v

U8 : \ers-1 Data Flags

[
»

v

bmplete description for Element.Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

bmplete description fop-Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

I8 : Vers-0 Data’Flags
brs-0 Data Flags-is a collection of flags. The flags are combined using the binary OR operator and store va
ftings for Draw Style Attribute Elements. All undocumented bits are reserved.

rious state

0x01 | — Back-face Culling Flag.
Indicates if back-facing polygons should be discarded (culled).

—0—Back-facingpolygonsnoteuled—0/  — —— 0 —
=1 - Back-facing polygons culled.

0x02 | — Two Sided Lighting Flag.

Indicates if two sided lighting should be enabled to insure that back-facing polygons are
illuminated.

=0 - Disable two sided lighting.

= 1 - Enable two sided lighting.
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0x04

— Outlined Polygons Flag

Indicates if polygons should be draw in “wire frame mode” i.e. not filled; only outlines drawn.
=0 - Polygons drawn as filled.
=1 - Only polygon’s outline drawn.

116 : Version Number
Version Number is the version identifier for this element. The value of this Version Number indicates if additional data

te
he

follows.
=01 — \ersion-0 Format
=1| - Version-1 Format
U8 : Vers-1 Data Flags
Vers-1 Dafa Flags is a collection of flags. The flags are combined using the binary OR operator and store\various st
settings fof Draw Style Attribute Elements. Vers-1 Data Flags field is only present if Version Number'equals “1.” T|
Vers-1 Dafa Flags includes the Vers-0 Data Flags data (thus some data flags are repeated/duplicated)“along with so
additional [flags. All undocumented bits are reserved.
OxOl | — Back-face Culling Flag.
Indicates if back-facing polygons should be discarded (culled).
= 0 - Back-facing polygons not culled.
= 1 - Back-facing polygons culled.
0x02 | — Two Sided Lighting Flag.
Indicates if two sided lighting should be enabled to insurethat back-facing polygons are
illuminated.
=0 - Disable two sided lighting.
=1 - Enable two sided lighting.
0x04 | — Outlined Polygons Flag
Indicates if polygons should be draw in/wire frame mode” i.e. not filled; only outlines drawn.
=0 - Polygons drawn as filled.
=1 - 0Only polygon’s outline drawn.
0x08 | — Lighting Enabled Flag
Indicates if lighting should-be enabled. If lighting disabled, then renderer should perform no
calculations concerning-normals, light sources, material properties, etc.
=0 - Disable lighting-
=1 - Enable lighting.
0x10 | — Flat Shading Flag
Indicates‘if the geometry should be rendered with single color (flat shading) or with many
different color (smooth/Gouraud) shading.
=.0.>Disable flat shading (i.e. use smooth/Gouraud shading).
=-1 — Enable flat shading.
0x2 Separate-SpectlarHag:
Indicates if the application of the specular color should be delayed until after texturing. If no
texture mapping then this flag setting is irrelevant.
=0 - Apply specular color contribution before texture mapping.
=1 — Apply specular color contribution after texture mapping.

6.2.1.1.2.5 Light Set Attribute Element
Object Type ID: 0x10dd1096, Ox2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97
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Light Set Attribute Element holds an unordered list of Lights. JT format LSG traversal semantics dictate that light set
attributes accumulate down the LSG through addition of lights to an attribute list.

Light Set Attribute Element does not have any Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit assignments.

Figure 52: Light Set Attribute Element data collection

‘ Element Header ZLIB |

\ 4
‘ Base Attribute Data |

\ 4
132 : Light Count

132 : Light Object ID |4+

Light-Count

[

v

Complete description for Element Header ZLIB can be found in 6.1.3:2.2 Element Header ZLIB.

Complete description for Base Attribute Data can be found in6.2.1.1.2.1.1Base Attribute Data.

132 : Light Count
Light Count specifies the number of lights in the LightSet

132 : Light Object ID
Light Object ID is the identifier for a referenced Light Object.

6/2.1.1.2.6 Infinite Light-Attribute Element
Opject Type ID: 0x10dd1028, @x2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97

nffinite Light Attribute Element specifies a light source emitting unattenuated light in a single direction from gvery point
on an infinite plane. @he infinite location indicates that the rays of light can be considered parallel by the time|they reach
ar] object.

JT| format LSG' traversal semantics dictate that infinite light attributes accumulate down the LSG through @ddition of
lights to an-attribute list.

In[inite Light Attribute Element does not have any Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute| Data) bit

asstgnments:
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Complete

DirF32

Direction gpecifies the direction the light is pointing in.

116 : Ve

Version N

fields to fdllow.

132 : Coord System

Coord Sys

62

Figure 53: Infinite Light Attribute Element data collection

Element Header ZLIB

_—V

Base Light Data

v
DirF32 : Direction

v
116 : Version Number

Version Number = =1

\ 4
132 : Coord System

jescription for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Direction

Fsion Number
imber is the version identifier for this element. The value of this Version Number indicates the format of ddta

=0 — Version-0 Format
=1 - Version-1 Format

em specifies the coordinate space in which Light source is defined. Valid values include the following:

=1| - Viewpoint Coordinate System. Light source is to move together with the
Viewpoint

=2\~ Model Coordinate System. Light source is affected by whatever model
transforms that are current when the light source is encountered in LSG.

=3 | — World Coordinate system. Light source is not affected by model transforms in
tha l SC

Lag Ay =)~y
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6.2.1.1.2.6.1 Base Light Data

Figure 54: Base Light Data data collection

132 : Object ID

\ 4
RGBA : Ambient Color

\ 4
RGBA : Diffuse Color

\ 4
RGBA : Specular Color

\ 4
F32 : Brightness

132 : Object ID
Object ID is the identifier for this Object. Other objects referencing, this particular object do so using the Objeqt ID.

RGBA : Ambient Color

Ambient Color specifies the ambient red, green, blue, alpha.color values of the light.
R

D

GBA : Diffuse Color
ffuse Color specifies the diffuse red, green, blug; alpha color values of the light.

RGBA : Specular Color
Specular Color specifies the specular red,.green, blue, alpha color values of the light.

FB2 : Brightness
Brightness specifies the Light(brightness. The Brightness value must be greater than or equal to “-1”.

[e2)

2.1.1.2.7 PointlLight Attribute Element
Opject Type IDL,0x10dd1045, 0x2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97

Pgint Light\Attribute Element specifies a light source emitting light from a specified position, along a specifieq direction,
arjd withraspecified spread angle

JTLformat LSG traversal semantics dictate that point light attributes accumulate down the LSG through additian of lights
to an attribute list.

Point Light Attribute Element does not have any Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit assignments.
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Figure 55: Point Light Attribute Element data collection

Element Header ZLIB

_—V

Base Light Data

A

y

Complete

Complete

HCoord

Position s

F32 YPosition

HCoordF32 : Position

Coefficients

A
Attenuation

y

F32 : Spread Angle

A

y

DirF32 : Sp

ot Direction

A

y

132 : Spot Intensity

\ 4

116 : Version Number

v

Version Number = =

A 4

132 : Coord System

P
<«

Hescription for Efement Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Hescriptionfor Base Light Data can be found in 6.2.1.1.2.6.1 Base Light Data.

ecifies the light position in homogeneous coordinates.

F32: Spread Angle
Spread Angle, as shown in Figure 56 below, specifies in degrees the half angle of the light cone. Valid Spread Angle
values are clamped and interpreted as follows:

64

angle ==180.0

— Simple point light

0.0 >=angle <=90.0

— Spot Light
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fogused the light source. Only non-negative Spot intensity values are valid.
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\Y/
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O m

A

Figure 56: Spread Angle value with respect to the light cone

irF32 : Spot Direction
ot Direction specifies the direction the spot light is pointing in.

2 . Spot Intensity
ot Intensity specifies the intensity distribution of the light within the spot light core. Spot Intensity is req
ponent” in a lighting equation and indicates how focused the light is at the-center. The larger the valug

6 : Version Number

Ids to follow.

=0| — Version-0 Format
=1 - Version-1 Format

2 : Coord System

pord System specifies the coordinate space inwhich Light source is defined. Valid values include the follow

=1| - Viewpoint Coordinate System. Light source is to move together with the
viewpoint

=2 | - Model Coordinate System. Light source is affected by whatever model
transforms-that are current when the light source is encountered in LSG.

=3 | — World Coordinate system. Light source is not affected by model transforms in
the hSG.

2.1.1.2.7.1L-Attenuation Coefficients

Figure 57: Attenuation Coefficients data collection

tenuation Coefficients data collection contains the coefficients for how light intensity decreases with distancg.

:2011(E)

Ily a “spot
| the more

ersion Number is the version identifier for this element. The value-of.this Version Number indicates the format of data

©

F32—Courstart Atteruation

4
F32 : Linear Attenuation

4
F32 : Quadratic Attenuation
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F32 : Constant Attenuation

Constant Attenuation specifies the constant coefficient for how light intensity decreases with distance. Value must be

greater than or equal to “0”.

F32 : Linear Attenuation

Linear Attenuation specifies the linear coefficient for how light intensity decreases with distance. Value must be greater

than or equal to “0”.

F32 : Quadratic Attenuation

Quadratic Attenuation specifies the quadratic coefficient for how light intensity decreases with distance. Value must

greater thah or equal to “0”.

6.2.1.1.2.8 Linestyle Attribute Element
Object Tylpe ID: 0x10dd10c4, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97

Linestyle Attribute Element contains information defining the graphical properties that should“be used for renderi
polylines. | JT format LSG traversal semantics dictate that linestyle attributes accumulate down-the LSG by replacemen

Linestyle Attribute Element does not have any Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit assignments.

Figure 58: Linestyle Attribute Element data collection

Element Header ZLIB

Y
Base Attribute Data

\ 4
U8 : Data Flags

v
F32 : Line Width

Complete glescription for Element-kleader ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete glescription for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

U8 : Data Flags

Data Flagg is a collection of flags and line type data. The flags and line type data are combined using the binary C

operator and storg various polyline rendering attributes. All undocumented bits are reserved.

R

OxOF = Line Type (Stored In bits 0 — 3 or 1n binary notation 0000111T)
Line type specifies the polyline rendering stipple-pattern.
=0 - Solid

=2 - Dot

=1-Dash = mmmmmmm e

=4 - Dash_Dot_Dot e

=7 - Center_Dash_Dash e

=3- Dash_Dot _________________________________________________________

=5-Long Dash = ———————————————
=6- Center_Dash ———
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0x10

— Antialiasing Flag (stored in bit 4 or in binary notation 00010000)
Indicates if antialiasing should be applied as part of rendering polylines.
= 0 — Antialiasing disabled.
= 1 — Antialiasing enabled.

F32: Line Width
Line Width specifies the width in pixels that should be used for rendering polylines

6

Pq
pq

Pq

C

=

V

Opject Type ID: 0x8d57¢010, Oxe5ch, 0x11d4, 0x84, Oxe, 0x00, 0xa0, 0xd2, 0x18, 0x2f, 0x9d

intstyle Attribute Element contains information defining the graphical properties that should be-used fof
ints. JT format LSG traversal semantics dictate that pointstyle attributes accumulate down the LKSG by replal

intstyle Attribute Element does not have any Field Inhibit flag (see 6.2.1.1.2.1.1Base Attribute Data) bit assi

Figure 59: Pointstyle Attribute Element data cellection

Element Header ZLIB

Y
Base Attribute Data

v
116 : Version-Number

A 4

U8 : Data Flags

\ 4
F32 : Point Size

bmplete description for’Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

pmplete description)for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

6 : Version Number
ersion Number is the version identifier for this element. Version number “0x0001” is currently the only valig

rendering
cement.

hjnments.

value.

T Data Frags
Data Flags is a collection of flags and point type data. The flags and point type data are combined using the binary OR
operator and store various point rendering attributes. All undocumented bits are reserved.

OxOF | — Point Type (stored in bits 0 — 3 or in binary notation 00001111)
These bits are reserved for future expansion of the format to support Point Types.
0x10 | — Antialiasing Flag (stored in bit 4 or in binary notation 00010000)

Indicates if antialiasing should be applied as part of rendering points.
=0 - Antialiasing disabled.
= 1 — Antialiasing enabled.
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F32: Point Size
Point Size specifies the size in pixels that should be used for rendering points.

6.2.1.1.2.10 Geometric Transform Attribute Element
Object Type ID: 0x10dd1083, 0x2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97

Geometric Transform Attribute Element contains a 4x4 matrix that positions the associated LSG node’s coordinate

t Ia-' toat + 1l o Al 1T _f + 1L o+ 1 +1 daotatatlhot it £, ol o
Sys em re ave U TS IJ(ZICIIL LOU TIUUT. JT TUTTTIAU OO Tavirodrl oTUTTIAaritivs ureidit ridat uCUIIICLIIb UdArioTurITmT awtnrTtuu 9

accumulatg¢ down the LSG through matrix multiplication as follows:

P’ =pAM
Where p i§ a point of the model, p’ is the transformed point, M is the current modeling transformation’ matrix inherited
from ancegtor LSG nodes and previous Geometric Transform Attribute Element, and A is the transformation matrix [of
this Geomegtric Transform Attribute Element.

t

Geometric| Transform Attribute Element does not have any Field Inhibit flag (see 6.2.1.1.2\1¢1Base Attribute Data) b
assignments.

Figure 60: Geometric Transform Attribute Element'data collection

| Element Header ZLIB

\ A
Base Attribute Data

\ 4
U16 : Stored Valugs:Maskl

&
l

if(Stored Values Mask & 0x8000 )

A 4
F32 : Element Value 16

A

Stored Values Mask = Stored Values Mask << 1

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

U16 : Stored Values Mask

Stored Values mask is a 16-hit mask where each bit is a flag indicating whether the corresponding element in the matrix
is different from the identity matrix. Only elements which are different from the identity matrix are actually stored. The
bits are assigned to matrix elements as follows:

Bitl5 Bitl4 Bitl3 Bitl2
Bitll Bitl0 Bit9 Bit8
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Bit7 Bit6 Bit5 Bit4
Bit3 Bit2 Bitl Bit0

The individual bit-flag values are interpreted as follows:

=0 | — Value not stored (matrix value same as corresponding element in identity matrix)
=1| - Value stored

F32 : Element Value

:2011(E)

Ellement Value specifies a particular matrix element value.

6/2.1.1.2.11 Shader Effects Attribute Element
Opject Type ID: Oxaalb831d, Ox6e47, Ox4fee, 0xa8, 0x65, Oxcd, Ox7e, 0x1f, Ox2f, 0x39, Oxdh

Shader Effects Attribute Element contains information specifying “high-level” shader fufetionality (e.g. Phor]
bymp mapping, etc.) that should be used for rendering the geometry this attribute element’is associated with.

JT] format LSG traversal semantics dictate that shader effects attributes accumulate:down the LSG by replacem

Shader Effects Attribute Element does not have any Field Inhibit flag~(see 6.2.1.1.2.1.1Base Attribute

g shading,

ent.

Data) bit

assignments.
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Figure 61: Shader Effects Attribute Element data collection

Element Header ZLIB

_—Y
Base Attribute Data

\ 4
116 : Version Number

Version Number = =

v
U32 : Enable Flag

\ 4
132 : Env Map Texture Channel

\ 4
F32 : Env Map Reflectivity

\ 4
132 : Bump Map Texture Channel

v

F32 : Bumpiness Factor

\ 4
U32: Bump Map Normal Space

A\ 4
U32 : Phong Shading Flag

v
U32 : Reserved Field

A

Complete flescription for{Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete flescriptionfor Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

116 : Version Number

I Bar is-th i identifierfor-thi ] £ \/ 1 har “0Ox0001 1 thy th | Lid ]
Version Numberisthe versionidentifier for thiselemant Mersion-aumber“0x +—S-GHHFeRHY-HRe-BR-aHaatHe-

U32 : Enable Flag

Enable Flag specifies whether this Shader Effects Attribute is enabled. Valid values include the following:

=0 | — Shader Effects Attribute disabled
=1 — Shader Effects Attribute enabled

132 : Env Map Texture Channel
Env Map Texture Channel specifies the texture channel designated as containing an environment map. A value of “-1”
disables environment mapping through the Shader Effects Attribute. Note that this will NOT disable a texture map that
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is explicitly set up with sphere mapping or cube mapping through Material Attribute Element. Note that other irrelevant
Material Attribute Element parameters (e.g. blending type, texture coordinate generation mode, border settings, etc.) are
ignored for the environment map texture channel.

F32: Env Map Reflectivity
Env Map Reflectivity specifies the fraction of the environment to be reflected (1 minus this fraction will show through
form the underlying texture channel). Valid value must be in the range [0:1] inclusive.

132 : Bump Map Texture Channel
Bump Map Texture Channel specifies the texture channel designated as containing a bump map. A value of “-1”
dipables bump mapping through the Shader Effects Attribute. Note that other irrelevant Material Attribute Element
pdrameters (e.g. blending type, texture coordinate generation mode, border settings, etc.) are ignored for'the bump map
tekture channel.

FB2 : Bumpiness Factor
Béimpiness Factor specifies the degree of “bumpiness”, or the relative “height” of the bump maps Larger valugs make the
bymps appear deep and more severe. Negative values invert the sense of the bump map, making the surfhce appear
erjgraved, rather then embossed. This value only has an effect with tangent space bump:maps.; it has no effect on the
afpearance of object space bump maps.

U32 : Bump Map Normal Space
Bémp Map Normal Space specifies what coordinate space the normal map is\to be interpreted in. Valid valyes include
the following:

=0 | — Normal Map Interpreted as an “object space™normal map
=1| — Normal Map Interpreted as a “tangent space” normal map.

UB2 : Phong Shading Flag
Phong Shading Flag specifies whether Phong Shading-(ite. per fragment lighting) is enabled. Valid values include the
following:

=0 - Phong Shading disahled
=1| — Phong Shading enabled

UB2 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion

6/2.1.1.2.12 Vertex Shader Attribute Element

Opject Type ID: 0x2798bcad, 0xe409, 0x47ad, Oxbd, 0x46, Oxb, 0x37, 0x1f, Oxd7, 0x5d, Ox61
Vi

C

brtex Shader(Attribute Element defines a per-vertex shader program in either the Cg or GLSL shading| language.
pmplete déscriptions of the Cg and GLSL shading languages can be found in references listed within the 2 References
arjd Additienal Information section of this document.

JT| farmat LSG traversal semantics dictate that vertex shader attributes accumulate down the LSG by replacement; with
the exception that if the new vertex shader attribute’s shader language is not the same as current vertex shader attribute’s
shader language, then new vertex shader attribute is simply ignored.

In general, a shader program is used to replace a portion of the otherwise fixed functionality graphics pipeline with some
user-defined function. Specifically a Vertex Shader program is a small user defined program to be run for each vertex
that is sent down to the GPU and processed. A Vertex shader can alter vertex positions and normals, generate texture
coordinates, perform Gouraud vertex lighting, etc
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Figure 62: Vertex Shader Attribute Element data collection

| Element Header ZLIB |

4
Base Attribute Data

p—

Complete flescription for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB:

Complete flescription for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data:

Base Shader Data

\ 4

116 : Version Number

116 : Version Number

Version Npimber is the version identifier for this element. Version number “0x0001™is currently the only valid value.

6.2.1.1.2.12.1 Base Shader Data

Figure 63: Base Shader,Ddta data collection

116 : Version Number

Version.Number = =
\4
1321 Shader Language
\4
U32 : Inline Source Flag
Inline Source Flag = =
\4 \4
MbString : Source Code Loc MbString : Source Code
\ 4

72

132 : Shader Param Count

Shader Parameter |
Shader Param

Count

A
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116 : Version Number
Version Number is the version identifier for this data collection. Version number “0x0001” is currently the only valid

va

lue.

I32 : Shader Language

Shader Language specifies the Shader program language. Valid values include the following:

=0| - None

=1!_ Cg (“C for graphics” is a high-level shading language created hy n\/IDIA for

S(

S(

W

Sh

6

St
th

programming vertex and pixel shaders [8] [9].
=2 | — GLSL (“GL Shading Language™ as defined by the Architectural Review Board
of OpenGL, the governing body of OpenGL [7].

32 : Inline Source Flag
ine Source Flag specifies whether the shader’s “source code” is stored within this JT file“or in some other
ferenced file. Valid values include the following:

=0 | — Source code stored in an externally referenced file.
=1 | — Source code stored within this JT file.

bString : Source Code
urce Code is the shader’s source code in Shader Language programming language.

bString : Source Code Loc
urce Code Loc specifies the file name for the external file containing the shader’s source code.

2 : Shader Param Count
ader Param Count specifies the number of shader parameters.

2.1.1.2.12.1.1 Shader Parameter

ader Parameter data collection define$ a'Shader input and/or output parameter. A list of Shader Parameters|
b runtime linkage of the shader program into the GPU’s data streams.

©
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Figure 64: Shader Parameter data collection

MbString : Param Name

v
U32 : Param Type

cl
UL L TUOO

v
U32 : Direction

v
U32 : Semantic Binding

v
U32 : Variability

v
U32 : Reserved Field

A 4
U32 : Value <
—— 16
v
MbString : Param Name
Param Name specifies the shader parameter hame.
U32 : Param Type
Param Type specifies the shader paramieter type. Valid types include the following:
=0 | — Unpkrown
= —«Boolean
= =~ Integer
= < Float
=4 | — Vector of two Integer values.
=5 | — Vector of three Integer values
=6 —Vector of four tmeger vatues
=7 | — Vector of two Float values
=8 | — Vector of three Float values
=9 | — Vector of four Float values

74

=10| — 2 x 2 matrix of Float values
=11| — 3 x 3 matrix of Float values
=12 | — 4 x 4 matrix of Float values
= 13| — Texture Object/Unit number bound to current 1D texture sampler
= 14| — Texture Object/Unit number bound to current 2D texture sampler
= 15| — Texture Object/Unit number bound to current 3D texture sampler
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=16 | — Texture Object/Unit number bound to current rect map texture sampler

17| — Texture Object/Unit number bound to current cube map texture sampler
=18 | — Texture Object/Unit number bound to current 1D shadow map texture sampler
=19| — Texture Object/Unit number bound to current 2D shadow map texture sampler

U32 : Value Class

Value Class specifies the shader parameter “value class”. Valid values include the following:

:2011(E)

=0 Unknrewn-class
=1| — Immediate class.
=2 | — Semantic class (i.e. Shader Parameter is implicitly tied/bound to a piece of
OpenGL graphics system state (e.g. OpenGL ModelView matrix) or JT graphics
system state (e.g. diffuse material color)). The actual graphics state_that’the
parameter is bound to is indicated by value in Value data field.
UB2 : Direction
D{rection specifies whether the shader parameter is an input, output, or input/output_parameter. Direction va
afplicable for the Cg Shader Language. Valid values include the following:
=0 | — Unknown
=1| — Input parameter
=2 | — Output parameter
=3 | — Bothan Input and an Output parameter.

32 : Semantic Binding

ue is only

Sdmantic Binding specifies the “per vertex input and/or «Qutput” or the “per fragment input and/or output” this shader
pdrameter is associated with (i.e. bound to). Semantic.Binding value is only applicable for the Cg Shader [L anguage.
Valid values, including their input/output applicability to vertex and fragment shaders, are as follows (not¢ that N/A
inflicates ‘Not Applicable”):

Value Binding Description. ~="| Vertex Shader Applicability [Fragment Shader Applicability

=0 Unknown

=1 None

=2 Position Input/Output Input

=3 Normal Input N/A

=4 Binermal Input N/A

=5 Blend Indices Input N/A

=6 Blend Weight Input N/A

=7 Tangent Input N/A

=8 Point Size Input/Output Input

=10 Texture Coordinate 0 Input/Output Input

=4l Texture Coordinate 1 Input/Output Input

=12 Texture Coordinate 2 Input/Output Input

=13 Texture Coordinate 3 Input/Output Input

=17 TEXIUTE Coordinate 4 MPpUrOUTpUT Tpur

=15 Texture Coordinate 5 Input/Output Input

=16 Texture Coordinate 6 Input/Output Input

=17 Texture Coordinate 7 Input/Output Input

=20 Fog Coordinate Output Input

=21 Primary Color Output Input

=22 Secondary Color Output Input

=23 Primary Color N/A Output

=24 Depth Value N/A Output

U32 : Variability
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Variability

specifies how often the value of the parameter is allowed to change. Valid values include the following:

=0 | — Unknown

= — Constant (a parameter that takes on a single value and never changes)

=2 | — Uniform (a parameter that may take on a different value each time the shader is
invoked but remains the same for all vertices or fragments processed by the
shader)

=3 | — Varying (a parameter which may change with every vertex or fragment
processed by the shader)

U32 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

U32 : Value

Value spe
store all pd
interpretat

6.2.1.1.]
Object Ty

Fragment
Complete
and Additi

ifies the shader parameter values treated as a U32 array of bytes. The maximum number of bytes required

on of the Value data is Param Type and Value Class dependent as follows:

For “Immediate” Value Class parameters (i.e. Value Class = = 1), the interpretation of the Value data
dependent upon the Param Type value.

possible values documented in Annex B:Semantic Value Class ShadefrParameter Values.

P.13 Fragment Shader Attribute Element
pe ID: Oxad8dccc2, 0x7a80, 0x456d, 0xb0, Oxd5, Oxdd, Ox3d, Oxb, 0x8d, 0x21, Oxe7

Shader Attribute Element defines a per-fragment shader program in either the Cg or GLSL shading languag

pnal Information section of this document.

JT format
with the e
attribute’s

In general
user-defing

LSG traversal semantics dictate that fragment shader attributes accumulate down the LSG by replaceme
ception that if the new fragment shadenattribute’s shader language is not the same as current fragment shag
shader language, then new fragment shader attribute is simply ignored.

a shader program is used to-replace a portion of the otherwise fixed functionality graphics pipeline with sor
d function. Specifically-a Fragment Shader program is a small user defined program to be run for ea

scan-conv
Phong sha

fragment ienerated by the hardware’s scan-conversion logic (where a fragment is a proto-pixel generated by triang

rsion, but not let laid\down into the frame buffer). A Fragment Shader can support sophisticated effects li
ing, shadow mapping, bump mapping, reflection mapping, etc.

ssible Param Type and Value Class dependent values is 64 bytes and thus there are 16 U32walues stored. The

For “Semantic” Value Class parameters, the Value data is to be interpreted as a single U32 with all the

Hescriptions of the Cg and GLSL shading languages can be found in references listed within the 2 Referendes

to

S

ne
Ch
le
ke
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Figure 65: Fragment Shader Attribute Element data collection

| Element Header ZLIB |

\ 4
Base Attribute Data

p—

fy

V

6

Base Shader Data

\ 4
116 : Version Number

pmplete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

pmplete description for Base Attribute Data can be found in 6.2.1.1.2.1.1Base Attribute Data.

pmplete description for Base Shader Data can be found in 6.2.1.1.2.12.1 BaSe Shader Data.

6 : Version Number
brsion Number is the version identifier for this element. Version number “0x0001” is currently the only valig

2.1.2 Property Atom Elements

P

themselves, but can be associated with any node toxdintain arbitrary application or enterprise information
pqrtaining to that node. Each Node Element in a LSG may hold zero or more properties and this relationship i
is[stored within 6.2.1.3 Property Table section of.a JT file.

Ap individual property is specified as a key/value Property Atom Element pair, where the key identifies the typ
meaning of the value. The JT format supports many different Property Atom Element key/value object types.
different Property Atom Element key/valte object types are documented in the following subsections.

S
M

perty Atom Elements are meta-data objects associated with nodes. Property Atom Elements are

etadata Conventions section.of this reference.

o O

B

specific Value data associated with it.

2.1.2.1 Base-Property Atom Element
bject Type 1D:0x10dd104b, 0x2ac8, 0x11d1, 0x9b, 0x6h, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97

se Property’ Atom Element represents the simples for of a property that can exist within the LSG and h

value.

not nodes
meta-data)
nformation

e and
The

bme “Best Practices” for placing)application or enterprise properties/meta-data on Nodes in JT files can be fpund in 8.4

As No type

Figure 66: Base Property Atom Element data collection

| Element Header ZLIB |

Base Property Atom Data

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.
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6.2.1.2.1.1 Base Property Atom Data

Figure 67: Base Property Atom Data data collection

132 : ObjectID

v
U32 : State Flags

132 : OljectiD
Obiject ID |s the identifier for this Object. Other objects referencing this particular object do so using the Object|ID.

U32 : State Flags

State Flagp is a collection of flags. The flags are combined using the binary OR operator andhstOre various state
information for property atoms. Bits 0 — 7 are freely available for an application to store what, ever property atqm
informatioh desired. All other bits are reserved for future expansion of the file format.

6.2.1.2.2 String Property Atom Element
Object Tylpe ID: 0x10dd106e, 0x2ac8, 0x11d1, 0x9b, 0x6h, 0x00, 0x80, Oxc7, Oxbb;-0x59, 0x97

String Property Atom Element represents a character string property atom.

Figure 68: String Property Atom-Element data collection

| Element Header ZLAB |

Base Property Atom Data

v
MbString : Value

Complete flescription for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete glescription for Base Property Atom Data can be found in 6.2.1.2.1.1Base Property Atom Data.

MbString : Value
Value confains‘the character string value for this property atom.

6.2.1.2.3 Integer Property Atom Element
Object Type ID: 0x10dd102b, Ox2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97

Integer Property Atom Element represents a property atom whose value is of 132 data type.
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Figure 69: Integer Property Atom Element data collection

| Element Header ZLIB |

Base Property Atom Data

132 : Value

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 6.2.1.2.1.1Base Property /Atom Data.

132 : Value
Value contains the integer value for this property atom.

6/2.1.2.4 Floating Point Property Atom Element
Opject Type ID: 0x10dd1019, Ox2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80) 0xc7, Oxbb, 0x59, 0x97

Flpating Point Property Atom Element represents a property atomwhose value is of F32 data type.

Figure 70: Floating Point Property Atom Element data collection

| Element Header ZLIB |

Base Property Atom Data

\ 4
F32 : Value

Complete description’for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete déscription for Base Property Atom Data can be found in 6.2.1.2.1.1Base Property Atom Data.

B2+ Value
hlUe/contains the floating point value for this property atom.

<

6.2.1.2.5 JT Object Reference Property Atom Element
Object Type ID: 0x10dd1004, Ox2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97

JT Object Reference Property Atom Element represents a property atom whose value is an object 1D for another object
within the JT file.
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Figure 71: JT Object Reference Property Atom Element data collection

| Element Header ZLIB

Base Property Atom Data

A 4

132 : Object ID

Complete flescription for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.
Complete flescription for Base Property Atom Data can be found in 6.2.1.2.1.1Base Property Atom Data:
132 : Olject ID
Obiject ID ppecifies the identifier within the JT file for the referenced object.
6.2.1.2.6 Date Property Atom Element
Object Tylpe ID: 0xce357246, 0x38fh, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, Oxbd;0xc6, Oxel
Date Propgrty Atom Element represents a property atom whose value is a “date”.
Figure 72: Date Property Atam Element data collection
‘ Element Header ZL1B |
Base Property Atom Data
\ 4
116 : Year
A 4
116 : Month
\ 4
116 : Day
\ 4
116 : Hour
\ 4
116 : Minute
\ 4
116 : Second
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Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 6.2.1.2.1.1Base Property Atom Data.

116 : Year
Year specifies the date year value.

116 : Month

M

onth specifies the date month value.

116 : Day
Dty specifies the date day value.

116 : Hour
Hpur specifies the date hour value.

116 : Minute

11
S4

6
O

L3
se
st

pr

L4
S¢

inute specifies the date minute value.

6 : Second

cond specifies the date Second value.

2.1.2.7 Late Loaded Property Atom Element

bject Type ID: 0xeOb05be5, Oxfbbd, 0x11d1, Oxa3, Oxa7, 0x00, Oxaa, 0x00, 0xd1, 0x09, 0x54

te Loaded Property Atom Element is a property atom, type used to reference an associated piece of atomi
parate addressable segment of the JT file. The.“Late Loaded” connotation derives from the associated
bred in a separate addressable segment of the JT-file, and thus a JT file reader can be structured to suppoit the “best
actice” of delaying the loading/reading of the,aSSociated data until it is actually needed.

te Loaded Property Atom Elements are used to store a variety of data, including, but not limited to, S
gments and B-Rep Segments (see 6.212.5hape LOD Segment and 6.2.3 JT B-Rep Segment).

| Element Header ZLIB

kigure 73: Late Loaded Property Atom Element data collection

Base Property Atom Data

A\ 4

C data in a
data being

hape LOD

GUID © segment ID

A\ 4
132 : Segment Type

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

Complete description for Base Property Atom Data can be found in 6.2.1.2.1.1Base Property Atom Data.
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GUID : Segment ID

Segment ID is the globally unique identifier for the associated data segment in the JT file. See 6.1.2 TOC Segment for
additional information on how this Segment ID can be used in conjunction with the file TOC Entries to locate the
associated data in the JT file.

132 : Segment Type
Segment Type defines a broad classification of the associated data segment contents. For example, a Segment Type of
“1” denotes that the segment contains Logical Scene Graph material; “2” denotes contents of a B-Rep, etc.

The complete list of segment types can be found in Table 3: Segment Types.

6.2.1.3 |Property Table

The Property Table is where the data connecting Nodes with their associated Properties is stored. The Property Talle
contains a|Node Property Table for each Node in the JT File which has associated Properties. A Node.Property Table|is
a list of key/value Property Atom Element pairs for all Properties associated with a particular Node Elerment Object.

For a refefence compliant JT File all Node Elements and Property Atom Elements contained ‘{n~a JT file should haje
been read py the time a JT file reader reaches the Property Table section of the file. This.means that all Node Objegts
and Propefty Atom Objects referenced in the Property Table (through Object IDs), should‘have already been read, and| if
not, then the file is corrupt (i.e. not reference compliant).

Figure 74: Property Table data coflection

116 : Version Number

\ 4
132 : Node Property Table-Count

132 : Nodé Object ID |4

v Noade Property
Node Propert
Table Count
Node Property Table -

116 : Vefsion Number
Version Number is.the) version identifier for this Property Table. Version number “0x0001” is currently the only valid
value.

132 : Node)Property Table Count
Node Property Table Count specifies the number of Node Property Tables to follow. This value is equivalent to the
number of Node Elements (see 6.2.1.1.1Node Elements) that have associated Property Atom Elements (see
6.2.1.2Property Atom Elements).

132 : Node Object ID
Node Object ID is the identifier for the Node Element object (see 6.2.1.1.1Node Elements) that the following Node
Property Table is for (i.e. Node Element that all properties in the following Node Property Table are associated with).

6.2.1.3.1 Node Property Table
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The Node Property Table is a list of key/value Property Atom Element pairs for all properties associated with a particular
Node Element Object. The list is terminated by a “0” value for Key Property Atom Object ID.

Figure 75: Node Property Table data collection

A

132 : Key Property Atom Object ID

I
p
J

v White Key
: i Property Atom
132 : Value Property Atom Object ID| | 2roPery Atom

| Object ID =0

A

2 . Key Property Atom Object ID

Key Property Atom Object ID is the identifier for the Property Atom Element object (see 6.2.1.2Property Atom
Elements) representing the “key” part of the property key/value pair. A value of “0” indicates the end of the Node
Prioperty Table.

132 : Value Property Atom Object ID

Value Property Atom Object ID is the identifier for the Propérty Atom Element object (see 6.2.1.2Property Atom
Elements) representing the “value” part of the property key/value pair. A value is not stored if Key Progerty Atom
Object ID has a value of “0”.

6/2.2 Shape LOD Segment

Shape LOD Segment contains an Element-that defines the geometric shape definition data (e.g. vertices,| polygons,
nqrmals, etc) for a particular shape LevelNOT Detail or alternative representation. Shape LOD Segments arg typically
referenced by Shape Node Elements using Late Loaded Property Atom Elements (see 6.2.1.1.1.10 Shape Nodg¢ Elements

an

d 6.2.1.2.7 Late Loaded Property Atom Element respectively).

Figure 76: Shape LOD Segment data collection
- N
Segment Header

I e N
Shape LOD Element

mpiete UESLfip[iOﬂ 101" Sedment Reader Can be 1ouna 6. 1.3. ISeqment Header.

6.2.2.1 Shape LOD Element

A Shape LOD Element is the holder/container of the geometric shape definition data (e.g. vertices, polygons, normals,
etc.) for a single LOD. Much of the “heavyweight” data contained within a Shape LOD Element may be optionally
compressed and/or encoded. The compression and/or encoding state is indicated through other data stored in each Shape
LOD Element.
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There are several types of Shape LOD Elements which the JT format supports. The following sub-sections document the
various Shape LOD Element types.

6.2.2.1.

1 Vertex Shape LOD Element

Object Type ID: 0x10dd10b0, Ox2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97

Vertex Shape LOD Element represents LODs defined by collections of vertices.

Complete

6.2.2.1.1.1 Vertex Shape LOD Data
Vertex Shape LOD Data collection contains the bindings and quantization settings for all shape LODs defined by
collection pf vertices.
Figure 78: Vertex Shape LOD-Data data collection
116 : Version Number:
\ 4
132 : BindingiAttributes
A 4
Quantization Parameters
Complete glescription for Quantization Parameters can be found in 6.2.1.1.1.10.2.1.1Quantization Parameters.

116 : Version Number

Version N
only valid

132 : Bi
Binding

Figure 77: Vertex Shape LOD Element data collection

Element Header
Vertex Shape LOD Data

Hescription for Element Header can be found in 6.1.3.2.1Element Header.

imber is the version identifier for this Vertex Shape LOD Data. Version number “0x0001” is currently the
value.

ding Attributes

tributes is a collection of normal, texture coordinate, and color binding information encoded within a sing

132 using the TolTowing Bit alfocation. AIT undocumented DItS are reserved.

A Tri-Strip Set Shape Node Element defines a collection of independent and unconnected triangle strips. Each strip
constitutes one primitive of the set and is defined by one list of vertex coordinates

84

Bits0-7 Normal Binding. Normal Binding specifies how (at what granularity) normal
vector data is supplied (“bound”) for the Shape LOD.

=0 — None. Shape has no normal data.

=1 — Per Vertex. Shape has a normal vector for every vertex.

=2 — Per Facet. Shape has a normal vector for every face/polygon.

=3 — Per Primitive. Shape has a normal vector for each shape primitive (e.g. a
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6.2.1.1.1.10.3 Tri-Strip Set Shape Node Element is made up of a
collection of independent and unconnected triangle strips; where each
strip constitutes one primitive of the shape and thus there would be a
normal per triangle strip)

Bits 8 - 15 | Texture Coordinate Binding. Texture Coordinate Binding specifies how (at what
granularity) texture coordinate data is supplied (“bound”) for the Shape LOD.
Valid values are the same as documented for Normal Binding.

Bits 16 - 23 | Color Binding. Color Binding specifies how (at what granularity) color data is
SUppiied ("bound™) for the shape LOD. valid values are the same as
documented for Normal Binding.

2.2.1.2 Tri-Strip Set Shape LOD Element
bject Type ID: 0x10dd10ab, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, 0xbb, 0x59;.0x97

> oo

Tri-Strip Set Shape LOD Element contains the geometric shape definition data (e.g: vertices, polygons, nofmals, etc.)
for a single LOD of a collection of independent and unconnected triangle strips.. (Each strip constitutes one primitive of
thp set and the ordering of the vertices (identified in Vertex Based Shape Compressed Rep Data_as making ¢ip a single
tristrip primitive) in forming triangles, is the same as OpenGL’s triangle strip‘definition [4].

A|Tri-Strip Set Shape LOD Element is typically referenced by a Tri-Strip Set Shape Node Element using Late Loaded
Prloperty Atom Elements (see 6.2.1.1.1.10.3 Tri-Strip Set Shape Node Element and 6.2.1.2.7 Late Loaded Progerty Atom
Ellement respectively).

Figure 79: Tri-Strip Set«Shape LOD Element data collection

Element Header
A
Vertex Shape LOD Data

v
116 : Version Number

v
Vertex Based Shape
Compressed Rep Data

Complete description for Element Header can be found in 6.1.3.2.1Element Header.

Complete description for Vertex Shape LOD Data can be found in 6.2.2.1.1.1Vertex Shape LOD Data.

Complete description for Vertex Based Shape Compressed Rep Data can be found in 7.1.3Vertex Based Shape
Compressed Rep Data.

116 : Version Number
Version Number is the version identifier for this Tri-Strip Set Shape LOD. Version number “0x0001” is currently the

only valid value.
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6.2.2.1.3 Polyline Set Shape LOD Element

Object Ty

pe ID: 0x10dd10al, 0x2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97

A Polyline Set Shape LOD Element contains the geometric shape definition data (e.g. vertices, normals, etc.) for a single
LOD of a collection of independent and unconnected polylines. Each polyline constitutes one primitive of the set.

A Polyline Set Shape LOD Element is typically referenced by a Polyline Set Shape Node Element using Late Loaded
Property Atom Elements (see 6.2.1.1.1.10.5 Polyline Set Shape Node Element and 6.2.1.2.7 Late Loaded Property Atom
Element respectively).

Complete
Complete

Complete
Compresss

Figure 80: Polyline Set Shape LOD Element data collection

Element Header
A
Vertex Shape LOD Data

\ 4
116 : Version Number

N A
Vertex Based Shape
Compressed Rep Data

Hescription for Element Header can be found in 6.1.8:2.1Element Header.

Jescription for Vertex Shape LOD Data can befound in 6.2.2.1.1.1Vertex Shape LOD Data.

description for Vertex Based Shape-‘€Compressed Rep Data can be found in 7.1.3Vertex Based Sha

d Rep Data.

116 : Ve
Version N
only valid

6.2.2.1.4
Object Ty

A Point S
collection

Fsion Number
umber is the version identifier for this Polyline Set Shape LOD. Version number “0x0001” is currently t
value.

i Point Sef>’Shape LOD Element
pe 1D: 0x98134716, 0x0011, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83, 0x5d, 0X5a

bt Shape'LOD Element contains the geometric shape definition data (e.g. coordinates, normals, etc.) for
pf-independent and unconnected points. Each point constitutes one primitive of the set.

A Point Set Shape LOD Element is typically referenced by a Point Set Shape Node Element using Late Loaded Property
Atom Elements (see 6.2.1.1.1.10.5 Point Set Shape Node Element and 6.2.1.2.7 Late Loaded Property Atom Element

respectivel

86

y).
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Figure 81: Point Set Shape LOD Element data collection

Element Header
A
Vertex Shape LOD Data

C

C
C

116 : Version Number

P 4
Vertex Based Shape
Compressed Rep Data

bmplete description for Element Header can be found in 6.1.3.2.1Element Header-

bmplete description for Vertex Shape LOD Data can be found in 6.2.2.1.1.1Vertéx Shape LOD Data.

bmplete description for Vertex Based Shape Compressed Rep Data can be found in 7.1.3Vertex B4

ked Shape

pmpressed Rep Data.

11
V

vdlid value.

6
O
A
L

A

El

Prioperty Atom Elements (see 6.2.1.1.1.10.6 Polygon Set Shape Node Element and 6.2.1.2.7 Late L oaded Pro

6 : Version Number
ersion Number is the version identifier for this Point Set Shape LOD. Version number “0x0001” is current

2.2.1.5 Polygon Set Shape LOD_ Element
bject Type ID: 0x10dd109f, 0x2ac8, 0x11dd, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97

DD of a collection of independent@and unconnected polygons. Each polygon constitutes one primitive of the

Polygon Set Shape LOD Element is typically referenced by a Polygon Set Shape Node Element using L

y the only

Polygon Set Shape LOD Element contains the geometric shape definition data (e.g. vertices, normals, etc.) for a single

set.

te Loaded
erty Atom

ement respectively).
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Figure 82: Polygon Set Shape LOD Element data collection

Element Header
A
Vertex Shape LOD Data

Complete
Complete

Complete
Compressé

116 : Version Number

N Y 0
Vertex Based Shape
Compressed Rep Data

Jescription for Element Header can be found in 6.1.3.2.1Element Header.

Jescription for Vertex Shape LOD Data can be found in 6.2.2.1.1.1Vertex Shape’L OD Data.

description for Vertex Based Shape Compressed Rep Data can.-be found in 7.1.3Vertex Based Sha

d Rep Data.

116 : Ve
Version N
only valid

6.2.2.1.1
Object Ty

A Null Sh
Although

“proxy/pld
existence ¢

A Null Sh
Elements
respective

Fsion Number
umber is the version identifier for this Polygon Set Shapell:OD. Version number “0x0001” is currently t
value.

5 Null Shape LOD Element
pe ID: 0x3e637aed, 0x2a89, 0x41f8, 0xa9;0xfd, 0x55, 0x37, 0x37, 0x3, 0x96, 0x82

ape LOD Element represents the pseudo geometric shape definition data for a NULL Shape Node Eleme
h NULL Shape Node Element has no real geometric primitive representation (i.e. is empty), its usage as
ceholder” node within the LSGstill supports the concept of having a defined bounding box and thus t
f this Null Shape LOD Element'type.

hpe LOD Element is typically referenced by a NULL Shape Node Element using Late Loaded Property Atg
(see 6.2.1.1.1.10.2Z-NULL Shape Node Element and 6.2.1.2.7 Late Loaded Property Atom Eleme

m

Y).

Figure 83: Null Shape LOD Element data collection

88

Element Header

v
116 : Version Number

\ 4
BBoxF32 : Untransformed BBox
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Complete description for Element Header can be found in 6.1.3.2.1Element Header.

116 : Version Number

Version Number is the version identifier for this Null Shape LOD Element. Version number “0x0001” is currently the
only valid value.

BBoxF32 : Untransformed BBox

The Untransformed BBox is an axis-aligned LCS bounding box and represents the untransformed extents for this Null
Shape LOD Element.

6{2.2.2 Primitive Set Shape Element
Opject Type ID: 0xe40373c2, 0x1ad9, 0x11d3, 0x9d, Oxaf, 0x0, 0xa0, 0xc9, 0xc7, Oxdd, Oxc2
A

Primitive Set Shape Element defines the minimum data necessary to procedurally generate LODS for a list of primitive
hapes (e.g. box, cylinder, sphere, etc.). “Procedurally generate” means that the raw geometric'shape definition data (e.g.
vdrtices, polygons, normals, etc) for LODs is not directly stored; instead some basic shiage information is qtored (e.g.
sphere center and radius) from which LODs can be generated.

w

Figure 84: Primitive Set Shape Element data collection

Element Header

\ 4
132 : Texture Coord Binding

) 4
132 : Color Binding

\4

116 : Version Number

A\ 4
132 : Bits Per Vertex

Bits Per Vertex = =

v ¥
Lossy Quantized Lossless Compressed
Primitive Set Data Primitive Set Data

<
<

Version Number = =

'

132 : Texture Coord Gen Type

A

Complete description for Element Header can be found in 6.1.3.2.1Element Header.
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132 : Texture Coord Binding
Texture Coord Binding specifies how (at what granularity) texture coordinate data is supplied (“bound”) for the shape.
Valid values are as follows:

=0 | — None. Shape has no texture coordinate data.

=1 | — Per Vertex. Shape has texture coordinates for every vertex.

132 : Color Binding

Color Bin

ing clnpr*ifipc haow (a’r what gmnlllarify) colar data is QIIInIn“Dd (“hnllnd") for the ':hnlnp \/alid values are the

same as dd

116 : Version Number
Version Nimber is the version identifier for this element. The value of this Version Number indicates the-format of da
llow.

fields to fg

cumented for Texture Coord Binding data field.

=1 - Version-1 Format

=2 | — Version-2 Format

132 : Bit
Bits Per V|
[0:32] incl

132 : Te
Texture C

s Per Vertex
ertex specifies the number of quantization bits per vertex coordinate compenent. Value must be within ran
Lisive.

xture Coord Gen Type

e

ord Gen Type specifies how texture coordinates are to be generated.

=0| - Single Tile...Indicates that a single copy of a textttre image will be applied to significant
primitive features (i.e. cube face, cylinder wal, end cap) no matter how eccentrically
shaped.

=1| - Isotropic...Implies that multiple copies-of‘a texture image may be mapped onto eccentric
surfaces such that a mapped texel stays)approximately square.

6.2.2.2.
The Lossl¢

compressipn format for all primitivessin the Primitive Set. The Lossless Compressed Primitive Set Data collection

only press
descriptio

| Lossless Compressed:\Primitive Set Data

ss Compressed Primitive Set\Data collection contains all the per-primitive information stored in a “lossleds
is
nt when the Bits Per \ertex data field equals “0” (see 6.2.2.2 Primitive Set Shape Element for complgte

).

Figure 85: Lossless Compressed Primitive Set Data data collection

132 : Uncompressed Data Size

Compressed g Primitive Data
Data Size |

90

132 : Compressed Data Size

Compressed Data Size <0

Compressed Data Size > 0

v

\ 4
N U8 : Compressed > U8 : Primitive Data[*

Abs(Compressed
[ | Daasiz)
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132 : Uncompressed Data Size

Uncompressed Data size specifies the uncompressed size of Primitive Data or Compressed Primitive Data in bytes.

132 : Compressed Data Size
Compressed Data Size specifies the compressed size of Primitive Data or Compressed Primitive Data in bytes.
Compressed Data Size is negative, then the Compressed Primitive Data field is not present (i.e. data is not compressed)
and the absolute value of Compressed Data Size should be equal to Uncompressed Data Size value.

us: Pr|m|t|ve Data
T

less than zero.

{[reserved], [paramsl], [params2], [params3], [color], [type]}, ..., for all primitives

Where the data elements have the following size and meaning:

The per primitive data is packed into Primitive Data array using an interleaved data schema/format.as-follows:

Element | Data Type

Description. )

reserved 132 This is a field reserved for future expansion of the JT Format.
paramsl CoordF32 Interpretation is Primitive Type specific (see below table)
params2 DirF32 Interpretation is Primitive Type specific (see below table)
params3 Quaternion Interpretation is Primitive Typespecific (see below table)
color RGB Red, Green, Blue color component values

type 132 Primitive Type

=0-Box

=1 - Cylinder
=2 — Pyramid
= 3 - Sphere
=4 - Tri-Prism

Table5: Primitive Set Primitive Data Elements

The interpretation of the three*“params#” data fields is primitive type dependent as follows:

G|ven this format of the Primitive Datajand the previously read size fields, a reader can then implicitly compy
stride (length of one primitive entry«n Primitive Data), and number of primitives.

- -y V
Pr_lrmlt;ve \GJparamsl params2 params3
&NOI R [ @2 [ 1o [ @ [ [0 [ @ [ 2 [ [E
Box min X | minY | min Z Ier;?th Ierl?th Ienzgth orientation in Quaternion form
: base base base spine spine spine | radius | radius
Cylinder center | center N/A N/A
center X v 7 X Y Y4 1 2
Dase base
Pyramid base center | center length | length | length orientation in Quaternion form
center X Y 7 X Y z
sphere |center X | U | 0T | ragius | NA | NA | NIA | NIA | NIA | N/A
length | length | length
Tri-Prism bottom | bottom | bottom X (to Y (to Z (to orientation in Quaternion form
front X | frontY | front Z .
right) back) top)

Table 6: Primitive Set “params#” Data Fields Interpretation
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U8 : Compressed Primitive Data

The Compressed Primitive Data field represents the same data as documented in Primitive Data field above except that
the data is compressed using the general “ZLIB deflation compression” method. The Compressed Primitive Data field is
only present if Compressed Data Size value is greater than zero. See 7 Data Compression and Encoding for more details

on ZLIB compression and ZLIB library version used.

6.2.2.2.2 Lossy Quantized Primitive Set Data
The Lossy Quantized Primitive Set Data collection contains all the per-primitive information (i.e. reserved, paramsl,

paramsz' | arams3._color hj/lnn) stored in-a “In:c\]/” nnrndinglr‘nmlnrnccinn format for all Im’imi'ri\mc in-the Primitive Set.
Quantized Primitive Set Data collection is only present when the Bits Per Vertex data field is NOT equal [to

The Lossy

“0” (See 6]2.2.2 Primitive Set Shape Element for compete description).

The interpfetation of the three per-primitive “params#” data fields is primitive type dependent. See Table®: Primitiyve
Set “params#” Data Fields Interpretation in 6.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type

descriptior

of the “params#” data fields.

Figure 86: Lossy Quantized Primitive Set Data data collection

132 : Primitive Count

Primitive Count > 4

Quaternion : params3

A

A

y

CoordF32

: paramsl

A

y

DirF32 :

params2

y

Color Binding !=0

-

RGB : Color

-9

132 . Type

V.

Primitive

Count

Color Binding !'=0

\ 4
U8 : Bits Per Color

—— Y

Compressed paramsl

_—Y
Compressed params3

— Y
Compressed params2

A 4
Compressed Colors

n
>

'

132 : Primitive Count

veclsZintsZCDP, Lagly - Compressed 1ypes

Primitive Count specifies the number of primitives in the Primitive Set.

Quaternion : params3
Interpretation of params3 data field is primitive Type dependent. See Table 6: Primitive Set “params#” Data Fields
Interpretation in 6.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the params3 data

fields.

92
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Interpretation of paramsl data field is primitive Type dependent. See Table 6: Primitive Set “params#” Data Fields
Interpretation in 6.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the paramsl data

fields.

DirF32 : params?2

Interpretation of paramsl data field is primitive Type dependent. See Table 6: Primitive Set “params#” Data Fields
Interpretation in 6.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type description of the paramsl data

fields.

RGB : Color
Color specifies the Red, Green Blue color components for the primitive. This data field is only present if.prev
Color Binding (see 6.2.2.2 Primitive Set Shape Element) is not equal to “0”.

2:Type

ously read

ompressed

13
Type specifies the primitive type. See Table 5: Primitive Set Primitive Data Elements in 6.2.2:2.1 Lossless G
Priimitive Set Data for valid primitive Type values.

: Bits Per Color

Vecl32{Int32CDP, Lag1} : Compressed Types
The Compressed Types data field is a vector of Type data for all the)primitives in the Primitive Set. Compre
uges the Int32 version of the CODEC to compress and encode data. *In an uncompressed form the valid prin

hge [0:32]

sed Types
itive Type

les are as documented in Table 5: Primitive Set Primitive Data Elements in 6.2.2.2.1 Lossless Compressed Primitive

Sqt Data.

6/2.2.2.2.1 Compressed paramsl
Compressed paramsl is the compressed representation of the paramsl data for all the primitives in the Pri
N

mitive Set.
mitive Set

bte that the interpretation of the uncompressed paramsl data is primitive Type dependent. See Table 6: Pr

o

gscription of the params1 data fields

The paramsl data for all primitivesiin the Primitive Set is compressed/encoded on a per ordinate basis using
Upiform Quantizer (with Bits"Pef Vertex number of quantization bits) for each collection of ordinate valu
pgramsl is of type “CoordF32”, it has three ordinate values (three F32 values), and thus three Uniform

(where a Uniform Quantizer is a scalar quantizer/encoder whose range is divided into levels of equal spacin
Data Compression and.-Efcoding for more complete description of Uniform Quantizer.

The JT Format_packs all the paramsl data for all primitives into a single array using an ordinate dependen
shown below)\and then encodes each of the lists of ordinate values using a separate Uniform Quantizer per ord

{prim1 params1[0], prim2 params1[0],...primN params1[0],
prim1 params1[1], prim2 params1[1],...primN params1[1],

‘darams#” Data Fields Interpretation in:6-2.2.2.1 Lossless Compressed Primitive Set Data for per-prinpitive type

a separate
es. Since
Quantizers
D). See 7

t order (as
nate list.

nriml naramell2] nrim?2 naramcil21] primN narame1 211
pHH=pPatah =15 H=Pete PP S ==

=T P RRCE D o FEE o

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate value
collection, and an integer array of paramsl quantization codes that corresponds to the above described “ordinate

dependent order” packed array of paramsl data.
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Figure 87: Compressed paramsl data collection

VecF32 : Quantization Range Min/Max Pairs

\ 4
Vecl32{Int32CDP, Lagl} : paramsl Codes

VecF32__Quantization Range Min/Max Pairs
Quantizatipn Range Min/Max Pairs is a vector of Uniform Quantizer range min/max value pairs. There must’be a
min/max gair for each ordinate value collection (i.e. each Uniform Quantizer). Thus the length of this vectoris\“2| *
num_ordirjates” (so vector length would be “6” for paramsl data).

Vecl32{nt32CDP, Lag1l} : paramsl1 Codes
The paransl Codes data field is a vector of quantizer “codes” for the paramsl data of all the primitives'in the Primitiyve
Set. The garams1Codes also uses the Int32 version of the CODEC to compress and encode data.

6.2.2.2.2.2 Compressed params3

Compressgd params3 is the compressed representation of the params3 data for all the*primitives in the Primitive Sgt.
Note that the interpretation of the uncompressed param31 data is primitive Type.depéndent. See Table 6: Primitive Jet
“params#” Data Fields Interpretation in 6.2.2.2.1 Lossless Compressed Primiitive Set Data for per-primitive type
description of the params3 data fields

The paranjs3 data for all primitives in the Primitive Set is compressed/encoded on a per ordinate basis using a separdte
Uniform Quantizer (with Bits Per Vertex number of quantization bits) for each collection of ordinate values. Singce
paramsl ig of type “Quaternion”, it has four ordinate values (four F32 values), and thus four Uniform Quantizers (whdre
a Uniform| Quantizer is a scalar quantizer/encoder whose rangéis divided into levels of equal spacing). See 7 D4ta
Compression and Encoding for more complete description ofUniform Quantizer.

The JT Fdrmat packs all the params3 data for all primitives into a single array using an ordinate dependent order (as
shown belpw) and then encodes each of the lists of-ordinate values using a separate Uniform Quantizer per ordinate list

{prim1 params3{0], prim2 params3[0Q],...primN params3[0],
priml params3[1], prim2 params3[1],...primN params3[1],
prim1 params3[2], prim2 params3[2],...primN params3[2],
priml params3[3], prim2 params3[3],...primN params3[3]}

The result|of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate valpe
collection,| and an integer atray of params3 quantization codes that corresponds to the above described “ordingte
dependent|order” packed@rray of params3 data.

The storade format-of Compressed params3 is exactly the same as that documented in Figure 87: Compressed paramsl
data collegtion.

6.2.2.2.2.3 Compressed params2

Compressed params2 is the compressed representation of the params2 data for all the primitives in the Primitive Set.
Note that the interpretation of the uncompressed params2 data is primitive Type dependent. See Table 6: Primitive Set
“params#” Data Fields Interpretation in 6.2.2.2.1 Lossless Compressed Primitive Set Data for per-primitive type
description of the params2 data fields

The params?2 data for all primitives in the Primitive Set is compressed/encoded on a per ordinate basis using a separate
Uniform Quantizer (with Bits Per Vertex number of quantization bits) for each collection of ordinate values. Since
params? is of type “DirF32”, it has three ordinate values (three F32 values), and thus three Uniform Quantizers (where a
Uniform Quantizer is a scalar quantizer/encoder whose range is divided into levels of equal spacing). See 7 Data
Compression and Encoding for more complete description of Uniform Quantizer.
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The JT Format packs all the params2 data for all primitives into a single array using an ordinate dependent order (as
shown below) and then encodes each of the lists of ordinate values using a separate Uniform Quantizer per ordinate list.

{prim1 params2[0], prim2 params2[0],...primN params2[0],
prim1 params2[1], prim2 params2[1],...primN params2[1],
priml params2[2], prim2 params2[2],...primN params2[2]}

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ordinate value
collection, and an integer array of params2 quantization codes that corresponds to the above described “ordinate

T
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an

be

Cd
on

dg

6
@]

A
“H

d1pc||dcm order-packetarray of params2 data:

e storage format of Compressed params2 is exactly the same as that documented in Figure 87: Compressd

d paramsl

ta collection.

2.2.2.2.4 Compressed Colors

pmpressed Colors is the compressed representation of the color data for all the primitives in the Primitive
ta collection is only present if previously read Color Binding (see 6.2.2.2 Primitive. Set Shape Element) is n

The color data for all primitives in the Primitive Set is compressed/encodéd on a per ordinate basis using

niform Quantizer (with Bits Per Color number of quantization bits) forreach collection of ordinate values. §
of type “RGB”, it has three ordinate values (three F32 values), and‘thus three Uniform Quantizers (where
lantizer is a scalar quantizer/encoder whose range is divided intotJevels of equal spacing). See 7 Data Cq

Set. This
ot equal to

a separate
ince color
a Uniform
mpression

d Encoding for more complete description of Uniform Quantizer.

The JT Format packs all the color data for all primitives into<@ single array using an ordinate dependent order

low) and then encodes each of the lists of ordinate valugs-using a separate Uniform Quantizer per ordinate lis

{prim1 color[0], prim2 color[0],...primN color[0],
prim1 color[t], prim2 color[1],...primN color[1],
priml calor[2], prim2 color[2],...primN color[2]}

The result of the Uniform Quantizer encoding is a range min and max floating point value pairs for each ord

llection, and an integer array of color quantization codes that corresponds to the above described “ordinate
der” packed array of color data.

The storage format of Compressed Colors is exactly the same as that documented in Figure 87: Compresse

(as shown
t.

nate value
dependent

d paramsl

ta collection.

2.2.3 WiréHarness Set Shape Element
bject Typé ID: 0x4cc7a523, 0x728, 0x11d3, 0x9d, 0x8h, 0x0, 0xa0, 0xc9, 0xc7, Oxdd, Oxc2

Wiré Harness Set Shape Element defines the data necessary to procedurally generate LODs for a list of wire

réeedurally generate” means that the raw geometric shape definition data (e.g. vertices, polygons, normal

harnesses.
s, etc) for

LODS s ot diTectty StoTed; nstead SOME UesCriptive Stiape Mformation 15 stored from which CODs tan be g

load time.
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Figure 88: Wire Harness Set Shape Element data collection

m
Element Header

\ 4
116 : Version Number

\ 4
132 : Normal Binding

\ 4
132 : Texture Coord Binding

\ 4
132 : Color Binding

_—_Y

Wire Harness Set

Complete flescription for Element Header can be found in 6.1.3.2.1Element-Header.

116 : Vefsion Number
Version Number is the version identifier for this Wire Harness“Set Shape Element. Version number “0x0001”|is
currently the only valid value.

132 : Ngrmal Binding
Normal Bipding specifies how (at what granularity) nermal vector data is supplied (“bound”) for the shape. Valid valugs
include thq following:

=0 | — None. Shape has no norimal data.
=1 | — Per Vertex. Shape has'a'normal vector for every vertex.

132 : Tekture Coord Binding
Texture Cpord Binding specifies -how (at what granularity) texture coordinate data is supplied (*bound”) for the shayg
Valid valups are the same as-doecumented for Normal Binding data field.

®

132 : Color Binding
Color Bingling specifies how (at what granularity) color data is supplied (“bound”) for the shape. Valid values are the
same as dqcumented for Normal Binding data field.

6.2.2.3.1 Wire Harness Set

A Wire Harness Set defines a topological and geometric representation of a set/list of wire harnesses. Each wire harness
in the set is a single manufactured wire unit consisting of several physical electrical wires all bound together into a
branching structure of wire bundles that terminate at connectors. Note that only the wires are modeled by the Wire
Harness Set, not any of the physical representation of the connectors or wrapping material used to secure the harness.

The topology of a wire Harness can be viewed as a non-directed acyclic graph. Each node of the graph is represented in
3D space by a Branch Node. Each edge of the graph is represented in 3D space by a Bundle. Physical Wires are defined
to trace a path from one leaf Branch Node in the graph to another leaf Branch Node in the graph using an ordered list of
Wire Segments. So essentially there are two topologies modeled, the graph topology of the Bundles, and the topology of
the Wires.
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The geometry of the wire Harness defines the 3D location of the Branch Nodes, the 3D spine curve (path) of the Bundles,
and the physical radius and multiplicity of the Wires. These geometry definitions are referenced though the topology

structure.

Figure 89: Wire Harness Set data collection

132 : Version Number

2 : Version Number

<@

6/2.2.3.1.1 Entity Counts

——Y

Entity Counts

Harness Count > 0

_—Y
Topological Entities

Y

Geometric

Y
Entity Tag Counters

brsion Number is the version identifier forihis Wire Harness Set. Version number “1” is currently the only v

Entity Counts Specifies the caqunts for (number of) each of the entity types which exists within a set of wire harnesses.
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Figure 90: Entity Counts data collection

132 : Harness Count

\ 4
132 : Bundle Count

4
132 - \Wire Count

\ 4
132 : Wire Segment Count

\ 4
132 : Branch Node Count

\ 4
132 : Bundle Spine Curve Count

\ 4
132 : Branch Point Count

132 : Harness Count

Harness C

132 : Bu
Bundle Ca

132 : Wi
Wire Cour

132 : Wi

punt specifies the number of Wire Harness entities in-the list.

ndle Count
unt specifies the number of Bundle entities_in the list.

fe Count
t specifies the number of Wire entities in the list.

e Segment Count

Wire Segnpent Count specifies the number of Wire Segment entities in the list.

132 : Br
Branch Nd

132 : Bu
Bundle Sp

anch Node Count
de Count specifiesthe number of Branch Node entities in the list.

ndle Spine Curve Count

132 : Br

anch Point Count

ne Curve Count specifies the number of Bundle Spine Curve entities in the list.

Branch Po

98

int Count specifies the number of Branch Point entities in the list.
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6.2.2.3.1.2 Topological Entities

Figure 91: Topological Entities data collection

Harness

ISO/PAS 14306:2011(E)

6/2.2.3.1.2.1 Harness

- Harness

Count

Bundle “— Bundle
Count
Wire < Wire
Count

Wire Segment

A

Branch Node

n

A

v

ordered set of Branch Nodes, and a set of Wires.

Wire Segment
Count

Branch
Node Count

A|Harness is single.manufactured wire unit consisting of several physical electrical wires all bound together into a
brpnching structurg of wire bundles that terminate at connectors. A Harness is made up of an ordered set of Bundles, an
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Figure 92: Harness data collection

132 : Harness Datal

\ 4
132 : Harness Data2

\ 4
132 - Eirst Branch Node Index

\ 4
132 : Last Branch Node Index

\ 4
132 : First Wire Index

\ 4
132 : Last Wire Index

132 : Harness Datal
Harness Oatal is a collection of Harness information encoded/packed:within a single 132 using the following bi
allocation.| All undocumented bits are reserved.

t

Bits 0 - 23 | Specifies the index into the list of Bundles of the first Bundle in the Harness. All
Bundles inclusive between first Bundfe® index and last Bundle index (see Harness
Data?) are part of this Harness

Bits 24 - 30 | Represents bits 8-14 of the 116 ‘Harness tag identifier. Note that bits 0-7 of the 116
Harness tag identifier can<fe found in Harness Data? data field. Using C-language
syntax the complete Haress tag identifier can be built as follows:

Tag = ((Harness Datal & 0x7f000000) >> 16) | ((Harness Data2 & 0xff000000) >> 24)

132 : Harness Data2
Harness DOata2 is a collection of Harness information encoded/packed within a single 132 using the following b
allocation.| All undocumented bits are reserved.

t

Bits 0 - 23" Specifies the index into the list of Bundles of the last Bundle in the Harness. All
Bundles inclusive between first Bundle index (see Harness Datal) and last Bundle
index are part of this Harness

Bits 24 - 31 | Represents bits 0-7 of the 116 Harness tag identifier. Note that bits 8-14 of the 116
Harness tag identifier can be found in Harness Datal data field. Using C-language
syntax the complete Harness tag identifier can be built as follows:

Tag = ((Harness Datal & 0x7f000000) >> 16) | ((Harness Data2 & 0xff000000) >> 24)

132 : First Branch Node Index
First Branch Node Index specifies the index into the list of Branch Nodes of the first Branch Node in the Harness. All
Branch Nodes inclusive between First Branch Node Index and Last Branch Node Index are part of this Harness.
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132 : Last Branch Node Index
Last Branch Node Index specifies the index into the list of Branch Nodes of the Last Branch Node in the Harness. All
Branch Nodes inclusive between First Branch Node Index and Last Branch Node Index are part of this Harness.

132 : First Wire Index
First Wire Index specifies the index into the list of Wires of the first Wire in the Harness. All Wires inclusive between
First Wire Index and Last Wire Index are part of this Harness.

132 L ast Wire Index
List Wire Index specifies the index into the list of Wires of the last Wire in the Harness. All Wires inclusiye between
First Wire Index and Last Wire Index are part of this Harness.

6/2.2.3.1.2.2 Bundle

A|Bundle models the group of wires that span between two Branch Nodes in a Harness. A Bundle is composed of a start
and end Branch Node which models the topological points at which a Harness branches~into two or more Bundles. A
Blindle also refers to a Bundle Spine Curve which represents the 3D path that the,Bundle centerline makep in space.
Npte that only the Bundle centerline is modeled; the routing of each individual\ wire in the Bundle is fonsidered
immaterial (i.e. left to a system processing this data to arrange how it sees fit).~The Bundle Spine Curve|ends must
cqincide with the Bundle’s start and end Branch Nodes.

Figure 93: Bundle data‘collection

132 : Bundle Datal

v
132 : Bundle:Data2

\4
182': Bundle Data3

32 : Bundle Datal
Blindle Datal is a collection of Bundle information encoded/packed within a single 132 using the following bit[allocation.
All undocumented bits are(resérved.

Bits 0 - 23.7Z} Specifies the index into the list of Branch Nodes of the start Branch Node for thg
Bundle.

Bits)24 - 30 | Represents bits 16-22 of the 23 bit Bundle tag identifier. Note that bits 8-15 and bit
0-7 of the 23 bit Bundle tag identifier can be found in Bundle Data?2 and Bundlg
Data3 data fields respectively. Using C-language syntax the complete Bundle tag
identifier can be built as follows:

Tag = ((Bundle Datal & 0x7f000000) >> 8) | ((Bundle Data2 & 0xff000000) >> 16) |
((Bundle Data3 & 0xff000000) >> 24)
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132 : Bundle Data2
Bundle Data2 is a collection of Bundle information encoded/packed within a single 132 using the following bit allocation.

All undocumented bits are reserved.

Bits 0 - 23 | Specifies the index into the list of Branch Nodes of the end Branch Node for the
Bundle.

Bits 24 - 31 | Represents bits 8-15 of the 23 bit Bundle tag identifier. Note that bits 16-22 and bits
0-7 of the 23 bit Bundle tag identifier can be found in Bundle Datal and Bundle
Data3 data fields respectively. Using C-language syntax the complete Bundle tag
identifier can be built as follows:

Tag = ((Bundle Datal & 0x7f000000) >> 8) | ((Bundle Data2 & 0xff000000) >> 16) |
((Bundle Data3 & 0xff000000) >> 24)

Bundle D
All undoc

132 : B%:ndle Data3

>

a3 is a collection of Bundle information encoded/packed within a single 132 using.the following bit allocatig
mented bits are reserved.

Bits 0 - 23 | Specifies the index into the list of Bundle Spine Curves of the spine curve associated
with the Bundle.

Bits 24 - 31 | Represents bits 0-7 of the 23 bit Bundle tag identifier. Note that bits 16-22 and bits 8-
15 of the 23 bit Bundle tag identifier can be found\in Bundle Datal and Bundle Data2
data fields respectively. Using C-language syntax the complete Bundle tag identifier
can be built as follows:

Tag = ((Bundle Datal & 0x7f000000)>>> 8) | ((Bundle Data2 & 0xff000000) >> 16) |
((Bundle Data3 & 0xff000000Q) >> 24)

6.2.2.3.
A Wire m

list of Bur{dles as identified by the ordered list of Wire Segments composing a Wire. In order to reduce data explosign,
and leverdge the fact that many Wirés in a Harness have the same physical representation, semantic meaning, apd

| .2.3 Wire

@dels the contiguous nature of @ single strand of wire from beginning to end. A Wire passes through an ordered

start/end byanch nodes, the Wire €ntity supports a multiplicity factor. This multiplicity factor allows a single Wire ent{ty

to represe
by a Wire

102

nt more than one discrete physical wire in a Harness. Only physical wires of circular cross-section are modelgd
bntity.
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132 : Wire Datal

\4
132 : Wire Data2

\4
132 - \Wire Datal

I
p
J

ur

Is
| 3
e

ur

2 : Wire Datal

Wire Datal is a collection of Wire information encoded/packed within a single 132 using the following bit allo
documented bits are reserved.

RGBA : Color

\ 4
F32 : Radius

2011(E)

ation. All

Bits 0 - 23

Specifies the index into the list of Wire Segments of the first Wire Segment in thg
Wire. All Wire Segments inclusive between first Wire Segment index and last Wirg
Segment index (see Wire Data?) are pdrt-of this Wire

Bits 24 - 30

Represents bits 16-22 of the 23 bit\Wire tag identifier. Note that bits 8-15 and bits 0-1
of the 23 bit Wiretag identifier-can be found in Wire Data? and Wire Data3 data field
respectively. Using C-language syntax the complete Wire tag identifier can be built a
follows:

Tag = ((Wire Datal & 0x7f000000) >> 8) | ((Wire Data2 & 0xff000000) >> 16) |
((Wire Data3 & 0xff000000) >> 24)

2 : Wire Data2

Wire Data2 is a collectign-of Wire information encoded/packed within a single 132 using the following bit allo
documented bits are-reserved.

S
L

ation. All

Bits 0. %23 | Specifies the index into the list of Wire Segments of the last Wire Segment in thg
Wire. All Wire Segments inclusive between first Wire Segment index (see Wirg
Datal) and last Wire Segment index are part of this Wire

Bits 24 - 31 | Represents bits 8-15 of the 23 bit Wire tag identifier. Note that bits 16-22 and bits 0-1

of-the—23-bit-Whire—tagtdentifrercanbe—found—imWireDatat—and-WireData3—dat
fields respectively. Using C-language syntax the complete Wire tag identifier can be
built as follows:

Tag = ((Wire Datal & 0x7f000000) >> 8) | ((Wire Data2 & 0xff000000) >> 16) |
((Wire Data3 & 0xff000000) >> 24)
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132 : Wire Data3
Wire Data3 is a collection of Wire information encoded/packed within a single 132 using the following bit allocation. All
undocumented bits are reserved.

Bits 0 - 23 | Specifies the Wire multiplicity factor. The multiplicity factor is used to allow a single
Wire to represent multiple (more than one) discrete physical wires that have the same
semantic meaning, attributes and starting/ending Wire Segment.

Bits 24 - 31 | Represents bits 0-7 of the 23 bit Wire tag identifier. Note that bits 16-22 and bits 8-15
of the 23 bit Wire tag identifier can be found in Wire Datal and Wire Data? data
fields respectively. Using C-language syntax the complete Wire tag identifier can be
built as follows:

Tag = ((Wire Datal & 0x7f000000) >> 8) | ((Wire Data2 & 0xff000000) >> 16) |
((Wire Data3 & 0xff000000) >> 24)

RGBA :|Color

Color spedifies the Red, Green, Blue, and Alpha components of the Wire color.

F32: Radius
Radius spdcifies the physical radius of the Wire (thus only physical Wires of circylar cross-section can be modeled).

6.2.2.3.1.2.4 Wire Segment

A Wire S¢gment indirectly models the inclusion of a Wire in a<particular Bundle (i.e. that a Wire passes througH a
particular Bundle).

Figure 95: Wire Segment data collection

132 : Bundle Index

132 : Tag

132 : Bundle Index

Bundle Index specifies the index into the list of Bundles of the Bundle this Wire Segment is associated with.

132 : Tap
Tag specifjes the taguidentifier for the Wire Segment entity.

6.2.2.3. x5 BranchriNode

Leaf Branch Nodes model the topological terminating points of a Harness (i.e. where a connector would be) while
internal Branch Nodes model the topological points at which a Harness branches into two or more Bundles.
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Figure 96: Branch Node data collection

132 : Branch Point Index

132 : qunch Point I_ndex.

Branch-Rointtadex—spe

132 : Tag
Tag specifies the tag identifier for the Branch Node entity.

6/2.2.3.1.3 Geometric Entities

Figure 97: Geometric data collection

Bundle

Bundle Spine Curve
Spine Curve

> Count

A

A

CoordF32 ::Branch Point Coord

Branch Point
Count

»
»

v

CoordF32 : Branch Point Coord
Branch Point Coord specifies the XYZ local coordinate system point coordinates for the Branch Point.

2.2.3.1.3.1 Bundle Spine Curve

6
A|Bundle SpingCurve is referenced by a Bundle and represents the precise 3D geometric path that the geferencing
Bundle’s centerline makes in space
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Figure 98: Bundle Spine Curve data collection

U8 : Base Type

\ 4
F64 : Domain Limit Min

v
EB64 - Domain | imit Max

U8 : Ba
Base Typq
identifier i
Valid Basé

\ 4
F64 : Collocation Tolerance

v
U8 : Serialization Precision

\ 4
NURBS XYZ Curve

5e Type

5 still included in the specification to allow for future expansion’of the JT Format to support other curve typ
Type values include the following:

=1[ - Curve isa NURBS curve |

Fe4 : D
Domain L
additional

F64 : D
Domain L
additional

F64: C
Collocatio
1” indicatg

U8 : Se

pmain Limit Min
mit Min specifies the minimum value-placed on the parametric domain. A value of “-1.0” indicates that
domain limit has been set on the real parametric domain.

bmain Limit Max
mit Max specifies the maximum value placed on the parametric domain. A value of “-1.0” indicates that
domain limit has been sét on the real parametric domain.

pllocation Tolerance
N Tolerance spégifies the tolerance to be used for determining whether two points are collocated. A value of
s that this tolerance has not been set

ialization Precision

Serializati
precision

specifies the curve base type identifier. Currently only NURBS curve Base Type is supported, but a type

n-Precision specifies whether the curve data is serialized in single or double precision. Currently only douljle

@

specification to allow for future expansion of the JT Format to support single precision Bundle Spine Curves. Valid
Serialization Precision values include the following:

| =0] — Double precision serialization |

6.2.2.3.1

3.1.1 NURBS XYZ Curve

NURBS XYZ Curve data collection defines a single model space NURBS curve. This format for storing NURBS XYZ

curves is o

106

nly used within the Wire Harness Set Shape Element.
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Figure 99: NURBS XYZ Curve data collection

132 : Deqgree

\ 4
132 : Control Point Count

A 4
15Z . Control Foint pbim

Y

132 : Reserved Field

A\ 4
F64 : Knot Vector Value [¢

Degree + Control Point Count + 1

Control Point Dip= =

A\ 4
CoordF64 : Control Point Coord

\ 4

Cpntrol Point
Count

\ 4
HCoordF64 : Control Point HCoord

A

Control Point
Count

132 : Degree
Degree specifies the NURBS curve:degree. The degree value must be within the range [1:16] inclusive.

132 : Control Point Count
Control Point Count spegifies the number of control points for the NURBS curve.

132 : Control Point Dim
Control Point Dim specifies the dimensionality of the control points. Valid dimensionality values include the fpllowing:

=3 | — Non-Rational (each control point has 3 coordinates)
=4 | — Rational (each control point has 4 coordinates)

132 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

F64 : Knot Vector Value

Knot Vector Value specifies a single value within the NURBS curve knot vector. There should be a total of “Degree +
Control Point Count + 1” of these values. The list of these values forms the total NURBS curve knot vector which must
be clamped and non-decreasing; where clamped means knot multiplicity of “degree + 1” at both the beginning and end of
the knot vector.
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CoordF64 : Control Point Coord
Control Point Coord specifies the XY Z coordinates for a single control point

HCoordF64 : Control Point HCoord
Control Point HCoord specifies the XYZW homogeneous coordinates for a single control point.

6.2.2.3.1.4 Entity Tag Counters

Entity Tag Counters data collection specifies the next available
Wire Harness-Se hese-are—rotting-tagcotnters-that-are-mean
is added tq a Wire Harness Set.

“unique” tag value for each topological entity type in a

Figure 100: Entity Tag Counters data collection

132 : Harness Tag Counter

\ 4
132 : Bundle Tag Counter

\ 4
132 : Wire Tag Counter

\ 4
132 : Wire Segment Tag Counter:

\ 4
132 : Branch Node Tag-Counter

132 : Hafrness Tag Counter
Harness Tag Counter specifies the next available~*unique’ tag value for Harness entity.

132 : Bundle Tag Counter
Bundle Tap Counter specifies the next\available “unique’ tag value for Bundle entity.

132 : Wire Tag Counter
Wire Tag Counter specifiesthe-next available “unique’ tag value for Wire entity.

132 : Wire Segment Tag Counter
Wire Segment Tag Counter specifies the next available “unique’ tag value for Wire Segment entity.

132 : Branc

h'Node Tag Counte
Branch NddeT3 pacifies

Branch-Node nnfihj/

6.2.3 JT B-Rep Segment

JT B-Rep Segment contains an Element that defines the precise geometric Boundary Representation data for a particular
Part in JT B-Rep format. Note that there is also another Boundary Representation format (i.e. XT B-Rep) supported by
the JT file format within a different file Segment Type. Complete description for the XT B-Rep can be found in 6.2.4 XT

B-Rep Segment.
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JT B-Rep Segments are typically referenced by Part Node Elements (see 6.2.1.1.1.5Part Node Element) using Late
Loaded Property Atom Elements (see 6.2.1.2.7Late Loaded Property Atom Element). The JT B-Rep Segment type
supports ZLIB compression on all element data, so all elements in JT B-Rep Segment use the Element Header ZLIB
form of element header data.

Figure 101: JT B-Rep Segment data collection

Segment Header

Y
JT B-Rep Element

Complete description for Segment Header can be found in_6.1.3.1Segment Header.

6/2.3.1 JT B-Rep Element
Opject Type ID: 0x873a70c0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbby'0x59, 0x97

JT B-Rep Element represents a particular Part’s precise data in JT boundary representation format. Miyich of the
“Heavyweight” data contained within a JT B-Rep Element is compressed-and/or encoded. The compresdion and/or
erjcoding state is indicated through other data stored in each JT B-RepElement.

Tyvo important aspects of a Part are its geometry and its topolagy. The geometry describes the shape of @ Part: this
Syrface is a plane, that Surface is a cylinder, this Curve is an*arc, etc. The topology describes the connectilvity of the
Pgrt: this Point is inside the Part, these Surfaces are next to.each other, etc. The 0, 1, and 2 dimensional building blocks
ofl geometry are Points, Curves, and Surfaces. The corresponding topological building blocks are Vertices, Edges, and
F4ces. Topology also uses Shells and Regions to conceptually divide up the three dimensional space.

P4rts may have the same topology, but wildly_different geometry. Imagine the Surfaces of a Part being composed of
rupber. The topology of the Part does not change as we deform the Part by bending or stretching the surfaces]as long as
we do not cut or glue them (we call this anice” deformation). A Part’s topology can be classified as being fmanifold”
or] “non-manifold”; where “manifold” itnplies that the Part has the property that each Edge, excluding seams|and poles,
hgs exactly two faces using it.

Similarly, Parts may have nearly.identical geometry but different topology. The topology of a Part depends @n how the
ggometry is put together. ~A-Part may be manifold or non-manifold simply depending on how the geomgtry is put
topether. In addition to,deseribing connectivity in space, topology is used to describe areas of interest (activ¢ areas) on
Syrfaces. These actiye Surface areas are used in defining a complex Part. The areas are specified by oriented|Loops and
often referred to astrimmed Surfaces which are exactly the 2-dimensional topological building block called a Hace.

Readers desiring/needing a more in-depth exploration of boundary representation theory in order to undgrstand the
significance/meaning of some of the JT B-Rep data fields are referred to references [10] and [11] listed in 2 References
arjd Additional Information section of this document.

Since-the topoloay is a convenient way to describe or “organize” the Part, it is also convenient to store the geometry of
the Part in the topological structures. The following sub-sections document the JT B-Rep format for storing the topology
and geometry of a Part in a JT file.
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Figure 102: JT B-Rep Element data collection

Element Header ZLIB

A 4

132 : Version Number

A 4

U32 : Reserved Field

Topological Entity Counts

- A 4

Seometric Entity Counts

\ 4

C

ordF64 : Reserved Field

A 4

F64 : Reserved Field

Region Count >0

¥

Topology Data

_—V
Geometric Data

A 4
Topological Entity Tag*Counters

Version Number > 4

A 4

U32 : CAD Tags Flag

CAD Tags Flag ==

B-Rep CAD Tag Data

A

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

132 : Ve

Version Number is the version identifier for this JT B-Rep Element.

supported.

rsion Number

U32 : Reserved Field

Reserved Field is a data field reserved for future JT format expansion.

110

Version numbers “4” and “5” are currently
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CoordF64 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

F64 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

U32 : CAD Tags Flag
CAD Tags Flag is a flag indicating whether CAD Tag data exist for the JT B-Rep.

6/2.3.1.1 Topological Entity Counts

Topological Entity Counts data collection defines the counts for each of the various topological entities-within

Figure 103: Topological Entity Counts data collection

132 : Region Count

\ 4
132 : Shell Count

\ 4
132 : Face Count

\4
132 : Loop Count

A\ 4
132 *CoEdge Count

\ 4
132 : Edge Count

\ 4
132 : Vertex Count

32 : Region<Count
Region Countiindicates the number of topological region entities in the B-Rep.

132 <Shell Count
Shell*€ount indicates the number of topological shell entities in the B-Rep

h B-Rep.

132 : Face Count
Face Count indicates the number of topological face entities in the B-Rep

132 : Loop Count
Loop Count indicates the number of topological loop entities in the B-Rep

132 : CoEdge Count
CoEdge Count indicates the number of topological coedge entities in the B-Rep
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132 : Edge Count
Edge Count indicates the number of topological edge entities in the B-Rep

132 : Vertex Count

Vertex Count indicates the number of topological vertex entities in the B-Rep

6.2.3.1.2 Geometric Entity Counts
Geometric Entity Counts data collection defines the counts for each of the various geometric entities within a B-Rep.

Figure 104: Geometric Entity Counts data collection

132 : Surface Count

\ 4
132 : PCS Curve Count

\ 4
132 : MCS Curve Count

\ 4
132 : Point Count

132 : Sufrface Count
Surface Cqunt indicates the number of distinct geometric surface.entities in the B-Rep

132 : PAS Curve Count

PCS Curvg Count indicates the number of distinct geometric Parameter Coordinate Space curves (i.e. UV curve) entities
in the B-Rgp

132 : MQS Curve Count

MCS Curye Count indicates the number ofidistinct geometric (Model Coordinate Space) curves (i.e. XYZ curve) entities
in the B-Rgp.

132 : Po'nnt Count
Point Count indicates the numberof distinct geometric point entities in the B-Rep.
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Figure 105: Topology Data data collection

Regions Topology Data

Shells Topology Data

Shell Count >0
y

ISO/PAS 14306:2011(E)

A

Face Count >0
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y
CoEdges Topology Data

Edge Count >0
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y
Edges Topology Data

A

Vertices To

Vertex Count >0

]

y
pology Data
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6.2.3.1.3.1 Regions Topology Data

Regions Topology Data defines the disjoint set of non-overlapping Shells making up each Region.

Each Region is

defined by one or more non-overlapping Shells. The volume of a Region is that volume lying inside each “anti-hole
Shell” and outside each simply-contained “hole Shell” belonging to the particular Region. A Region is analogous to a
dimensionally elevated face where Region corresponds to Face and Shell corresponds to Trim Loop.

Each Region’s defining Shells are identified in a list of Shells by an index for both the first Shell and the last Shell in
each Region (i.e. all Shells inclusive between the specified first and last Shell list index define the particular Region).
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Figure 106: Regions Topology Data data collection

Vecl32{Int32CDP, Lagl} : First Shell Indice>

\ 4
Vecl32{Int32CDP, Lagl} : Last Shell Indic&

A 4

Vecl32{
First Shell
the Int32

Vecl32{
Last Shell
the Int32

Vecl32{
Each Regi
Int32 vers

6.2.3.1.]

Shells Top
adjacent H
volume of
a flag that
(i.e. an “an

Each Shel
Shell (i.e.

Vecl32{Int32CDP, Lagl} : Region Taqs>

Int32CDP, Lag1l} : First Shell Indices
Indices is a vector of indices representing the index of the first Shell in each Region. First Shell Indices ug
ersion of the CODEC to compress and encode data.

Int32CDP, Lag1l} : Last Shell Indices
Indices is a vector of indices representing the index of the last Shell in each Region. Last Shell Indices ug
ersion of the CODEC to compress and encode data.

Int32CDP, Lag1l} : Region Tags
bn has an identifier tag. Region Tags is a vector of identifier tags for a‘set of Regions. Region Tags uses t
on of the CODEC to compress and encode data.

B.2 Shells Topology Data

ology Data defines the set of topological adjacent Fages making up each Shell. A Shell’s set of topologi
pces define a single (usually closed) two manifold'Solid that in turn defines the boundary between the fin
space enclosed within the Shell and the infinite.volume of space outside the Shell. Additional, each Shell h
denotes whether the Shell refers to the finite ihterior volume (i.e. a “hole Shell”) or the infinite exterior volur
ti-hole Shell”).

’s defining Faces are identified in a list of Faces by an index for both the first Face and the last Face in ea
Il Faces inclusive between the spegified first and last Face list index define the particular Shell).

Figure 107: Shells Topology Data data collection

\Vecl32{Int32CDP, Lagl} : First Face Indi@

\ 4
Vecl32{Int32CDP, Lag1} : Last Face Indi@
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\ 4
Vecl32{Int32CDP, Lagl} : Shell Tags >

\ 4
Vecl32{Int32CDP, Xor1} : Shell Anti-Hole Fla@
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Vecl32{Int32CDP, Lag1l} : First Face Indices

First Face Indices is a vector of indices representing the index of the first Face in each Shell. First Face Indices uses the
Int32 version of the CODEC to compress and encode data.

Vecl32{Int32CDP, Lag1l} : Last Face Indices
Last Face Indices is a vector of indices representing the index of the last Face in each Shell. Last Face Indices uses the
Int32 version of the CODEC to compress and encode data.

Vecl32{Int32CDP, Lag1l} : Shell Tags

Each Shell has an identifier tag. Shell Tags is a vector of identifier tags for a set of Shells. Shell Tags use

the Int32

=3

6

A
re
T
al

A

th
lo
re
is

vdrsion of the CODEC to compress and encode data.
Vecl32{Int32CDP, Xorl} : Shell Anti-Hole Flags

E4ch Shell has a flag identifying whether the Shell is an anti-hole Shell. Shell Anti-Hole Flags is a-véctor of an
flags for a set of Shells.

Shell Anti-Hole Flags uses the Int32 version of the CODEC to compress and_encode data.

an uncompressed/decoded form the flag values have the following meaning:

i-hole

=0 | — Shell is not an anti-hole Shell

=1| — Shell is an anti-hole Shell

2.3.1.3.3 Faces Topology Data

Face is a two-dimensional topological building block defined as the active (that portion to be used in
pions/areas of a Geometric Surface; where active regionslafeas of a Geometric Surface are indicated usir
im Loops. Faces Topology Data specifies the underlying Geometric Surface and Trim Loops making up
bng with a “reverse normal” flag and identifier tag fof-each Face.

e material or “active region” js-always to one’s left. Figure 108 gives an example in parameter space of
pbp definition and orientation (as indicated by the arrows on the loop’s CoEdges) for a face with two hq
bresents the face “anti-hole” Trim Loop while “L2” and L3” represent the two “hole” Trim Loops. Note thal
always represented by-a.separate distinct “hole” Trim Loop.

he model)
g oriented
each Face

Face must be trimmed with at least one “anti-hole” Trim Loop and may be trimmed with one or more “hole” Trim
Loops. Thus the area of the Geometric Surface defined as the Face, is the area inside the “anti-hole” Trim
oytside each “hole” Trim Loop. No Trim.Loops (“hole” or “anti-hole”) may intersect/cross or be tangent at
“Anti-Hole” Trim Loops must be defined” with a counter-clockwise orientation whereas “hole” Trim Looy
dgfined with a clockwise orientation, With this Trim Loop orientation definition, as one traverses a Trim Loof

Loops and
any point.
s must be
of a Face,
roper trim
les. “L1”
| each hole
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Figure 108: Trim Loop example in parameter Space - One Face with 2 Holes

L1: Anti-Hole Trim Loop

L2: Hole Trim Loop

L3: Hole Trim Loop

Each Facg’s underlying Geometric Surface is identified by an index intd.a"list of Geometric Surfaces. Each Facg
defining Tfim Loops are identified in a list of trim Loops by an index forhoth the first Trim Loop and the last Trim Lopp
in each Fafe (i.e. all Trim Loops inclusive between the specified firstzand last Trim Loop list index define the particular
Face).

Figure 109: Faces Topology Data data collection

\Vecl32{1nt32CDP, Lagl} : First Trim Loop Indi@

v
Vecl32{Int32CDP, Lagl} : Last Trim Loop Indi@

A 4

Vecl32{Int32CDP, Lag1} : Surface Indices S

A 4
Vecl32{Int32CDP, Lagl} : Face Tags >

v
Vecl32{Int32CDP, Xorl} : Face Reverse Normal FI@
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ecl32{Int32CDP, Lagl} : First Trim Loop Indices

First Trim Loop Indices is a vector of indices representing the index of the first Trim Loop in each Face. First Trim Loop

In

\Y,

dices uses the Int32 version of the CODEC to compress and encode data.

ecl32{Int32CDP, Lagl} : Last Trim Loop Indices

Last Trim Loop Indices is a vector of indices representing the index of the last Trim Loop in each Face. Last Trim Loop

In

\%
S

dices uses the Int32 version of the CODEC to compress and encode data.

ecl32{Int32CDP, Lag1} : Surface Indices

rface Indices is a vector of indices representing the index of the underlying Geometric Surface for each Fa

e. Surface

In

V|
Ej
veg

V
E4
th
th

Fa

N

Fa

6
A

ar
A

E
C
P3

dices uses the Int32 version of the CODEC to compress and encode data.

pcl32{Int32CDP, Lagl} : Face Tags
ch Face has an identifier tag. Face Tags is a vector of identifier tags for a set of Faces. Faee(Tags use
rsion of the CODEC to compress and encode data.

pcl32{Int32CDP, Xorl} : Face Reverse Normal Flags

ch Face has a flag identifying whether the Face’s normal(s) should be interpreted te point in the direction
b usual U cross V normal (note that these flags do not imply any sort of parameter reversal, the flag only i
b material is on the other side of the surface).

ce Reverse Normal Flags is a vector of reverse-normal flags for a set of Faces.

an uncompressed/decoded form the flag values have the following-mneaning:

the Int32

pposite of
mplies that

=0| — Face normal is not reversed

=1| — Shell normal is reversed.

ce Reverse Normal Flags uses the Int32 version of thet€ODEC to compress and encode data.

2.3.1.3.4 Loops Topology Data

Loop (often called Trimming Loop) defines in parameter space a 1D boundary around which geometric s

trimmed to form a Face. Loops Topology’ Data specifies the CoEdges making up each Loop along with an an

d identifier tag for each Loop.

Loop is composed of one ormofe CoEdges and the Loop must be closed and non-self-intersecting.

gch Loop’s defining CoEdges are identified in a list of CoEdges by an index for both the first CoEdge a

bEdge in each Loap-(i.e. all CoEdges inclusive between the specified first and last CoEdge list index
rticular Loop).

irfaces are
i-hole flag

nd the last
define the
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Figure 110: Loops Topology Data data collection

Vecl32{Int32CDP, Lagl} : First CoEdge Indice>

v
Vecl32{Int32CDP, Lagl} : Last CoEdge Indic>

A 4

Vecl32{
First CoEq
uses the In

Vecl32{
Last CoEd
uses the In

Vecl32{
Each Looy
version of

Vecl32{
Each Loog
aset of Lo

In an unco

Vecl32{132CDP, Lag1} : Loop Tags >

\ 4

Vecl32{132CDP, Xor1} : Anti-Hole Flags >

Int32CDP, Lag1l} : First CoEdge Indices
ge Indices is a vector of indices representing the index of the first CoEdge in each™*oop. First CoEdge Indig
32 version of the CODEC to compress and encode data.

Int32CDP, Lag1l} : Last CoEdge Indices
ge Indices is a vector of indices representing the index of the last CaEdge in each Loop. Last CoEdge Indig
t32 version of the CODEC to compress and encode data.

I32CDP, Lag1l} : Loop Tags
has an identifier tag. Loop Tags is a vector of identifiertags for a set of Loops. Loop Tags uses the Int
the CODEC to compress and encode data.

I32CDP, Xorl} : Anti-Hole Flags
has a flag identifying whether the Loop is an«anti-hole Loop. Anti-Hole Flags is a vector of anti-hole flags f
ppsS

mpressed/decoded form the flag values-have the following meaning:

=0 — Loop is not an anti-Hole'Loop

=1| - Loop is an anti-hole/Loop

Anti-Hole

6.2.3.1.1

A CoEdge
the Face).
MCS curv

Flags uses the Int32.v€rsion of the CODEC to compress and encode data.

B.5 CoEdges Topology Data

definessa‘parameter space edge trim Loop segment (i.e. the projection of an Edge into the parameter space
CoEdges Topology Data specifies the underlying Edge and PCS Curve making up each CoEdge along with
b reversed flag and tag for each CoEdge.

The “Co” portion of the CoEdge name derives from the manifold topology definition that each Edge has exactly two
Faces containing it; thus a CoEdge defines one Face’s “use” of an Edge and the adjoining Face also has a CoEdge (“use™)
for the same underlying Edge. This sharing of the same underlying Edge by two adjoining Faces necessitates the need
for a “MCS Curve Reversed Flag” on each CoEdge to indicate the edge traversal direction (i.e. for a proper manifold

topology d

118

efinition each CoEdge must traverse the Edge in opposite directions).
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Vecl32{Int32CDP, Lag1} : PCS Curve Indices

Vecl32{Int32CDP, Lag1} : Edge Indices

ge Indices is a vector of indices representing the index of the underlying Edge.for each CoEdge. Edge Indices uses the
Ink32 version of the CODEC to compress and encode data.

ISO/PAS 14306:2011(E)

Figure 111: CoEdges Topology Data data collection

Vecl32{Int32CDP, Lagl} : Edge Indices>

A 4
Vecl32{Int32CDP, Lagl} : PCS Curve Indi@

2

Vecl32{Int32CDP, Lagl} : CoEdge Taqs>

A\ 4
Vecl32{Int32CDP, Xor1} : MCS Curve Reversed Fla@

PCS Curve Indices is a vector of indices representing the index of the PCS Curve (UV Curve) for each CoHdge. PCS

C

th

V

in
fo

N

M

Vecl32{Int32CDP, Lagl} : CoEdge Tags
Each CoEdge has an identifier tag. CoEdge Tags is a-vector of identifier tags for a set of CoEdges. CoEdge| Tags uses

Eqch CoEdge has a flag indicating whéther the directional sense of the associated Edge’s MCS curve

rve Indices uses the Int32 version of the CODEC to compress:and encode data.

b Int32 version of the CODEC to compress and encade data.

pcl32{Int32CDP, Xorl} : MCS Curve Reversed Flags

erpreted as opposite the direction its paframeterization implies. MCS Curve Reversed Flags is a vector of re
I a set of CoEdges.

an uncompressed/decoded form’the flag values have the following meaning:

should be
verse flags

=0| — Direttional sense of associated edges MCS curve should not be interpreted as opposite

thedirection its parameterization implies.

=1 A\ Directional sense of associated edges MCS curve should be interpreted as opposite the
direction its parameterization implies.

CS CurveReversed Flags uses the Int32 version of the CODEC to compress and encode data.

6.2.3.1.3.6 £Edges Topoiogy Data

An Edge defines a model space trim Loop segment. Edges Topology Data specifies the underlying MCS Curve and start
and end Vertex making up each Edge along with an identification tag for each Edge.

If manifold topology, then two faces join at a single model Edge and thus an edge is shared/referenced by two CoEdges

(o

©

ne per Face).
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Figure 112: Edges Topology Data data collection

Vecl32{Int32CDP, Lagl} : Start Vertex Indi@

A 4

Vecl32{Int32CDP, Lagl} : End Vertex Indic>

L2

Vecl32{
Start Verte
uses the In

Vecl32{
End Verte
the Int32

Vecl32{
MCS Cury
MCS Cury

Vecl32{
Each Edgg
version of

6.2.3.1.1
A Vertex

specifies the underlying geometric Point making up each Vertex along with an identification tag for each Vertex.

The preserjce of Vertices Topology Data in a JT B-Rep topology definition is optional. Vertex data is optional beca

unlike mo
necessary

A Vertex
common p

Vecl32{Int32CDP, L agl} : MCS Curve |ndice>

A\ 4

Vecl32{Int32CDP, Lag1} : Edge Tags >

Int32CDP, Lag1} : Start Vertex Indices
x Indices is a vector of indices representing the index of the start Vertex in each)Edge. Start Vertex Indig
t32 version of the CODEC to compress and encode data.

Int32CDP, Lag1} : End Vertex Indices
Indices is a vector of indices representing the index of the end Vertex'in each Edge. End Vertex Indices ug
ersion of the CODEC to compress and encode data.

Int32CDP, Lag1} : MCS Curve Indices
e Indices is a vector of indices representing the index of the MCS Curve (Model Space curve) for each Edg
e Indices uses the Int32 version of the CODEC to compress and encode data.

Int32CDP, Lagl} : Edge Tags
has an identifier Tag. Edge Tags is a vector of identifier Tags for a set of Edges. Edge Tags uses the Int
the CODEC to compress and encode dataf

B.7 Vertices Topology-Data
s the simplest topological (entity and is basically made up of a geometric Point. Vertices Topology D3

t topological entities, no connectivity information is contained in a Vertex structure and Vertex data is also 1
For performing éperations such as tessellation or mass properties calculations.

s usualty-shared/referenced by two or more Edges (e.g. if the corners of four rectangular Faces touches a
pinty thiS point is represented by a Vertex and is shared by four Edges).

@

Se
ot
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Figure 113: Vertices Topology Data data collection

Vecl32{Int32CDP, Lagl} : Point Indice>

\ 4
Vecl32{Int32CDP, Lagl} : Vertex Taqs>
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Vecl32{Int32CDP, Lag1} : Point Indices
Point Indices is a vector of indices representing the index of the geometric point for each Vertex. Point Indices uses the
Int32 version of the CODEC to compress and encode data.

Vecl32{Int32CDP, Lag1l} : Vertex Tags

Each Vertex has an identifier Tag. Vertex Tags is a vector of identifier Tags for a set of Vertices. Vertex Tags uses the
Int32 version of the CODEC to compress and encode data.

6.2.3.1.4 Geometric Data

Figure 114: Geometric Data data collection

Surface Count > 0

v

Surfaces Geometrig
Data

PCS Curve Count >0

A

y
PES Curves Geometric
Data

MCS Curve Count >0
A
MCS Curves
Geometric Data

Point Count >0

Point Geometric Data

A

6.2.3.1.4.1 Surfaces Geometric Data

Surfaces Geometric Data collection contains the JT B-Rep’s geometric Surface data. Currently only NURBS Surface
types are supported within a JT B-Rep. The count/number of Surfaces within a JT B-Rep is indicated by data field
Surface Count documented in 6.2.3.1.2 Geometric Entity Counts.
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Figure 115: Surfaces Geometric Data data collection

Non-Trivial Knot Vector

NURBS Surface Indices

v
Vecl32{Int32CDP 1 aq1} - Surface Base T\/rh

D e N
NURBS Surface Degree

LY
NURBS Surface Control
Point Counts

\ 4
Vecl32{Int32CDP, Lagl} : NURBS Surface Control Point Dimtensionality

A 4

Vecl32{Int32CDP, Lagl} : NURBS Surface-Reserved Fi@

NURBS Surface’Control

Point-Weights

A\ 4
N

NURBS Surface Control
Points

\4

NURBS Surface Knot
Vectors

Vecl32{int32CDP, Lagl} —StrfaceBase Hypes
Each Surface is assigned a base type identifier. Surface Base Types is a vector of base type identifiers for each Surface in
a list of Surfaces. Currently only NURBS Surface Base Type is supported, but a type identifier is still included in the
specification to allow for future expansion of the JT Format to support other surface types within a JT B-Rep.

In an uncompressed/decoded form the Surface base type identifier values have the following meaning:

| =1] - Surface is a NURBS surface |

Surface Base Types uses the Int32 version of the CODEC to compress and encode data.
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Vecl32{Int32CDP, Lagl} : NURBS Surface Control Point Dimensionality
NURBS Surface Control Point Dimensionality is a vector of control point dimensionality values for each NURBS
Surface in a list of Surfaces (i.e. there is a stored values for each NURBS Surface in the list).

In

NURBS Surface Control Point Dimensionality uses the Int32 version of the CODEC to compress and encode d

an uncompressed/decoded form dimensionality values have the following meaning:

:2011(E)

= 3| — Non-Rational (each control point has 3 coordinates)

=4 | — Rational (each control point has 4 coordinates)

Sy
Sy

6

Vecl32{Int32CDP, Lagl} : NURBS Surface Reserved Fields
NURBS Surface Reserved Fields is a vector of data reserved for future expansion of the JT format,” Eag
rface in a list of Surfaces has one reserved data field entry in this NURBS Surface Reserved Fields vecto.

Npn-Trivial Knot Vector NURBS Surface Indices data collection specifies for both-U,and V directions the Su
identifiers (i.e. indices to particular NURBS Surfaces within a list of Surfaces) for-all NURBS Surfaces conta
trivial knot vectors. A description/definition for “non-trivial knot vector” can bé found in 7.1.8 Compressed
for Non-Trivial Knot Vector.

rface Reserved Fields uses the Int32 version of the CODEC to compress and encode data

2.3.1.4.1.1 Non-Trivial Knot Vector NURBS Surface Indices

ata.

h NURBS
NURBS

face index
ining non-
Entity List

This Surface index data is stored in a compressed format.

fo

6

in
Sy

Figure 116: Non-Trivial Knot Vector NURBS Surface Indices data collection

Non-Trivialkd Knot
Vector Surface Indices

Non-Trivial V Knot
Vector Surface Indices

bth Non-Trivial U Knot\\ector Surface Indices and Non-Trivial V Knot Vector Surface Indices have the
Fmat as that documentéd/for data collection 7.1.8 Compressed Entity List for Non-Trivial Knot Vector.

2.3.1.4.1.2°"NURBS Surface Degree

a list\of Surfaces (i.e. there are stored values for each NURBS Surface in the list). This degree data for
rfaces is stored in a compressed format.

same data

URBS Swuifdce Degree data collection defines the Surface degree in both U and V directions for each NURBS Surface

the list of

©

Figure 117: NURBS Surface Degree data collection

Vecl32{Int32CDP, Lagl} : U-Deqrees>

\ 4
Vecl32{Int32CDP, Lagl} : V-Deqrees>
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Vecl32{Int32CDP, Lag1} : U-Degrees
U-Degrees is a vector of Surface degree values in U direction for each NURBS Surface in a list of Surfaces. U-Degrees
uses the Int32 version of the CODEC to compress and encode data.

Vecl32{Int32CDP, Lag1l} : V-Degrees
V -Degrees is a vector of Surface degree values in V direction for each NURBS Surface in a list of Surfaces. V-Degrees
uses the Int32 version of the CODEC to compress and encode data.

6.2.3.1.4.1.3 NURBS Surface Control Point Counts

NURBS Slirface Control Point Counts defines the number of NURBS Surface control points for both U and V directiops
for each NURBS Surface in a list of Surfaces (i.e. there are stored values for each NURBS Surface in the list). * The
control po{nt count data for the list of Surfaces in stored in a compressed format.

Figure 118: NURBS Surface Control Point Counts data collection

Vecl32{Int32CDP, Lag1} : U-Control Point Cou@

\ 4
Vecl32{Int32CDP, Lagl} : V-Control Point Cou@

Vecl32{Int32CDP, Lag1} : U-Control Point Counts
U-Control|Point Counts is a vector of control point counts in U direction Tor each NURBS Surface in a list of Surfacgs.
U-Control|Point Counts uses the Int32 version of the CODEC to compress and encode data.

Vecl32{Int32CDP, Lag1} : V-Control Point Caunts
V-Control[Point Counts is a vector of control point counts‘in V direction for each NURBS Surface in a list of Surfacgs.
V-Control[Point Counts uses the Int32 version of the COBEC to compress and encode data.

6.2.3.1.4.1.4 NURBS Surface Control Point Weights

NURBS Sprface Control Point Weights datascollection defines the Weight values for a conditional set of Control Points
for a list of NURBS Surfaces. The stering of the Weight value for a particular Control Point is conditional, because| if
NURBS Sprface Control Point Dimension is “non-rational” or the actual Control Point’s Weight value is “1”, then ho
Weight value is stored for the Control Point (i.e. Weight value can be inferred to be “1”).

The NURBS Surface ControhPeint Weights data is stored in a compressed format.

Figure 119: NURBS Surface Control Point Weights data collection
S N

Compressed Control
Point Weights Data

Complete description for Compressed Control Point Weights Data can be found in 7.1.9 Compressed Control Point
Weights Data.

6.2.3.1.4.1.5 NURBS Surface Control Points

NURBS Surface Control Points is the compressed and/or encoded representation of the Control Point coordinates for
each NURBS Surface in a list of Surfaces (i.e. there are stored values for each NURBS Surface in the list). Note that
these are non-homogeneous coordinates (i.e. Control Point coordinates have been divided by the corresponding Control
Point Weight values).
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Figure 120: NURBS Surface Control Points data collection

VecF64{Float64CDP, NULL} : Control Poir@

VecF64{Float64CDP, NULL} : Control Points
Control Points is a vector of Control Point coordinates for all the NURBS Surfaces in a list of Surfaces. All the NURBS
SLWWWM&B in the
Surface list (i.e. Surface-1 U Control Points, Surface-1 V Control Points, Surface-2 U Control Points, Siirface-2 V
Control Points, etc.). Control Points uses the Float64 version of the CODEC to compress and encode data in 4 “lossless”
manner.

6/2.3.1.4.1.6 NURBS Surface Knot Vectors

NPRBS Surface Knot Vectors defines the knot vectors for both U and V directions for eachNURBS Surface having non-
trivial knot vectors in a list of Surfaces (i.e. there are stored values for each non-trividaldknot vector NURBS Suiface in the
ligt). The NURBS Surfaces for which knot vectors are stored (i.e. those containing_non-trivial knot vectors) ar¢ identified
in[ data collection Non-Trivial Knot Vector NURBS Surface Indices documented in 6.2.3.1.4.1.1 Non-Tijivial Knot
Vector NURBS Surface Indices.

The knot vector data for the list of Surfaces is stored in a compressed format.

Figure 121: NURBS Surface\Knot Vectors data collection

VecF64{Float64CDP, NULI} Y U Knot Vect@

A\ 4
VecF64{Float64GPP, NULL} : V Knot Vect@

VecF64{Float64CDP, NUEL} : U Knot Vectors
U|Knot Vectors is a list of kngt vector values in U direction for each NURBS Surface having non-trivial knot Jectors in a
ligt of Surfaces. All theseeNURBS Surface U direction non-trivial knot vectors are cumulated into this singlg list in the
same order as the Surface-appears in the Surface list (i.e. Surface-N Non-Trivial U Knot Vector, Surface-M Non-Trivial
U[Knot Vector, etc.).CdKnot Vectors uses the Float64 version of the CODEC to compress and encode data.

VecF64{Fleat64CDP, NULL} : V Knot Vectors
V|Knot Vectors'is a list of knot vector values in V direction for each NURBS Surface having non-trivial knot vectors in a
ligt of Surfaces. All these NURBS Surface V direction non-trivial knot vectors are cumulated into this singlg list in the
same_arder as the Surface appears in the Surface list (i.e. Surface-N Non-Trivial V Knot Vector, Surface-M Non-Trivial
V|Knot Vector, etc.). V Knot Vectors uses the Float64 version of the CODEC to compress and encode data.

6.2.3.1.4.2 PCS Curves Geometric Data

PCS Curves Geometric Data collection contains the JT B-Rep’s Parameter Coordinate Space geometric Curve data (i.e.
UV Curve data). This geometric PCS Curve data is divided up into two collection types; one data collection for what are
considered “Trivial” PCS curves and one data collection for compressed/encoded PCS NURBS Curve data.

“Trivial” PCS Curves are those UV Curves whose definition is such that the actual UV Curve definition can be derived

from the parametric domain definition by storing a limited amount of descriptive data for each UV curve (i.e. do not have
to store the complete NURBS UV Curve definition).
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The count/number of PCS Curves within a JT B-Rep is indicated by data field PCS Curve Count documented in 6.2.3.1.2
Geometric Entity Counts.

Figure 122: PCS Curves Geometric Data data collection

Trivial PCS Curves
v
Compressed Curve Data

Complete flescription for Compressed Curve Data can be found in 7.1.10 Compressed Curve Data.

6.2.3.1.4.2.1 Trivial PCS Curves

Trivial PGS Curves data collection represents those UV curves whose definition is such((i.e: “trivial” enough) that the
actual UV curve definition can be derived from the parametric domain definitionsby’ storing a limited amount |of
descriptivg data for each UV curve (i.e. do not have to store the complete UV curve definition). These Trivial PES
Curves arg grouped into three classifications (Trivial Domain Loop, Trivial Box Koop; or Trivial Domain UV Curve) apd
stored as described in the following sub-sections.
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Figure 123: Trivial PCS Curves data collection

132 : Trivial Domain Loops Exist Flag

\ 4
132 : Trivial Box Loops Exist Flag

v
132 : Trivial Domain UV Curves Exist Flag

Trivial Domain Loops Exist Flag==1

A\ 4
Vecl32{Int32CDP, Lagl} : Trivial Domain Loop UV Curve Indic>

A

Trivial Box Loops Exist Flag ==

A\ 4
Vecl32{Int32CDP, Lag1} : Trivial'Box Loop UV Curve Indi@

v
VecF64{Float64CDP, NULL} : Trivial Box Loop Corner Coords

A

Trivial Domain UV Curves Exist Flag = =

v
Vecl32{Int32CDP, Lag1} : Trivial UV Curve Indices >

\ 4
Vecl32{Int32CDP, Lagl} : Trivial UV Curve Para Domain Side Codes

A

132 : Trivial Domain Loops Exist Flag

Trivial Domain Loops Exist Flag is a flag indicating whether “trivial” domain loops exist/follow. A Trivial Domain
Loop is a Loop that encloses the entire parametric domain. (i.e. all UV Curves of the Loop span the entire length of the
Surface parametric domain). Given this criteria a Trivial Domain Loop must always be made up of four Trivial Domain
UV curves.

=0| — Trivial Domain Loops do not exist.
=1| — Trivial Domain Loops exist.
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132 : Trivial Box Loops Exist Flag

Trivial Box Loops Exist Flag is a flag indicating whether “trivial” box loops exist/follow. A trivial Box Loop is a Loop
that forms a rectangle (i.e. corresponding curve end coordinates of opposite sides of the box are equal). Given this
criteria a Trivial Box Loop must always be made up of four UV curves

=0| — Trivial Box Loops do not exist.
=1| — Trivial Box Loops exist.

“Equality of corresponding curve end coordinates of opposite sides of the box™ is represented graphically as follows:

ﬂk

PO[0] - P5[0] =0
! ! P1[0] - P4[0] =0
\Vj : : P2[1] - P7[1] =0
i i P3[1] - P6[1] =0
P7 | | P2
o -
PO P1
5 >

132 : Trivial Domain UV Curves Exist Flag
Trivial Dgmain UV Curves Exist Flag is a flag indicating whether “trivial” domain UV curves (Loop CoEdggs)
exist/folloyv that are not part of a Trivial Domain Loop or Trivial Box Loop (i.e. a Loop contains some UV curves that
span the eptire length of the Surface parametric domain butinot all the Loop UV curves meet this criteria and thus rjot
captured ap part of the Trivial Domain Loop data).

=0| — Trivial Domain UV Curves do-not exist.
=1| — Trivial Domain UV Curves exXist.

Vecl32{Int32CDP, Lag1} : Trivial Domain Loop UV Curve Indices
Trivial Domain Loop UV Curve Indices is a vector of all UV curve indices that are part of a Trivial Domain Loop. Nate
that each Trivial Domain Loopnis-always made up of four UV curves (thus four UV curve indices per Loop). Trivjal
Domain Lpop UV Curve Indices uses the Int32 version of the CODEC to compress and encode data.

Vecl32{Int32CDPyLag1l} : Trivial Box Loop UV Curve Indices
Trivial Bok Loop UWCurve Indices is a vector of all UV Curve indices that are part of a Trivial Box Loop. Note that
each Trivigl Box(k00p is always made up of four UV Curves (thus four UV Curve indices per Loop). Trivial Box Lopp
UV Curve|lndices uses the Int32 version of the CODEC to compress and encode data.

VecF64{Float64CDP, NULL} : Trivial Box Loop Corner Coords

Trivial Box Loop Corner Coords is a vector of box corner coordinates for all Trivial Box Loops (i.e. each Box Loop will
store two box coroner coordinates). A Box Loop’s set of “box corner coordinates” are the coordinates of the two
min/max diagonally opposite corners of the box. Note that if the Box Loop is a “hole”, then the max and min corners are
the other ends of the respective box sides that contain the max and min corners. Trivial Box Loop Corner Coords uses
the Float64 version of the CODEC to compress and encode data.

Vecl32{Int32CDP, Lag1} : Trivial UV Curve Indices

Trivial UV Curve Indices is a vector of all Loop UV Curve indices that are not part of a Trivial Domain Loop or Trivial
Box Loop. Trivial UV Curve Indices uses the Int32 version of the CODEC to compress and encode data.

128 © 1SO 2011 — All rights reserved


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

Vecl32{Int32CDP, Lag1} : Trivial UV Curve Para Domain Side Codes
Trivial UV Curve Para Domain Side Codes is a vector containing a “side code” for each Trivial UV Curve indicating
which parametric domain side the UV Curve lies on.

In an uncompressed/decoded form the parametric domain side values have the following meaning:

= 0| — Bottom side of parametric domain
1| — Right side of parametric domain
2 | — Top side of parametric domain

=3 _ leftsideof Innramnfrir‘ domain

Trivial UV Curve Para Domain Side Codes uses the Int32 version of the CODEC to compress and encode.data

2.3.1.4.3 MCS Curves Geometric Data

6

MCS Curves Geometric Data collection contains the JT B-Rep’s Model Coordinate System“geometric Curvp data (i.e.
X)Z Curve data). Currently only NURBS Curve types are supported within a JT B-Rep. The count/numbgr of MCS
Cuirves within a JT B-Rep is indicated by data field MCS Curve Count documented in‘6.2.3.1.2 Geometric Entity Counts.

Figure 124: MCS Curves Geometric Datadata collection

Compressed Curve

Data

Complete description for Compressed Curve Data can be found in 7.1.10 Compressed Curve Data.

6/2.3.1.4.4 Point Geometric Data

Pgint Geometric Data collection contains the'dT B-Rep’s geometric Point data. Each Point is simply represented by a
CoordF32 for the Point’s coordinate compenents. The count/number of Points within a JT B-Rep is indicated by data
figld Point Count documented in 6.2.3.1:2°Geometric Entity Counts.

Figure 125: Point Geometric Data data collection

A

CoordF32 : Point Coordinates

Point Count

[
»

v

CoordF32 : Point Coordinates
Point Coordinates specifies the XYZ coordinate components for a Point.

6.2.3.1.5 Topological Entity Tag Counters

Topological Entity Tag Counters data collection specifies the next available “unique” tag value for each entity type in a
JT B-Rep. These are rolling tag counters that are meant to be used for assigning a unique tag when a new entity is added
toa JT B-Rep.

© 1SO 2011 — All rights reserved 129


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

Figure 126: Topological Entity Tag Counters data collection

132 : Region Tag Counter

\4
132 : Shell Tag Counter

\ 4

132FaceTag-Counter

A\ 4
132 : Loop Tag Counter

\ 4
132 : CoEdge Tag Counter

A\ 4
132 : Edge Tag Counter

\ 4
132 : Vertex Tag Counter

132 : Relgion Tag Counter
Region taq Counter specifies the next available “unique’ tag valde*for Region entity.

132 : Shiell Tag Counter

Shell Tag Founter specifies the next available “uniquej_tag value for Shell entity.

132 : Fage Tag Counter
Face Tag Counter specifies the next available, “unique’ tag value for Face entity.

132 : Lopp Tag Counter
Loop Tag [Counter specifies the next-available “unique’ tag value for Loop entity.

132 : CodEdge Tag Counter

CoEdge Tag Counter spegifies the next available “unique’ tag value for CoEdge entity.

132 : Edjge Tag:Counter
Edge Tag {Counter,specifies the next available “unique’ tag value for Edge entity.

132 : Veliex Tag Counter
Vertex Tag Counter specifies the next available “unique’ tag value for Vertex entity.

6.2.3.1.6 B-Rep CAD Tag Data

The B-Rep CAD Tag Data collection contains the list of persistent IDs, as defined in the CAD System, to uniquely
identify individual Faces and Edges in the JT B-Rep. The existence of this B-Rep CAD Tag Data collection is dependent
upon the value of previously read data field CAD Tags Flag as documented in 6.2.3.1 JT B-Rep Element.

If B-Rep CAD Tag Data collection is present, there will be a CAD Tag for every Face and every Edge in the JT B-Rep
and the list order will be Face CAD Tags followed by Edge CAD Tags. Therefore the total number of CAD Tags in the
list should be equal to “Face Count + Edge Count” as documented in 6.2.3.1.1 Topological Entity Counts.
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Figure 127: B-Rep CAD Tag Data data collection

Compressed CAD

Tag Data

Complete description for Compressed CAD Tag Data can be found in 7.1.11 Compressed CAD Tag Data.

6{2.4 XT B-Rep Segment

(i)
Reép can be found in 6.2.3 JT B-Rep Segment.

X B-Rep Segments are typically referenced by Part Node Elements (see 6.2.1.13F.5Part Node Element)

XTI B-Rep Segment contains an Element that defines the precise geometric Boundary Representationdata for §
P3rt in Parasolid boundary representation (XT) format. Note that there is also another Boundary;Representafion format
e. JT B-Rep) supported by the JT file format within a different file Segment Type. Complete*description fo

Lgaded Property Atom Elements (see 6.2.1.2.7Late Loaded Property Atom Eletmént). The XT B-Rep Seg
supports ZLIB compression on all element data, so all elements in XT B-Rep-Segment use the Element He

particular
r the JT B-
Lising Late

ment type
pder ZLIB

form of element header data.

6/2.4.1 XT B-Rep Element
Opject Type ID: 0x873a70e0, 0x2ac9, 0x11d1, 0x9b, 0x6b, 0x0Q,0x80, 0xc7, Oxbb, 0x59, 0x97

Figure 1284 XT B-Rep Element data collection

Element Header ZLIB

\ 4
132 : Version Number

v
132 : Parasolid Kernel Major Version Number

\ 4
132 : Parasolid Kernel Minor Version Number

A

XTI B-Rep Element represents a particular part’s precise data in Parasolid boundary representations (XT) formg

—

132 : XT B-Rep Data Length

XT B-Rep Data

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.
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132 : Version Number
Version Number is the version identifier for this XT B-Rep Element. Version number “1” is currently the only valid
value.

132 : Parasolid Kernel Major Version Number
Parasolid Kernel Major Version Number specifies the major version number for the revision of Parasolid that wrote the
XT B-Rep data into JT File.

132 : Parasolid Kernel Minor Version Number
Parasolid Kernel Minor Version Number specifies the minor version number for the revision of Parasolid that wrote the

XT B-Rep|data into JT File.

132 : XT|B-Rep Data Length
XT B-Rep| Data Length specifies the length in bytes of the XT B-Rep Data collection. A JT file loader/reader may uyse
this information to compute the end position of the XT B-Rep Data within the JT file and thus skip (for Whatever reasgn)
reading th¢ remaining XT B-Rep Data.

6.2.4.1.1 XT B-Rep Data

The XT BfRep Data collection specifies the raw stream of bytes that Parasolid uses to_represent a Part’s B-Rep Body(s)
in an exterpal file. The XT B-Rep Data collection format in the JT file is exactly equivalent to the Parasolid XT “Neutfal
Binary” erjcoding format as written by the Parasolid “PK_PART_transmit” interface‘routine.

-

Complete documentation for the Parasolid XT “Neutral Binary” encoding format as written by “PK_PART _transm
can be foupd in “Appendix D Parasolid XT Format Reference” of this document.

6.2.5 Wireframe Segment

Wirefram¢g Segment contains an Element that defines the precise 3D wireframe data for a particular Part. A Wireframe
Segment ip typically referenced by a Part Node Element-(see 6.2.1.1.1.5 Part Node Element) using a Late Loadpd
Property Atom Element (see 6.2.1.2.7 Late Loaded Property Atom Element). The Wireframe Segment type suppofts
ZLIB compression on all element data, so all elements in Wireframe Segment use the Element Header ZLIB form [of
element hdader data.

Figure 129: Wireframe Segment data collection

Segment Header

A\ 4
Wireframe Rep Element

Complete flescription for Segment Header can be found in_6.1.3.1Segment Header.

6.2.5.1 Wireframe Rep Element
Object Type ID: 0x873a70d0, 0x2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97

A Wireframe Rep Element represents a particular Part’s precise 3D wireframe data (e.g. reference curves, section

curves). Much of the “heavyweight” data contained within a Wireframe Rep Element is compressed and/or encoded.
The compression and/or encoding state is indicated through other data stored in each Wireframe Rep Element.
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Figure 130: Wireframe Rep Element data collection

Element Header ZLIB

\ 4
132 : Edge Count

\ 4
132 : MCS Curve Count

Edge Count >0

\ 4
Vecl32{Int32CDP, Lag1} : MCS Curve |ndic>

A\ 4

Vecl32{Int32CDP, Lag1} {Edge Taqs>

A

MCS*Curve Count >0

y

Wiréframe MCS
Curves'Geometric Data

A

\ 4
132 : Edge Tag Counter

\ 4
U8 : Segment End ID

Complete descriptionyfor Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

32 : EdgeCount
Edige Countuindicates the number of topological Edge entities in the Wireframe Rep

322 MCS Curve Count

MCTS TUrve Count indicates the number of diStinct geometric (VIodel Coordinate Space) cUrves (1.6. XY Z curve) entities
in the Wireframe Rep.

Vecl32{Int32CDP, Lag1} : MCS Curve Indices
MCS Curve Indices is a vector of indices representing the index of the MCS Curve (Model Space curve) for each Edge.
MCS Curve Indices uses the Int32 version of the CODEC to compress and encode data.

Vecl32{Int32CDP, Lagl} : Edge Tags
Each Edge has an identifier Tag. Edge Tags is a vector of identifier Tags for a set of Edges. Edge Tags uses the Int32
version of the CODEC to compress and encode data.
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132 : Ed

ge Tag Counter

Edge Tag Counter specifies the next available “unique’ tag value for Edge entity.

U8 : Segment End ID

Segment End ID defines the segment end identifier. This field should always have a value of “114”.

6.2.5.1.1 Wireframe MCS Curves Geometric Data

Wireframe MCS Curves Geometric Data collection contains the Wireframe Rep’s Model Coordinate System geometric

H a nR a aakiadaratlia o VAo foo oo N
. » y opPpPo C

ber of MCS Curves within a Wireframe Rep is indicated by data field MCS Curve Count documented

ireframe Rep Element.

Complete

6.2.6 M

Meta Datg
Storing mg
constructe

Figure 131: Wireframe MCS Curves Geometric Data data collection

D
Compressed Curve
Data

jescription for Compressed Curve Data can be found in 7.1.10 Compressed.-Curve Data.

leta Data Segment

ta-data in a separate addressable segment allows references (from within the JT file) to these segments to
such that the meta-data can be late-loaded (i.e. JTcfile reader can be structured to support the “best practic

of delaying the loading/reading of the referenced meta-data-segment until it is actually needed).

Meta Dat3
Loaded Pr

The Meta

Segments are typically referenced by Patt-Node Elements (see 6.2.1.1.1.5Part Node Element) using La
pperty Atom Elements (see 6.2.1.2.7L ate'{-0aded Property Atom Element).

Data Segment type supports ZLIB:compression on all element data, so all elements in Meta Data Segment U

the Element Header ZLIB form of element\header data.

Figure 132: Meta Data Segment data collection
- N—
Segment Header

I e NI
Meta Data Element

Segments are used to store large collections of meta-data“in separate addressable segments of the JT File.

he
in

pe
en

Complete description for Segment Header can be found in 6.1.3.1 Segment Header.

The following sub-sections document the various Meta Data Element types.

134
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6.2.6.1 Property Proxy Meta Data Element
Object Type ID: 0xce357247, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, Oxbd, 0xc6, Oxel

A Property Proxy Meta Data Element serves as a “proxy” for all meta-data properties associated with a particular Meta
Data Node Element (see 6.2.1.1.1.6 Meta Data Node Element). The proxy is in the form of a list of key/value property
pairs where the key identifies the type and meaning of the value. Although the property key is always in the form of a
String data type, the value can be one of many several data types.

: . I Hecti

Element Header ZLIB

<
<

A 4

MbString : Property Key

If Property Key string is not
empty (i.e. NULL).

A\ 4

U8 : Property Value Type

Property Value Type = =

v
MbString : String Property Value

A

Property Value Type = =

v while Property Key
132 : Integer Property Value string Is not empty
(i.e. NULL).

A

Property Value Type = =

\ 4
F32 : Float Property Value

A

Property Value Type ==4

4

A
Date Property Value

A
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Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

MbString : Property Key
Property Key specifies the key string for the property.

U8 : Property Value Type
Property Value Type specifies the data type for the Property Value. If the type equals “0” then no Property Value is
written. Valid types include the following:

=0] — Unknown

=1| — MbString data type value
2 | — 132 data type value

= 3| — F32 data type value

=4 | - Date value

MbString : String Property Value
String Property Value represents the property value when Property Value Type = = 1.

132 : Integer Property Value
Integer Prgperty Value represents the property value when Property Value Type = = 2.

F32: Flpat Property Value
Float Propgrty Value represents the property value when Property Value Type £ 3 8.

6.2.6.1.1 Date Property Value

Date Propgrty Value data collection represents a date as a combination of year, month, day, hour, minute, and secopd
data fields

Figure 134: Date Property Value data collection

116.:. Year

116 : Second

116 : Year
Year specifies the date year value.
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116 : Month
Month specifies the date month value.

116 : Day
Day specifies the date day value.

116 : Hour
Hour specifies the date hour value.

11.6—Minute

I\]inute specifies the date minute value.

116 : Second

Sqcond specifies the date Second value.

6/2.6.2 PMI Manager Meta Data Element
Opject Type ID: 0xce357249, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, Oxbd, 0xc6, Oxel

The PMI Manager Meta Data Element data collection is a type of Meta Data Element which contains the Product and
Mlanufacturing Information for a part/assembly.
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Figure 135: PMI Manager Meta Data Element data collection

Element Header ZLIB

A 4

116 : Version Number

A\ 4
116 : Reserved Field

\ 4
PMI Entities

A\ 4

PMI Associations

\ 4
PMI User Attributes

’/ PMI String Table

Version Number > 5

A 4
PMI Model Views

\ 4
Generic PM kEntities

A

Version Number > 7

4
U32 : CAD Tags Flag

CAD Tags Flag ==

Y
PMI CAD Tag Data

A

A

Complete description for Element Header ZLIB can be found in 6.1.3.2.2 Element Header ZLIB.

116 : Version Number

Version Number is the version identifier for the PMI. There are several PMI versions that must be supported for JT File
format 8.1. This is because if an older JT File format containing PMI is read and then re-exported to JT File Format 8.1,
the exported PMI data must be maintained in the version format originally read from the initial JT file (i.e. PMI data read
from a JT File is not migrated to new version format when re-exported to another JT File format).
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The valid PMI version numbers are as follows:

ISO/PAS 14306:2011(E)

=3 | — Version-3
=4 | — Version-4
=5 — Version-5
=6 | — Version-6
=7 - Version-7
=8| — Version-8

116 : Reserved Field

U32 : CAD Tags Flag
C
6{2.6.2.1 PMI Entities

M
PMI Dimension Entities

Y @00
PMI Note Entities

A
‘ PMI Datum Feature Symbol Entitiés |

A
‘ PMI Datum Target.Entities |

A 4
‘ PMI Featuré-€ontrol Frame Entities |

PMI Line Weld Entities

Reserved Field is a data field reserved for future JT format expansion.

A\D Tags Flag is a flag indicating whether CAD Tag data exist for the PMI.

Figure 136: PMI Entities data collection

v
‘ PMI Surface Finish Entities |

\ 4
‘ PMI Measurement Point Entities |

\ 4
‘ PMI Locator Entities |

| PMI Reference Geometry Entities |

‘ PMI Design Group Entities |

\ 4

Y

PIr=Y P W DU e
VIT OPJUL VVEITU LCTIULIES

6.2.6.2.1.1 PMI Dimension Entities

= o L e e e rardhides
FIVIT UOUTUITIALE OYSLITTIT CTILITICS

The PMI Dimension Entities data collection defines data for a list of Dimensions.
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Figure 137: PMI Dimension Entities data collection

132 : Dimension Count

PMI 2D Data < . .
— Dimension

Count

v

132 : Dimension Count
Dimension] Count specifies the number of Dimension entities.

6.2.6.2.1.1.1 PMI 2D Data
The PMI 2D Data collection defines a data format common to all 2D based PMI entities.

Figure 138: PMI 2D Data data collection
- N—
PMI Base Data

A\ 4
132 : Text Entity Count

2D Text Data

[
»

v
Non-Text Polyline Data

A

Text Entity
Count

132 : Tekt Entity €ount
Text Entity Count spécifies the number of Text entities in the particular PMI entity.

6.2.6.2.1{1:0.1 PMI Base Data
The PMI Base Data collection defines the basic/common data that every 2D and 3D PMI entity contains
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Figure 139: PMI Base Data data collection

132 : User Label

U8 : 2D-Frame Flag

2D-Frame Flag 1= 0

2D-Reference Frame

<
<

\ 4
F32 : Text Height

Version Number-> 4

\ 4
U8 : Symbol Valid Flag

2 : User Label
er Label specifies the particular PMI entity identifier.

2[p-Frame Flag is a flag specifying whether 6.2:6:2.1.1.1.1.1 2D-Reference Frame data is stored. If 2D-Frame

: 2D-Frame Flag

Flag has a

ngn-zero value then 2D-Reference Frame data-is included. If 2D-Frame Flag has a value of “2”, then dumiy (i.e. all

zaros) 2D-Reference Frame data is written,» The “2D-Frame Flag = = 2” case is used by 6.2.6.2.6 Generic Pl

V1 Entities

bdcause for Generic PMI Entities all ‘the 6.2.6.2.1.1.1.3 Non-Text Polyline Data is already in 3D form
cdordinate data).

FB2 : Text Height
Text Height specifies the RMI text height in WCS.

U
S

Ds

: Symbol Valid Flag
mbol Valid Flag.is a flag specifying whether the particular PMI entity is valid. If Symbol Valid Flag has

(ie. XYZ

A NON-Z€ETro

vdlue then PMZentity is valid. This flag is only stored if the Version Number as defined in 6.2.6.2PMI Manager Meta

hta Element is greater than “4.”

6

26211111 2D-Reference Frame

The 2D-Reference Frame data collection defines a reference frame (2D coordinate system) where the PMI entity is
displayed in 3D space. All the PMI entity’s 2D and 3D polyline data is assumed to lie on the defined plane.
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Figure 140: 2D-Reference Frame data collection

CoordF32 : Origin

CoordF32 : X-Axis Point

\ 4

CoordE22 -V NAsac Donnt
COCT OOz 7 X101 oIt

CoordH32 : Origin

Origin def|nes the origin (min-corner) of the 2D coordinate system

CoordH32 : X-Axis Point
X-Axis Pojint defines a point along the X-Axis of the 2D coordinate system.

CoordF32 : Y-Axis Point
Y-Axis Pojint defines a point along the Y-Axis of the 2D coordinate system.

6.2.6.2.1]1.1.2 2D Text Data
The 2D T¢xt Data collection defines a 2D text entity/primitive.

Figure 141: 2D Text Data data collection

132 : String ID

132 : Font

\ 4
132\: Reserved Field

\ 4
F32 : Reserved Field

Iext Polyline Data

132 : String ID
String ID specifies the identifier for the character string. This identifier is an index to a particular character string in the
PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no string.
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132 : Font
Font identifies the font to be used for this text. Valid values include the following:
=1 — Simplex
=2 — Din
=3 — Military
=4 — I1SO
=5 — Lightline
=6 — IGES 1001
=T — CEmury
=8 — IGES 1002
= — IGES 1003
=101 | — Japanese JISX 0208 coded character set
=102 | — Japanese Extended Unix Codes JISX 0208 coded character set
=103 | — Chinese GB 2312.1980 Simplified coded character set
=104 | — Korean KSC 5601 coded character set
=105 | — Chinese Big5 Traditional coded character set

132 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

FB2 : Reserved Field
Reserved Field is a data field reserved for future JT format expansion.

6/2.6.2.1.1.1.2.1 Text Box

Ré¢ference Frame documented in 6.2.6.2.1.1.1.1.1 2D-Reference Frame.

Figure 142: Text Box data collection

F32 : Origin X-Coord

F32 : Origin Y Coord

v
F32 : Lower Right Corner X-Coord

\ 4
F32 : Lower Right Corner Y-Coord

The Text Box data collection specifies a 2D box that particular text fits within. All values are with respect to 2D-

v
F32 : Upper Left Corner X-Coord

\ 4
F32 : Upper Left Corner Y Coord
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F32: Origin X-Coord
Origin X-Coord defines the 2D X-coordinate of the text origin with respect to 2D-Reference Frame.

F32: Origin Y Coord

Origin Y-Coord defines the 2D Y-coordinate of the text origin with respect to 2D-Reference Frame.

F32: Lower Right Corner X-Coord
Lower Right Corner X-Coord defines the 2D X-coordinate of the lower right corner of the text with respect to 2D-

Reference

Frame.

F32: Ld

wer Right Corner Y-Coord

Lower Right Corner Y-Coord defines the 2D Y-coordinate of the lower right corner of the text with respect~tor 2P-
Reference [Frame.
F32: Upper Left Corner X-Coord
Upper Leff Corner X-Coord defines the 2D X-coordinate of the upper left corner of the text with respéct to 2D-Referenge
Frame.
F32: Upper Left Corner Y Coord
Upper Leff Corner Y-Coord defines the 2D Y-coordinate of the upper left corner of the tex{-with respect to 2D-Referenge
Frame.
6.2.6.2.1.1.1.2.2 Text Polyline Data
The Text Rolyline Data collection defines any polyline segments which are part of the text representation. This existence
of this polyline data is conditional (i.e. not all text has it) and is made_up of an array of indices into an array of polylipe
segments packed as 2D vertex coordinates, specifying where each~polyline segment begins and ends.  Polylines dre
constructegl from these arrays of data as follows:
Arrhv of Indices Array of Polyline Segments
(packed as 2D coords)
0 F==-===-=--- \
2 F------- S ) > (" [80.609 } X, Y Vertex 1
6 l------ . \ Polyline 1 Vertices 2543 5
10 A 24 } X, Y Vertex 2
\ \
RS i e e L L T > | 65.61
X, Y Vertex 3
\ 542 |
\\ 72.84
\ . . 6.62
\ Polyline 2 Vertices < =84
\ 4.21
Y\ 65.61
\ \- | 5.42
R -» | 80.60
5.42
73.37
Polyline 3 Vertices 4.21
y < 73.37
6.62
80.60
\-| 5.42
Figure 143: Constructing Text Polylines from data arrays
144 © 1SO 2011 — All rights reserved


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

This data is represented in JT file in the following format:

Figure 144: Text Polyline Data data collection

132 : Polyline Segment Index Count

Polyline Segment Index Count > 0

\ 4
116 : Polyline Segment Index

A

Polyline Segment
Index Count

v
VecF32 : Polyline Vertex Coords

A

w

2 : Polyline Segment Index Count
Pglyline Segment Index Count specifies the number of polyline segment indices.

116 : Polyline Segment Index

Pglyline Segment Index is an index into the Polyline Vertex Cootds ‘array specifying where polyline segmen
erjds. This index is a vertex coordinate index so the absolute index into the Polyline Vertex Coords array is co
mpltiplying the index value by “2” (i.e. for 2D coordinates).

VecF32 : Polyline Vertex Coords
Pglyline Vertex Coords is an array of polyline segmeénts packed as 2D point coordinates. These 2D point coor
w|th respect to the 2D-Reference Frame documented in 6.2.6.2.1.1.1.1.1 2D-Reference Frame.

6J2.6.2.1.1.1.3 Non-Text Polyline Data

e Non-Text Polyline Data collection contains all the non-text polylines making up the particular PMI entity.

begins or
mputed by

dinates are

Examples

of| non-text polylines include line"attachments, text boxes, symbol box dividers, etc. The Non-Text Polyline Data

cdllection is made up of an(array of indices into an array of polyline segments packed as either 2D or
cdordinates, specifying where each polyline segment begins and ends. Whether vertex coordinates are 2
dgpendent upon the PM¥-entity type using this data collection. If it is a 6.2.6.2.6 Generic PMI Entities tyjq
pdcked coordinate datais 3D; for all other PMI entity types the packed coordinate data is 2D. Also for Versio
as| defined in 6.2.6:2 PMI Manager Meta Data Element, greater than “4” an array of values that sequentially
pqlyline type inthe polyline segments array is included.

Figure 145-below shows how Polylines are constructed from these arrays of data for the packed 2D coordi
The packed 3D coordinates case is interpreted the same except that the coordinates array includes a Z compo
thpuspacked as “[XYZ][XYZ][XYZ]...”

3D vertex
D or 3D is
e then the
h Number,
specify the

hates case.
nent and is
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Arrav of Indices Array of Polyline Segments
i (packed as 2D coords)
\
R . (18060 T X, v Vertex 1
60 ------- . \ F;olyline 1 Vertices 25438
1 \ R .
\ Y 512 } X, Y Vertex 2
\Vommm e - Fmmmme e e + | 6561
\ R -
\ 47 } X, Y Vertex 3
\ 72.84
\ Polvline 2 \ertices < 6.62
7 < 72.84
W 4.21
SN 65.61
\\ | 542
Array of Polyline . h’ ------------- > §°4§°
Type Values 73.37
2 Polyline 3 Vertices < 421
R T— : < 73.37
4 .................................... ::... 662
1 g 80.60
| 5.42

Figure 145: Constructing Non-Text Polylines from packed 2D data arrays

This data if represented in the JT format as follows:

Figure 146: Non-Text Polyline;Data data collection

132 : Polyline Segment Index Count

\ 4
116 : Polyline Segment Index

A

Polyline Segment
Index Count

Version Number > 4

\4
132 : Polyline Type Count

A 4

116 : Polyline Type

A

Polyline Type
Count

>
<«

v

VecF32 : Polyline Vertex Coords

132 : Polyline Segment Index Count
Polyline Segment Index Count specifies the number of polyline segment indices.

116 : Polyline Segment Index

Polyline Segment Index is an index into the Polyline Vertex Coords array specifying where polyline segment begins or
ends. This index is a vertex/coordinate index so the absolute index into the Polyline Vertex Coords array is computed by
multiplying the index value by “2” (i.e. for 2D coordinates).

132 : Polyline Type Count
Polyline Type Count specifies the number of polyline type values.
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116 : Polyline Type

Polyline Type specifies the type of polyline segment in Polyline Vertex Coords array. See Figure 145: Constructing
Non-Text Polylines from packed 2D data arrays_for interpretation of this array of type values relative to the defined
polylines. Valid values include the following:

— General line
— General arrow
— General circle

— General arc

=0

=1

=2

=3

=4 | — Extended line 1
=5| — Extended line 2
=6
=7
=8
=9

— Extended arc

— Extended circle

— Text line (used in text boxes and symbol box dividers)
— Text string

VecF32 : Polyline Vertex Coords
Pglyline Vertex Coords is an array of polyline segments packed as 2D point coardinates. These 2D point coordinates are
w/th respect to the 2D-Reference Frame documented in 6.2.6.2.1.1.1.1.1 2D-Reference Frame.

6/2.6.2.1.2 PMI Note Entities

The PMI Note Entities data collection defines data for a list ofcNotes. Notes are used to connect textual infgqrmation to
specific Part entities.

Figure 147: PMI Note Entities data collection

132 »Note Count

A

PMI 2D Data

Version Number > 5

\ 4 Note
U32 : URL Flag Count

Complete description for PMI 2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.

132 : Note Count
Note Count specifies the number of Note entities.

U32 : URL Flag
URL Flag specifies whether Note is an URL. This data field is only present if Version Number, as defined in 6.2.6.2 PMI
Manager Meta Data Element, is greater than “5”. The URL is the actual text of the note as specified in PMI 2D Data.
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6.2.6.2.1.3 PMI Datum Feature Symbol Entities

The PMI Datum Feature Symbol Entities data collection defines data for a list of Datum Feature Symbols. A Datum
Feature Symbol is a Geometric Dimensioning and Tolerancing (GD&T ) symbol that provides a “label” for a part feature
which is referenced by a Feature Control Frame.

Figure 148: PMI Datum Feature Symbol Entities data collection

152 - DES Count

A

PMI 2D Data

»
>

v

DES Count

Complete flescription for PMI 2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.

132 : DHS Count

DFS Count specifies the number of Datum Feature Symbol entities.

6.2.6.2.1.4 PMI Datum Target Entities

The PMI [patum Target Entities data collection defines data for-a-list of Datum Targets. A Datum Target is a Geometfic
Dimensiorjing and Tolerancing (GD&T ) symbol that specifies-a point, a line, or an area on a part to define a “datum” for
manufactufing and inspection operations.

Figure 149: PMY¥ Datum Target Entities data collection

132 ®Datum Target Count

PMI 2D Data <
Datum Target

Count

»

v

Complete fleseription for PMI 2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data

132 : Datum Target Count
Datum Target Count specifies the number of Datum Target entities.

6.2.6.2.1.5 PMI Feature Control Frame Entities

The PMI Feature Control Frame Entities data collection defines data for a list of Feature Control Frames. A Feature
Control Frame is a Geometric Dimensioning and Tolerancing (GD&T ) symbol used for expressing the geometric
characteristics, form tolerance, runout or location tolerance, and relationships between the geometric features of a part. If
necessary, Datum Feature and/or Datum Target references may be included in the Feature Control Frame symbol.

148 © 1SO 2011 — All rights reserved


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

Figure 150: PMI Feature Control Frame Entities data collection

132 : FCF Count

A

PMI 2D Data
FCF Count

[
1

v

Complete description for PMI 2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.

w

2 : FCF Count
FCF Count specifies the number of Feature Control Frame entities.

6(2.6.2.1.6 PMI Line Weld Entities
The PMI Line Weld Entities data collection defines data for a list of Line Weld symbols. A Line Weld symbal describes
the specifications for welding a joint.

Figure 151: PMI Line Weld Entities data collection

132 : Line Weld Cpunt

PMI1 2D Data

[
»

A

Line Weld
Count

v

Complete description for PMI'2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.

2 : Line Weld €Count
ne Weld Count spegifies the number of Line Weld entities.

Lo

6/2.6.2:3.7 PMI Spot Weld Entities
T}Le PMISpot Weld Entities data collection defines data for a list of Spot Weld Symbols. Spot Weld symbols describe

the specifications for welding sheet metal.

Several data fields of the PMI Spot Weld Entities data collection are only present if Version Number, as defined in
6.2.6.2PMI Manager Meta Data Element, is greater than or equal to “4”.
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Figure 152: PMI Spot Weld Entities data collection

132 : Spot Weld Count

PMI 3D Data

A

Version Number >= 4

\ 4
CoordF32 : Weld Point

A 4

DirF32 : Approach Direction Spot Weld
Count

\ 4

DirF32 : Clamping Direction

A 4

DirF32 : Normal Direction

A

A 4

132 : Spjot Weld Count
Spot Weld Count specifies the number of Spot Weld entities.

CoordH32 : Weld Point
Weld Poing specifies the coordinates of theyweld point.

DirF32 | Approach Direction
Approach Pirection specifies the tomponents of the direction vector from which the weld gun approaches the part.

DirF32 | Clamping Direction
Clamping Pirection spegifies the components of the clamping force direction vector.

DirF32 | Normal Direction
Normal D1rection specifies the components of the direction vector normal to the actual spot weld.

6.2.6.2.1.7.1 PMI 3D Data
The PMI 3D Data collection defines a data format common to all 3D based PMI entities.

Along with the PMI Base Data and String identifier, this data collection also includes non-text polyline data defined by
an array of indices into an array of polyline segments packed as 2D/3D vertex coordinates, specifying where each
polyline segment begins and ends. How polylines are constructed from this index array and packed vertex coordinates
array is the same as that illustrated in Figure 143 of 6.2.6.2.1.1.1.2.2 Text Polyline Data.
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Figure 153: PM1 3D Data data collection
- N
PMI Base Data

v
132 : String ID

A

[Wa Dol Da H Lk
11U . TTUIYIITIC TTITICTISTUTTIATILY

v
132 : Polyline Segment Index Count

A

116 : Polyline Segment Index [«

Polyline ‘Segment
Index Count

v
VecF32 : Polyline Vertex Coords

Complete description for PMI Base Data can be found in 6.2.6.2:1)1.1.1 PMI Base Data.

32 : String ID
String ID specifies the identifier for the character strings*This identifier is an index to a particular character sfring in the
PMI String Table as defined in 6.2.6.2.4 PMI StringTable. An identifier value of “-1” indicates no string.

116 : Polyline Dimensionality
Pglyline Dimensionality specifies the dimensionality of the polyline coordinates packed in Polyline Vert¢x Coords.
Valid values include the following:

= 2| — Indicates 2-dimensioanl (xyxy...) data packing..
=3 | — Indicates 3-dimensional (xyzxyz...) data packing.

2 : Polyline Segment Index Count
Pglyline Segment Index Count specifies the number of polyline segment indices.

W

116 : Polyline Segment Index
Pglyline Segment Index is an index into the Polyline Vertex Coords array specifying where polyline segment begins or
ends. This.index is a vertex coordinate index so the absolute index into the Polyline Vertex Coords array is cgmputed by
miltiplying the index value by Polyline Dimensionality.

VecF32 : Polyline Vertex Coords
Polyline Vertex Coords is an array of polyline segments packed as Polyline Dimensionality point coordinates.

6.2.6.2.1.8 PMI Surface Finish Entities

The PMI Surface Finish Entities data collection defines data for a list of Surface Finish symbols. Surface Finish symbols
indicate surface quality and generally are only specified where finish quality affects function (e.g. bearings, pistons,
gears).
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Figure 154: PMI Surface Finish Entities data collection

132 : SF Count

PMI 2D Data <

SF Count
v
Complete flescription for PMI 2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.
132 : SHCount
SF Count $pecifies the number of Surface Finish symbol entities.

6.2.6.2.

The PMI Measurement Point Entities data collection defines data for a list of Measurement Point symbols. Measuremgnt

Points are
which are

Several dafa fields of the PMI Measurement Point Entities data collection @re only present if Version Number, as definpd
in 6.2.6.2HMI Manager Meta Data Element, is greater than or equal to “4

| .9 PMI Measurement Point Entities

predefined locations (i.e. geometric entities or theoretical, but measurable points, such as surface locations)
measured on manufactured parts to verify the accuracy of the manufaetuiring process.

D

152
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Figure 155: PMI Measurement Point Entities data collection

132 : MP Count

PMI 3D Data

A

Version Number >= 4

\ 4
CoordF32 : Location

\ 4
DirF32 : Measurement Direction

MP Count

\ 4
DirF32 : Coordinate Direction

\ 4
DirF32 : NormakDirection

A

A 4

Complete description for PMI 3D Data can belfound in 6.2.6.2.1.7.1 PMI 3D Data.

132 : MP Count
P Count specifies the number of Measurement Point entities.

ordF32 : Location
Location specifies the coofdinates of the Measurement Point.

irF32 : Measureément Direction
asurement Direction specifies the components of the direction vector from which a CCM (Coordinate [Measuring
chine) approaches when taking a measurement.

iIrF32,>.Coordinate Direction
Coordinate Direction specifies the components of the direction vector another Measurement Point on a mating part would
lye to-align with a Measurement Point on the first part.

DirF32 : Normal Direction
Normal Direction specifies the components of the direction vector normal to the actual Measurement Point.

6.2.6.2.1.10 PMI Locator Entities

The PMI Locator Entities data collection defines data for a list of Locator symbols. Locator symbols are used to
accurately locate components with respect to each other and the manufacturing tooling.
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Complete

132 : Lo
Locator C

6.2.6.2.

The PMI
Geometry
Each refer
Index[1] (8

Figure 156: PMI Locator Entities data collection

132 : Locator Count

PMI 2D Data <
I Locator

Count

[
>

v

jescription for PMI 2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.

cator Count
unt specifies the number of Locator symbol entities.

|.11 PMI Reference Geometry Entities

Reference Geometry Entities data collection defines data for a list ofiReference Geometry. Referen
can be thought of as user-definable datums, which are positioned relative t0 the topology of an existing enti
bnce geometry type (point, polyline, polygon) can be implicitly deterriined by the value of Polyline Segmg
ee 6.2.6.2.1.7.1 PMI 3D Data) as follows:

Complete

Polyline Segment Index[1] Implied Reference Geometry Type
==1 Point
==2 Polyline
>2 Polygon

Figure 157: PMI Reference Geometry Entities data collection

132 : Reference Geometry Count

PMI 3D Data <
Reference

- Geometry Count
v

Hescription for PMI 3D Data can be found in 6.2.6.2.1.7.1 PMI 3D Data.

ce

Y.
Int

132 : Re
Reference

ference Geometry Count
Geometry Count specifies the number of Reference Geometry entities.

6.2.6.2.1.12 PMI Design Group Entities

The PMI Design Group Entities data collection defines data for a list of Design Groups. Design Groups are collections

of PMI created to organize a model into smaller subsets of information.

This organization is achieved via PMI

Associations (see 6.2.6.2.2 PMI Associations), where specific PMI entities are associated as “destinations” to a “source”
PMI Design Group.

154
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Figure 158: PMI Design Group Entities data collection

132 : Design Group Count

A

132 : Group Name String ID

Version Number >= 3

\ 4
132 : Attribute Count
Desigh. Group
Count

A

Design Group Attribute |< .
Attribute

Caount

[
>

A

2 : Design Group Count
£sign Group Count specifies the number of Design Group entities.

U

w

2 : Group Name String ID
Gfoup Name String ID specifies the identifier for the group name character string. This identifier is an jindex to a
pdrticular character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier vaJue of “-1”
Hicates no string.

5

2 . Attribute Count
tribute Count specifies the Aumber of Design Group Attribute data collections

> o

6/2.6.2.1.12.1 -Design Group Attribute
The Design Grobp-Attribute data collection defines a group property/attribute.
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Figure 159: Design Group Attribute data collection

132 : Attribute Type

Attribute Type== 1

\ 4
132 : Integer Value

A

Attribute Type == 2

\ 4
F64 : Double Value

Attribute Tyge 5= 3

\4
132 : String Valte String ID

A

A\ 4
132 : Label String 1D

\ 4
132 : Description String 1D

132 : At{ribute Type
Attribute Type specifies the attribute type. /Valid types include the following:

=1]| — Integer
=2 | — Double
=3| — String

132 : Integer Value
Integer Vajue specifies the value for “integer” Attribute Types.

F64 : Double value
Double Value specifies the value for “double” Attribute Types.

I32 : String Value String ID

String Value String ID specifies the string identifier value for “string” Attribute Types. This identifier is an index to a
particular character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1”
indicates no string.

132 : Label String ID
Label String ID specifies the string identifier for the attribute label. This identifier is an index to a particular character
string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no string.
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Description String ID specifies the string identifier for the attribute description. This identifier is an index to a particular
character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no

string.

6.2.6.2.1.13 PMI Coordinate System Entities

The PMI Coordinate System Entities data collection defines data for a list of Coordinate Systems.

132 : Coord Sys Count

132 : Name String ID

A

y

CoordF32 : Origin

A

y

CoordF32 : X-Axis Point

y

CoordF32.:

Y -Axis Point

[
>

A

132 : Coord Sys Count

132 : Name String-iD

stfing.

CoordE32 : Origin

N

Coord Sys Count specifies the number of Coordinate System entities.

Figure 160: PMI Coordinate System Entities data collection

Coord Sys
Count

Name String ID specifies the string identifier for the Coordinate System name. This identifier is an index to 3
character string imthe PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” ipdicates no

Ofrigindefines the origin of the coordinate system.

CoordF32 : X-Axis Point

X-Axis Point defines a point along the X-Axis of the coordinate system.

CoordF32 : Y-Axis Point

Y-Axis Point defines a point along the Y-Axis of the coordinate system.

6.2.6.2.2 PMI Associations

particular

The PMI Associations data collection defines data for a list of associations. An association defines a link (“relationship™)
between two PMI, B-Rep, or Wireframe Rep entities where one entity is defined as the “source” and the other entity is

defined as the “destination”.

© 1SO 2011 — All rights reserved
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Figure 161: PMI Associations data collection

132 : Association Count

132 : Source Data

A

A 4

132 : Destination Data

\ 4

132 : Reason Code

Version Number > 5

v
132 : Source Owning Entity String’1D

\ 4
132 : Destination Owning Entity String ID

A

Association
Count

132 : Asjsociation Count
Association Count specifies the number 0f associations.

132 : Solurce Data

Source D4ta is a collection of\source entity information encoded/packed within a single 132 using the following b

A 4

t

allocation.| All undocumented bits are reserved.

Bits 0 - 23 _|\Seurce Entity Identifier. The interpretation of this identifier data is dependent upon the
value of Bit 31 documented below.

Bits’24 *30 | Source Entity PMI or B-Rep type. Valid types include the following:
=0 - PMI - Dimension
=1 - PMI - Note
=2 - PMI - Datum Feature Symbol
=3 - PMI - Datum Target
=4 - PMI - Feature Control Frame
=5 - PMI - Line Weld
=6 — PMI - Spot Weld
=7 - PMI - Measurement Point
=8 — PMI - Surface Finish
=9 — PMI - Locator Designator
=10 - PMI - Reference Geometry
=11 - PMI - Coordinate System
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=12 — PMI - Design Group
=13 - PMI - User Attribute
=14 - B-Rep - Vertex

=15 - B-Rep - Edge

=16 - B-Rep-Face

=17 - PMI - Model View
=18 — PMI - Generic

=19 - Wireframe Rep - Edge
=20 - PMI - Unspecified type

=21 _ Partlnstance

Bit 31

Indirect Identifier Flag

= 0 — Value in Bits 0-23 is not the actual CAD identifier, instead Bits 0-23 is‘an.inde
into the source type’s PMI array or index of the edge/face in\B-Rep o
Wireframe Rep for the source entity.

=1 - Value in Bits 0-23 is not the actual CAD identifier; instead Bits 0<23 is an inde
into the list of CAD Tags (as documented in 6.2.6.2.7 PMI CAD Tag Data

identifying the CAD Tag belonging to the particular sourée-entity.

» - —
39U,

2 : Destination Data

bstination Data is a collection of destination entity information encoded/packed within a single 132. The¢ encoding
hema and interpretation of this data is the same as that documented in Seurce Data.
132 : Reason Code
Reason Code specifies the “reason” for the association. Valid Reason Codes include the following:
=0 Association is to the primary entity<being dimensioned
=1 Association is to the secondary_eftity being dimensioned
=2 Association is to the dimension plane
=5 Association is to the entity used to specify the Z-Axis of a coordinate system
10 Association is to an entity "associated" to or "included in" a PMI symbol
11 Association is to,anentity used to "attach” a PMI symbol.
12 Association is to first entity used to “attach” a PMI symbol
13 Association.is\to second entity used to “attach” a PMI symbol
=14 Specifying PMI grouping, source is PMI/B-Rep entity and destination is design
group.
=15 Association is to a weld line entity
16 Association is to a “hot spot”
17 Association is to a child in a PMI stack
=72 Association is for PMI miscellaneous relation.
73 Association is for PMI related entity.
=08 Association is to show the PMI when associated Model View is selected. Source is the
PMI, and destination is Model View.
=99 Association is to show/select PMI B, if showing/selecting PMI A. Source is PMI A,
and destination 1s PMI B. This i1s different from an “attached” PMI , where the
convention is to show the PMI visibly linked to one another.
=100 Association is to show all parts except the associated part instance. Source is the part
instance, and destination is Model View
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132 : Source Owning Entity String ID

Source Owning Entity String ID specifies the string identifier for the string which contains the unique CAD identifier of
the component (part or assembly) that owns the source PMI or B-Rep entity. This identifier is an index to a particular
character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no
string and implies that the entity is to be found on the current node‘s PMI/B-Rep/Wireframe-Rep segment. It is valid for
the source owning entity to be the same as the destination owning entity (i.e. an association between two PMI or B-Rep
entities in the same part/assembly). This data field is only present if Version Number, as defined in 6.2.6.2 PMI Manager
Meta Data Element, is greater than “5”.

132 : Destination Owning Entity String ID
Destination Owning Entity String ID specifies the string identifier for the string which contains the unique CAD
identifier qf the component (part or assembly) that owns the destination PMI or B-Rep entity. This identifier is annindgx
to a particlilar character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier walue of|*-
1” indicatgs no string and implies that the entity is to be found on the current node‘s PMI/B-Rep/Wireframe-Rgp
segment. (It is valid for the source owning entity to be the same as the destination owning entity (i.e;\an associatipn
between two PMI or B-Rep entities in the same part/assembly). This data field is only present if Version Number, |as
defined in6.2.6.2 PMI Manager Meta Data Element, is greater than “5”.

6.2.6.2.8 PMI User Attributes

The PMI Wser Attributes collection defines data for a list of user attributes. PMI User Attributes are used to add attribyte
data to a pprt/assembly. Each user attribute is composed of key/value pair of strings.

Figure 162: PMI User Attributes data collection

132 : User Attribute Count|

A

132 : Key String ID

User Attribute
Count

\ 4
132 :-Value String ID

132 : Usler Attribute Ceunt
User Attrilute Count spegifies the number of user attributes.

132 : Key String. JD
Key String ID specifies the string identifier for the user attribute key. This identifier is an index to a particular character
string in the PMI ‘String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no string.

132 : Value String ID

Value String ID specifies the string identifier for the user attribute value. This identifier is an index to a particular
character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no
string.

6.2.6.2.4 PMI String Table

The PMI String Table data collection defines data for a list of character strings and serves as a central repository for all
character strings used by other PMI Entities within the same PMI Manager Meta Data Element. PMI Entities reference
into this list/array of character strings to define usage of a particular character string using a simple list/array “index” (i.e.
String ID).
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Figure 163: PMI String Table data collection

132 : String Count

A

String : PMI String

String Count

A\ 4

32 : String Count
String Count specifies the number of character strings in the string table.

String : PMI String
PMI String specifies the character string.

6]2.6.2.5 PMI Model Views

The PMI Model Views data collection defines data for a list of .Model Views. A fully annotated part/asse
cqntain so much PMI information, that it becomes very difficult to~interpret the design intent when viewing a
(with PMI visible) of the part/assembly. Model Views provide a-means to capture and organize PMI informat

2011(E)

mbly may
3D Model
on about a

3 model so that the design intent can be clearly interpretéd-and communicated to others in later stages of the Product
Lifecycle Management (PLM) process (e.g. manufacturing, inspection, assembly). This organization is achieved via PMI

Associations (see 6.2.6.2.2 PMI Associations), whergcspecific PMI entities are associated as “destinations” to
PMI Model View.

a “source”
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Figure 164: PMI Model Views data collection

132 : Model View Count

DirF32 : Eve Direction [«

CoordF32 : Eye Position

\ 4
CoordF32 : Target Point

\4
CoordF32 : View Angle

v Model Miew
F32 : Viewport Diameter Count

A\ 4
F32 : Reserved Field

\ 4
132 : Reserved Field

A 4

132 : Active Flag

A\ 4
132 : View ID

\ 4
132 : View Name String ID

[
»

v

132 : Mqdel VView Count
Model Vigwi€ount specifies the number of Model Views.

DirF32 : Eye Direction
Eye Direction specifies the camera direction vector.

F32: Angle
Angle specifies the camera rotation angle (in degrees where positive is counter-clockwise) about the Eye Direction. So
this Angle in combination with the Eye Direction is equivalent to specifying a rotation using axis-angle representation.

CoordF32 : Eye Position
Eye Position specifies the WCS coordinates of the eye/camera “look from” position.
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oordF32 : Target Point

Target Point specifies the WCS coordinates of the eye/camera “look at” position.

C

oordF32 : View Angle

:2011(E)

View angle specifies the X, Y, Z rotation angles (in degrees) of the model’s axis. The rotations are defined with respect
to an initial orientation where the model’s axis are aligned with the screen’s axis (i.e. +X axis points to right, +Y axis
points up, +Z axis points out at you).

S

<o®

w

ch

6

us
D;

The Generic PMI Entities data ‘collection provides a “generic” format for defining various PMI entity types

all diameter value is specified a close-up (“zoomed-in)” view of the model results.

32 : Reserved Field
pserved Field is a data field reserved for future JT format expansion.

2 : Reserved Field
pserved Field is a data field reserved for future JT format expansion

2 : Active Flag
Ctive Flag is a flag specifying whether this Model View is the “active” view, Valid values include the follow

ibed within

hereas if a

=0 | — Isnot the active Model View.

=1| — Isthe active Model View

2 : View ID
ew ID specifies the Model View unique identifier.

2 : View Name String ID
ew Name String ID specifies the string identifierfor the Model View’s name. This identifier is an index to 3

ing.

2.6.2.6 Generic PMI Entities

hta collection and a list-0f PMI Property data collections.

particular

aracter string in the PMI String Table as defineéd’in 6.2.6.2.4 PMI String Table. An identifier value of “-1” indicates no

including

er defined types. The generie’format defines the data making up the PMI Entity through a combination of the PMI 2D

©

ISO 2011 — All rights reserved
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Complete

132 : G¢

Figure 165: Generic PMI Entities data collection

132 : Generic Entity Count

A

PMI 2D Data

1292 - Deaonaort
L}

W ar-NET-X 3
TOZ - OpPtT Tty COUTTIt

PMI Property < Property
Count

\ 4
132 : Entity Type Name String ID|

\ 4
132 : Parent Type Name String ID

A\ 4
U16 : Entity Type

v
U16 : Parent Type

Yersion Number > 6

\ 4
U16 : User Flags

X

A\ 4

jescription for PMD2D Data can be found in 6.2.6.2.1.1.1 PMI 2D Data.

neric Entity Count

Generic Entity Count-specifies the number of Generic PMI Entities.

132 : Pr

pperty Count

Generic
Entity Count

Property

132 : En

Entity Type Name String ID specifies the string identifier for the name of the Generic PMI Entity Type. This identifier is
an index to a particular character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An identifier

value of “-

132 : Pa

Parent Type Name String ID specifies the string identifier for the name of the parent Generic PMI Entity Type. This
identifier is an index to a particular character string in the PMI String Table as defined in 6.2.6.2.4 PMI String Table. An

ount specifies the number of PMI Properties.

tity Type Name String ID

1” indicates no string.

rent Type Name String ID

identifier value of “-1” indicates no string.
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The valid Entity Type values (in hexadecimal format) are

documented in the following table. Note that for “user defined” Generic PMI Entities a hexadecimal value of “0x0114”
(as documented in table below) should be used.

0x0001 PMI (generally only used as a Parent Type)
0x0002 Weld

0x0004 Spot Weld

0x0008 Line \Weld

0x0010 Groove Weld

0x0011 Fillet Weld

0x0012 Slot Weld

0x0014 Edge Weld

0x0018

Arc Spot Weld

0x0020

Resistance Spot Weld

0x0021

Resistance Seam Weld

0x0022

Structural Adhesive Bead Shaped

0x0024 Structural Adhesive Tape Shaped
0x0028 Structural Adhesive Dollop Shaped
0x0040 Mechanical Clinch Connector
0x0041 Surface Finish

0x0042 Measurement Point

0x0044 Datum Locator

0x0048

Certification Point

0x0080

Geometric Dimensioning and Tolerancing

0x0081

Feature Control Frame

0x0082

Dimension

0x0084

Datum Feature Symbol

0x0088 Datum Target

0x0100 Note

0x0101 Face Attribute Nate
0x0102 Model View Label Note
0x0104 Coordinate-System
0x0108 Reference,Geometry
0x0110 Reference Point

0x0111 Reference Axis

0x0112

Reference Plane

0x0114 User Defined

0x0118 Measurement Locator

0xX0120 Datum Point

0x0121 Surface Vector Measurement Point

0x0122

Hole Vector Measurement Point

UXUlZ4

Irimmed sheet Vector ivieasurement FoInt

0x0128

Hem Vector Measurement Point

U16 : Parent Type

Parent Type specifies the parent Generic PMI Entity Type.
documented above for Entity Type. The Parent Type is used to create a class hierarchy of PMI when presenting the PMI
contents from a JT file.

© 1SO 2011 — All rights reserved
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Ul6 : User Flags

User Flags is a collection of flags.

The flags are combined using the binary OR operator and store various state
information for the Generic PMI Entity. All undocumented bits are reserved.

0x0001

— Show PMI Entity “flat to screen only” flag
=0 - Allow PMI display plane to rotate with model.

=1 - Display PMI entity in the plane of the screen, so that it does not rotate with model.

6.2.6.2.6.1 PMI Property

A PMI PrJJperty data collection consists of a key/value pair and is used to describe attributes of Generic PMI Entity. [or

other specific data.

Both Key PMI Property Atom and Value PMI Property Atom have the same_format as that documented in 6.2.6.2.6.1.1

Figure 166: PMI Property data collection

Key PMI Property Atom

\4
Value PMI Property Atom

PMI Propdrty Atom.

Although there is no reference compliant requirements for what the, PMI Property key/value pairs must be for each
Generic PMI Entity type, there are some common PMI Property keys‘and corresponding value formats that appear in JT
File. The|below table documents these common PMI Property keys (i.e. the keys encoded string value) and what the
format of {he value data is in the values encoded string (see 6:2.6.2.6.1.1 PMI Property Atom for an explanation of what

[N

is meant b

Table 7: Common Propérty Ke

“encoded string value” for the “key” and “value”\data).

s and Their Value Encoding formats

. “Value” Propert
Key Propsetrt_y AL LIS Atongélue Sptrin{; Decoding Notes
ring ding Format
g
“PM|_PROP_ANCHOR_POINT* “Px Py Pz” Each Px, Py, Pz is a F32 value using “%f” format
“PMI_PROP_NOTE_HAS_URL* “0” or “1” 0==False; 1==True
“PMII_PROP_NORMAL_BIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format
“PM|_PROP_APPROACH. -DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format
“PM|_PROP_CLAMPING_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format
“FMI_PROP_MEAS_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format
“PMI_PROP-COORD_DIR” “Dx Dy Dz” Each Dx, Dy, Dz is a F32 value using “%f” format
“PNIl_PROP~MEAS LEVEL” “H Integer representing level number
“AMITextForegroundColor” “H Hexadecimal integer representing RGB color where
value has “0x00bbggrr” form. The low-order byte
contains a value for the relative. infanith of rnrl; the.
second byte contains a value for the relative
intensity of green; and the third byte contains a
value for the relative intensity of blue. The high-
order byte must be zero. The maximum value for a
single byte is OXFF (i.e. intensity value is in the
range [0:255]).
“PMITextBackgroundColor” “H Same as “PMITextForegroundColor”
“PMITextBackgroundOpacity” “H Unsigned decimal integer representing opacity
percentage. Actual opacity is: decoded# / 100.0
“PMITextShowBorder” “H Unsigned decimal integer: 0 = = False; 1 == True

166
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6

Pl
ke

M
V

O “Value” Property
& Pro%etl:%éb\tom Vel Atom Value String Decoding Notes
Encoding Format

“PMITextSize” “H Unsigned decimal integer representing text size in
units of pixels.

“PMITextInPlane” “H Unsigned decimal integer: 0 = = False; 1 == True
where “1” indicates that text should be displayed in
the plane of the entity so that it rotates with view.

“PMIGeometryColor” “H Same as “PMITextForegroundColor”
“PMIGeometryWidth” “H Unsigned decimal integer representing line width in
units of pixels.

CLIP_NORMAL “HH#H Used for Entity Type = “0x0114” and Entity [Type
Name String = “Section” to specify the.nhormal to
the clipping plane. The clipping:hormal goints
toward the piece of the model thatywill be cljpped
away. Each # is a F64 value using”™%lIf” formdt.

CLIP_POSITION “H#H#H Used for Entity Type = “0x0114” and Entity [Type
Name String = “Section’.ta_specify one point dn the
clipping plane. Each¢# is a F64 value using %If”
format.

TRANSFORMATION_MATRIX | “########, | Used for Entity (Fype = “0x0114” and Entity |Type
#HHHHHHAH | Name String = “Part Transform” to spec|fy a
transformation matrix. Each # is a F32 value psing

“%f” format.

y/value pair.

2.6.2.6.1.1 PMI Property Atom
M1 Property Atom data collection represents the data,format for both the key and value data of a PM

Figure 167: PMI Property Atom data collection

MbString : Value

bString : Value

Version Number > 6

A 4

U32 : Hidden Flag

A

hlUe)specifies the property atom value encoded into a String. See Table 7: Common Property Keys and T

| Property

heir Value

Encoding formats apove for encoding formarts of the value string.

U

32 : Hidden Flag

Hidden Flag specifies if the property is “hidden” or not. A JT file reader could use this flag to control whether read
properties should be exposed to the end user of the application reading the JT file. Valid values include the following:

©

=0 | — Property is not hidden.

=1| — Property is hidden.

ISO 2011 — All rights reserved
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6.2.6.2.7 PMI CAD Tag Data

The PMI CAD Tag Data collection contains the list of persistent 1Ds, as defined in the CAD System, to uniquely identify
individual PMI entities. The existence of this PMI CAD Tag Data collection is dependent upon the value of previously
read data field CAD Tags Flag as documented in 6.2.6.2 PMI Manager Meta Data Element.

If PMI CAD Tag Data collection is present, there will be a CAD Tag for each PMI entity as specified by the below
documented CAD Tag Index Count formula.

Figure 168: PMI CAD Tag Data data collection

132 : CAD Tag Index Count

A

132 : CAD Tag Index CAD Tag Index

Count

[
»

Y

Compressed CAD
Tag Data

Complete flescription for Compressed CAD Tag Data can be found in 7.1.11 Compressed CAD Tag Data.

132 : CAD Tag Index Count
CAD Tag Index Count specifies the total number of CAD Tag indices. This value must be equal to the summation of the
previously|read count values for all the PMI entities supporting GAD Tags. The formula is as follows:

CAD Tag |ndex Count = Line Weld Count + Spot Weld Count + SF Count + MP _Count + Reference Geometry Count
Datum Target Count + FCF Count + Locator Count + Dimension Count + DFS Count + Note
Count + Model View Count ¥ Design Group Count + Coord Sys Count + Generic Entity Coupt

132 : CAD Tag Index
CAD Tag|Index specifies an index into_awlist of CAD Tags, identifying the CAD Tag belonging to a particular PMI
entity. There will be a total of CAD Tag.Index Count number of CAD Tag Indices and the order of the indices will bejas
defined byl the above documented CAD-Tag Index Count formula (i.e. Line Weld CAD Tag Indices are first, followed py
the Spot Weld CAD Tag Indices,followed by the Surface Finish CAD Tag Indices, etc.)

6.2.7 HMI Data-Segment

The PMI Manager-Meta Data Element (as documented in 6.2.6.2 PMI Manager Meta Data Element) can sometimes also
be representeddn@PMI Data Segment. This can occur when a pre JT 8 version file is migrated to JT 8.1 version file. o
from a parping,point of view a PMI Data Segment should be treated exactly the same as a 6.2.6 Meta Data Segment.

7 Data Compression and Encoding

The JT File format utilizes best-in-class compression and encoding algorithms to produce compact and efficient
representations of data. The types of compression algorithms supported by the JT format vary from standard data type
agnostic ZLIB deflation to advanced arithmetic algorithms that exploit knowledge of the characteristics of the data types
they are compressing. Some of the JT format data collections are always stored in a compressed format, whereas other
data collections support multiple compression storage formats that qualitatively vary from “Lossless” compression to
more aggressive strategies that employ “lossy” compression. This support by the JT format of varying qualitative levels
of compression allows producers of JT data to fine tune the trade off between compression ratio and fidelity of the data.
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in a serial

fashion (i.e. encoding applied to the output of another encoder). One common example of this multiple encoding is when
an array/vector of floating point data is first quantized into some integer codes and then these resulting integer codes are

further compressed/encoded using a Huffman or Arithmetic CODEC (see 7.2 Encoding Algorithms).

Beyond the data collection specific compression/encoding, some JT format Data Segment types (see 6.1.3 Data Segment)

also support having a ZLIB compression conditionally applied to all the bytes of information persisted
segment. So individual fields or collections of data may first have data type specific encoding/compression

within the
algorithms

applied to them, and then if their Data Segment type supports it, the resulting data may be additional compressed using a

z

TS 1 el
uctiatlon argyuormrmTr.

hether, and at what qualitative level, a particular Data Segment’s data is compressed/encoded is.indicat
cgmpression related data values stored as part of the particular Data Segment storage format. In general,

bd through
aggressive

agplication of advanced compression/encoding techniques is reserved for the heavy-weight renderable geometric data

(elg. triangles and wireframe lines) which can exist in a JT File.

The following sections document the format of the data compression/encoding within the JT file. A
dqcumenting the format, a technical description of the various compression/encoding”algorithms is includ
edample implementation of the decoding portion of the algorithms can be found within Annex C:Decoding Al

long with
ed and an
porithms —

ADh Implementation.

711 Common Compression Data Collection Formats

F@r convenience and brevity in documenting the JT format, this section of the reference documents the format
cdmmon “data compression/encoding” related data collections that.can exist in the JT format. You will find re
thpse common compression data collections in the 6.2 Data Segments section of the document.

711.1 Int32 Compressed Data Packet

The Int32 Compressed Data Packet collection represents the format used to encode/compress a collection of
series of Int32 based symbols. Note that the Int32' Compressed Data Packet collection can in itself contain an

for several
ferences to

data into a
pther Int32

Compressed Data Packet collection if there-are any “Out-Of-Band data.” In the context of the JT fgrmat data

cdmpression algorithms and Int32 Compressed Data Packet, “out-of-band data” has the following meaning.

CPDECs like arithmetic and Huffian (see 7.2 Encoding Algorithms for technical description) exploit th

present in the relative frequenci€s of the values being encoded. Values that occur frequently enough allow bg
methods to encode each of the yalues as a “symbol” in fewer bits that it would take to encode the value itse)
thpt occur too infrequently to‘take advantage of this property are written aside into the “out-of-band data”

erjcoded separately. An-*escape” symbol is encoded in their place as a placeholder in the primal CODEC

“Yymbol” data field 8efinition in 7.1.1.1.1 Int32 Probability Context Table Entry for futher details on the rep
of| “escape” symbal),

E statistics
th of these
f. Values
rray to be
(note, see
resentation

zed all the
e different
CODEC is
and hence
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Figure 169: Int32 Compressed Data Packet data collection

U8 : CODEC Type

For Huffman and Arithmetic
CODEC Type.

Int32 Probability Contexts

v
132 Oout-Of-Banmd- value Court

Out-Of-Band Value
l Count>0

Int32 Compressed

Data Packet

A

CODEC Type not equal to
l “Null Codec”.

132 : CodeText Length

A\ 4
132 : Value Element Count

<

\ 4
VecU32 : CodeText >

U8 : CQDEC Type
CODEC Type specifies the algorithm used*to encode/decode the data. See 7.2 Encoding Algorithms for compldte

explanatioh of each of the encoding algorithms.

=0 | — Null CODEG
1| — BitlengthCODEC
2 | — Huffman CODEC
=3 | — Avrithmetic CODEC

132 : Out-Of:Band Value Count
Out-Of-Bgnd.Malue Count specifies the number of values that are “Out-Of-Band.” This data field is only present for
Huffman gnd-Arithmetic CODEC Types.

132 : CodeText Length
CodeText Length specifies the total number of bits of CodeText data (CodeText data field is described below). This data

field is only present if CODEC Type is not equal to “Null CODEC.”

132 : Value Element Count

Value Element Count specifies the number of values that the CODEC is expected to decode (i.e. it’s like the “length”
field written if you’re just writing out a vector of integers). This data field is only present if CODEC Type is not equal to
“Null CODEC.” Upon completion of decoding the CodeText data field below, the humber of decoded symbol values
should be equal to Value Element Count.
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CodeText is the array/vector of encoded symbols. For CODEC Type not equal to “Null CODEC”, the total number of
bits of encoded data in this array is indicated by the previously described CodeText Length data field.

7.1.1.1 Int32 Probability Contexts

Int32 Probability Contexts data collection is a list of Probability Context Tables. The Int32 Probability Contexts data
collection is only present for Huffman and Arithmetic CODEC Types. A Probability Context Table is a trimmed and

scaled histogram of the input values. It tallies the frequencies of the several most frequently occurring values. It is
centralto the nlrmr:\tinn of the arithmetic CODEC _and gi\m: all the information necessary to reconstruct the Huffman
cddes for the Huffman CODEC.
Figure 170: Int32 Probability Contexts data collection
U8 : Probability Context Table Count
[
U32{32} : Probability Context P
Table Entry Count D
For First Probability
Context Table in List
v l
U32{6} : Number Symbol Bits> U32{6} : Number Symbol Bits>
\ 4 \ 4
U32{6} : Number Occurrence 1432{6} : Number Occurrence
Count Bits Count Bits
\ 4 \ 4
U32{6} : Number Reserved U32{6} : Number Value Bits >
Field Bits -
Probability
v Context Tablg
U32{6} : Number Reserved Count
Field Bits
\4
U32{32} : Min Value >
~
Int32 Probability .
Probability
Context Table Entry Context Table
> Entry Count
Y
U32{variable}: Alignment Bits>
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U8 : Probability Context Table Count
Probability Context Table Count specifies the number of Probability Context Tables to follow and will always have a
value of either “1” or “2”.

U32{32} : Probability Context Table Entry Count
Probability Context Table Entry Count specifies the number of entries in this Probability Context Table.

U32{6} : Number Symbol Bits
Number Symbol Bits specifies the number of bits used to encode the Symbol range.

U32{6}
Number O

U32{6}
Number V|

U32{6}
Number R
Context T

Number Occurrence Count Bits
ccurrence Count Bits specifies the number of bits used to encode the Occurrence Count range.

Number Value Bits
plue Bits specifies the number of bits used to encode the Associated Value range.

Number Reserved Field Bits
eserved Field Bits specifies the number of bits used for the Reserved Field in711.1.1 Int32 Probabil

ty

ble Entry.

U32{32]
Min Valug
Table. Th
Value desq

U32{val
Alignment
Values of

Note: Dat

probability
by the “Al

7.1.1.1.

: Min Value

is value is used to compute the real Associated Value for a Probability~Context Table Entry. See Associat
ription in 7.1.1.1.1 Int32 Probability Context Table Entry.

iable}: Alignment Bits
‘0” are stored in the alignment bits.
a written into the JtFile is always aligned on bytes» Therefore after reading in a block of bit data such as t

context tables it is necessary to discard any remaining bits on the last byte that is read in. This is represent
gnment Bits” entry.

| Int32 Probability Context Table Entry

Figure'171: Int32 Probability Context Table Entry data collection

U32{Number Symbol Bits} : Svmbol>

A\ 4
U32{Number Occurrence Count Bits} : Occurrence Cou@

specifies the minimum of all Associated Values (i.e. one per table entry) stored in this Probability Contgxt

Bits represents the number of additional padding bits.stored to arrive at the next even multiple of 8 bifs.

bd

he
pd

172

\ 4
U32{Number Value Bits} : Associated Valu>

A 4
U32{Number Reserved Field Bits} : Reserved Fielb
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U32{Number Symbol Bits} : Symbol

Symbol is a small integer number associated with a specific value in the context table. It serves only to impose an order
on the entries in the Probability Context Table. The symbol is stored with a “+2” added to the value and thus a reader
must subtract “2” from the read value to get the true symbol value. Complete description for Number Symbol Bits can be
found in 7.1.1.1 Int32 Probability Contexts.

Note: Even though the symbol is written as a U32{Number Symbol Bits} it is possible to end up with a negative number
after subtracting “2” from the read in value. One example that will occur frequently is the escape symbol used for out-
of-band data which will have the value “0” in the file, however it will become “-2”, its true symbol value, after
subtracting “2” from the read in “0” value.

UB2{Number Occurrence Count Bits} : Occurrence Count
Otgcurrence Count specifies the relative frequency of the value. Complete description for Number Occurrence [Count Bits
can be found in 7.1.1.1 Int32 Probability Contexts.

Npte: Occurrence Counts for all symbols are normalized (converted to a relative frequency) during the write[process in
order to ensure the minimum amount of bits possible is used to write them. This has several implications|the reader
should be aware of:

= The sum of all Occurrence Counts is not guaranteed to equal the number of\symbols to be decoded [see Value
Element Count in section 7.1.1 for number of~ "~ symbols to be decoded).

= During Arithmetic decoding as described in C.4.2.

0 pDriver->numSymbolsToRead() — Refers to the €otal’ number of symbols to be decoded (i.e. Value
Element Count in section 7.1.1).

0 pCurrContext->totalCount() — Refers to the’sum of the “Occurrence Count” values for all the symbols
associated with a Probability Context.

UB2{Number Value Bits} : Associated Value
Associated Value is the value (from the input data) that the symbol represents. The CODECs don’t diregtly encode
lues, they encode symbols. Symbols, then, are associated with specific values, so when the CODEC decodgs an array
of| symbols, you can reconstruct the array.of values that was intended by looking up the symbols in the Probability
Context Table. This value is stored with “Min Value” subtracted from the value. Complete descriptions for “Nlin Value”
arjd Number Value Bits can be found in-7.1.1.1 Int32 Probability Contexts.

Npte: The associated value for-an-escape symbol is undefined and therefore can be any valid U32 number.

UB2{Number Reserved Field Bits} : Reserved Field
Reserved Field is a data field reserved for future JT format expansion. Complete description for Number Resgrved Field
Bits can be found.in 7.1.1.1 Int32 Probability Contexts.

7|1.2 Fleat64 Compressed Data Packet

The Float64 Compressed Data Packet collection represents the format used to encode/compress a collection of|data into a
series)of Float64 based symbols. This compression format also uses the concept of “out-of-band data” |in its data
contents definition. In the context of the JT format data compression algorithms and Float64 Compressed Data Packet,
“out-of-band data” has the following meaning.

CODEC:s like arithmetic and Huffman (see 7.2 Encoding Algorithms for technical description) exploit the statistics
present in the relative frequencies of the values being encoded. Values that occur frequently enough allow both of these
methods to encode each of the values as a “symbol” in fewer bits that it would take to encode the value itself. Values
that occur too infrequently to take advantage of this property are written aside into the “out-of-band data” array. An
“escape” symbol (i.e. value of “-2”) is encoded in their place as a placeholder in the primal CODEC. Essentially the
“out-of-band data” is the high-entropy junk/residue/slag left over after the CODECSs have squeezed all the advantage out
that they can.
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Whereas the Int32 Compressed Data Packet (see 7.1.1 Int32 Compressed Data Packet) then sends this “out-of-band data”
back around through a new CODEC looking for different statistics to be taken advantage of, the Float64 Compressed
Data Packet simply writes out the “out-of-band data” array with no additional encoding attempted.

Figure 172: Float64 Compressed Data Packet data collection

U8 : CODEC Type

us8 : CCO
CODEC T
explanatio
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Float64 Probability Contexts

\ 4
F64 : Value Range Min

A\ 4
F64 : Value Range Max
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'

“Null Codec”.

132 : CodeText Length
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y

132 : Value Element Count

&
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VecU32 : CodeText >

DEC Type

n of each of the encoding algorithms.

ype specifies the algorithm used to encode/decode the data. See 7.2 Encoding Algorithms for compld

=0 | — Null CODEC

=1 | — Bitlength CODEC

= — Huffman CODEC

=3 | — Arithmetic CODEC

F64 : Value Range Min
Value Range Min specifies the minimum of the value range used to encode the values.
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F64 : Value Range Max
Value Range Max specifies the maximum of the value range used to encode the values.

132 : Out-Of-Band Value Count
Out-Of-Band Value Count specifies the number of values that are “Out-Of-Band.”

VecF64 : Out-Of-Band Values
Out-Of-Band Values specifies the vector/list of “Out-Of-Band” values.

2 CodeText Length

13
C
C{

V
fig
“N
sh

V|
C
bi

7

pdeText Length specifies the total number of bits of CodeText data (described below). This data field is ohl)
DDEC Type is not equal to “Null CODEC.”

2 : Value Element Count

ould be equal to Value Element Count.

pcU32 : CodeText

1.2.1 Float64 Probability Contexts

FI

\
H

termed and scaled histogram of the input values. It tallies'the frequencies of the several most frequently
lues. It is central to the operation of the arithmetic COQDEC, and gives all the information necessary to recdnstruct the

pat64 Probability Contexts data collection is a list of Probability Context Tables. A Probability Context

Iffman codes for the Huffman CODEC.
Figure 173: Float64 Probability Contexts data collection

132 : ProbabilityContext Table Count

132 : Probability Context Table Entry Count

A

Probability
Float64 Probability Context Table
Context Table Entry [ Probability Count
Context Table
> Entry Count

A 4

132 : Probability Context Table Count
Probability Context Table Count specifies the number of Probability Context Tables to follow and will always have a
value of either “1” or “2”.

132 : Probability Context Table Entry Count
Probability Context Table Entry Count specifies the number of entries in this Probability Context Table.
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present if

hlue Element Count specifies the number of values that the CODEC is expected to decodey(i.e. it’s like the “length”
Id written if you’re just writing out a vector of integers). This data field is only present if CODEC Type is ot equal to
lull CODEC.” Upon completion of decoding the CodeText data field below, the number of decoded symnibol values

pdeText is the array/vector of encoded symbols. For CODEC Type not equalto “Null CODEC”, the total [number of
Is of encoded data in this array is indicated by the previously described CodeText Length data field.

Table is a
occurring
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7.1.2.1.1 Float64 Probability Context Table Entry

Figure 174: Float64 Probability Context Table Entry data collection
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r “out-of-band data” (see 7.1.2 Float64 Compressed Data Packet for adlditional details).

currence Count
b Count specifies the relative frequency of the value.

5sociated Value

Value is the value (from the input data) that the symbol represents. The CODECs don’t directly enco
y encode symbols. Symbols, then, are associated\with specific values, so when the CODEC decodes an arr
5, you can reconstruct the array of values that,was intended by looking up the symbols in the Probabil
ble.

served Field
Field is a data field reserved for future JT format expansion.

ertex Based Shape Compressed Rep Data

Based Shape Compressed Rep Data collection is the compressed and/or encoded representation of the vert
5, normal, texture-cgordinate, and color data for a vertex based shape. All vertex based shape elements (e
et Shape LOD. Element, Polyline Set Shape LOD Element) use this data collection format to compress/enco,

their geom

etric data.
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Figure 175: Vertex Based Shape Compressed Rep Data data collection
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U8 : Color Binding

Quantization Parameters

\ 4
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Bits Per Vertex = =

Lossless Compressed
Raw Vertex Data

bmplete description for Quantization Parameters ean be found in 6.2.1.1.1.10.2.1.1Quantization Parameters.

Lossy Quantized Raw
Vertex Data

6 : Version Number
brsion Number is the version identifier-forthis Vertex Based Shape Rep Data. Version number “0x0001” i
b only valid value.

I8 : Normal Binding
brmal Binding specifies how,_(at what granularity) normal vector data is supplied (“bound”) for the Shape Ré
b ossless Compressed Raw'Vertex Data or Lossy Quantized Raw Vertex Data collections.

5 currently

p in either

=0 | — Nore. No normal data.

=1 [¢2_Per Vertex. Normal vector for every vertex.

=.2\I'= Per Facet. Normal vector for every face/polygon.

=3'| — Per Primitive. Shape has a normal vector for each shape primitive (e.g. a 6.2.1.1.1.10.3
Tri-Strip Set Shape Node Element is made up of a collection of independent and
unconnected triangle strips; where each strip constitutes one primitive of the shape and

thus there waould he a normal per frianglp eriIn)

8 : Texture Coord Binding

Texture Coord Binding specifies how (at what granularity) texture coordinate data is supplied (“bound”) for the Shape
Rep in either the Lossless Compressed Raw Vertex Data or Lossy Quantized Raw Vertex Data collections. Valid values

ar

U

e the same as documented for Normal Binding data field.

8 : Color Binding

Color Binding specifies how (at what granularity) color data is supplied (“bound”) for the Shape Rep in either the
Lossless Compressed Raw Vertex Data or Lossy Quantized Raw Vertex Data collections. Valid values are the same as
documented for Normal Binding data field..
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Vecl32{Int32CDP, Stridel} : Primitive List Indices
Primitive List Indices is a vector of indices into the uncompressed Raw Vertex Data marking the start/beginning of
primitives. Primitive List Indices uses the Int32 version of the CODEC to compress and encode data.

7.1.3.1 Lossless Compressed Raw Vertex Data

The Lossless Compressed Raw Vertex Data collection contains all the per-vertex information (i.e. UV texture
coordinates, color, normal vector, XYZ coordinate) stored in a “lossless” compression format for all primitives of the

shape. The Lossless Compressed Raw Vertex Data collection is only present when the Quantization Parameters Bits Per
Vertex datafield Clr‘IIII:llQ “Qr (Qna 6211110211 Quantization Parameters for r\nmplata dncr‘riln'rinn)

Figure 176: Lossless Compressed Raw Vertex Data data collection
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[~ Data Size)
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132 : Uncompressed Data Size
Uncomprepsed Data size specifies the uncompressed size of Vértex Data or Compressed Vertex Data in bytes.

132 : Compressed Data Size
Compressgd Data Size specifies the compressed:Sizé of Vertex Data or Compressed Vertex Data in bytes. If the
Compressgd Data Size is negative, then the Compressed Vertex Data field is not present (i.e. data is not compressed) and
the absolufe value of Compressed Data Size should be equal to Uncompressed Data Size value.

U8 : Veftex Data
The Vertek Data field is a packed-array of the raw per vertex data (i.e. UV texture coordinates, color, normal vector,
XYZ coorglinate). The Vertex Data field is only present if Compressed Data Size value is less than zero.

The existdnce of texture coordinate, color, and normal vector data within Vertex Data array is dependent upon the
Normal Bipding, Texturé\Coord Binding, and Color Binding values previously read for this shape (see 7.1.3Vertex Basgd
Shape Compressed Rep'Data). Note that XYZ coordinate data is always present.

The per vertex data-is packed in Vertex Data array as F32 types using an interleaved data format/order as follows:

Jluvd Irabl Tnvinvynzl vy 20 ST Teabl Tnv vy nz]l v 73 for all vvarticas
WA B R Rl B RAATAAP SRR BECATP AL REN 8 A i N REL- Eid B AR S LA AP Slod EEEEEEELA AR LA i
Where the data elements have the following meaning:
[u, v] - Texture Coordinates for Vertex
[r, g, b] - Red, Green, Blue color components for Vertex
[nx, ny,nz] | - X, Y, Z Normal Vector components for Vertex
X, Y, Z - X, Y, Z Position Coordinate for Vertex

Given this format of the Vertex Data, the previously read vertex binding information, and the previously read Primitive
List Indices, a reader can then implicitly compute the data stride (length of one vertex entry in Vertex Data), number of
primitives, and number of vertices for the shape.
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U8 : Compressed Vertex Data

The Compressed Vertex Data field represents the same data as documented in Vertex Data field above except that the
data is compressed using the general “ZLIB deflation compression” method. The Compressed Vertex Data field is only
present if Compressed Data Size value is greater than zero. See 7 Data Compression and Encoding for more details on
ZLIB compression and ZLIB library version used.

7.1.3.2 Lossy Quantized Raw Vertex Data

T = pordinates,
cdlor, normal vector, XYZ coordinate) stored in a “lossy” encoding/compression format for all primitivesief|the shape.
The Lossy Quantized Raw Vertex Data collection is only present when the Quantization Parameters Bits-Per Yertex data
figld is NOT equal to “0” (See 6.2.1.1.1.10.2.1.1 Quantization Parameters for compete description).

Figure 177: Lossy Quantized Raw Vertex Data data collection

Quantized Vertex

Coord Array

Normal Binding ! =0

Quantized Vertex
Normal Array
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Texture Coord Binding ! =0

y

Quantized Vertex
Texture Coord Array

A

Color Binding ' =0

Quantized Vertex
Color Array

<
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\ 4
Vecl32{Int32CDP, Striplndex} : Vertex Data Indic@

Veel32{Int32CDP, StripIndex} : Vertex Data Indices
Vertex-Datatndicesisavectorofndices{one pervertexg-into-the-uncompressedidequantized-uniguevertex-tata arrays
(Vertex Coords, Vertex Normals, Vertex Texture Coords, Vertex Colors) identifying each Vertex’s data (i.e. for each
Vertex there is an index identifying the location within the unique arrays of the particular Vertex’s data). The
Compressed Vertex Index List uses the Int32 version of the CODEC to compress and encode data.

7.1.3.2.1 Quantized Vertex Coord Array

The Quantized Vertex Coord Array data collection contains the quantization data/representation for a set of vertex
coordinates.
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Figure 178: Quantized Vertex Coord Array data collection
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VecU32{Int32CDP, Lagl} : X-Vertex Coord Codes

A\ 4
VecU32{Int32CDP, Lagl} : Y-Vertex Coord Codes

\ 4
VecU32{Int32CDP, Lag1} : Z-Vertex Coord cw@

Hescription for Point Quantizer Data can be found in 7.1.4 Point Quantizer Data.

['tex Count
int specifies the count (number of unique) vertices in the Vertex)Codes arrays.

{Int32CDP, Lag1l} : X-Vertex Coord Codes
Coord Codes is a vector of quantizer “codes” for all thg:X-components of a set of vertex coordinates. X-Vert
es uses the Int32 version of the CODEC to compress‘and encode data.

{Int32CDP, Lag1} : Y-Vertex Coord Codes
Coord Codes is a vector of quantizer “cadés’™ for all the Y-components of a set of vertex coordinates. Y-Vert
es uses the Int32 version of the CODEC)to compress and encode data.

{Int32CDP, Lag1l} : Z-Vertex Coord Codes
oord Codes is a vector of quantizer “codes” for all the Z-components of a set of vertex coordinates. Z-Vert|
es uses the Int32 version-ef the CODEC to compress and encode data.

P Quantized.Vertex Normal Array

ized VertextNormal Array data collection contains the quantization data/representation for a set of vert]
PuantizedVertex Normal Array data collection is only present if previously read Normal Binding value is 1]
bro (See 7.1.3Vertex Based Shape Compressed Rep Data for complete explanation of Normal Binding da

A variation of the CODEC developed by Michael Deering at Sun Microsystems is used to encode the normals. T

variation being that the “Sextants” are arranged differently than in Deering’s scheme [6], for better delta encoding. See

7.2.5 Deer

ing Normal CODEC for a complete explanation on the Deering CODEC used.
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Figure 179: Quantized Vertex Normal Array data collection
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Nprmal Count specifies the count (number of unique) Normal Codes.
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Ogtant Codes is a vector-of-*codes” (one per normal) for a set of normals identifying which sphere Octant eaclp normal is

logated in. Octant Codes-tses the Int32 version of the CODEC to compress and encode data.

VecU32{Int32€DP, Lagl} : Theta Codes

Theta Codes~is’ a vector of “codes” (one per normal) for a set of normals representing in Sextant coor;ﬁinates the

gyantized<theta angle for each normal’s location on the unit radius sphere; where theta angle is defined as t
spherical coordinates about the Y-axis on a unit radius sphere. Theta Codes uses the Int32 version of the
cdmpress and encode data.

e angle in
CODEC to

VecU32{Int32CDP, Lag1} : Psi Codes

Psi Codes is a vector of “codes” (one per normal) for a set of normals representing in Sextant coordinates the quantized
Psi angle for each normal’s location on the unit radius sphere; where Psi angle is defined as the longitudinal angle in
spherical coordinates from the y = 0 plane on the unit radius sphere. Psi Codes uses the Int32 version of the CODEC to

compress and encode data
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7.1.3.2.3 Quantized Vertex Texture Coord Array

The Quantized Vertex Texture Coord Array data collection contains the quantization data/representation for a set of

vertex texture coordinates. Quantized Vertex Texture Coord Array data collection is only present if previously rea

d

Texture Coord Binding value is not equal to zero (See 7.1.3Vertex Based Shape Compressed Rep Data for complete

explanation of Texture Coord Binding data field).

Figure 180: Quantized Vertex Texture Coord Array data collection

N
Texture Quantizer Data

A\ 4
U8 : Suggested Number of Bits

v
VecU32{Int32CDP, Lagl} : U-Texture Coord cw@

\ 4

VecU32{Int32CDP, Lagl} : V-Texture Coord Cod@

Complete|description for Texture Quantizer Data can be found in_7.1.5 Texture Quantizer Data.

U8 : Supggested Number of Bits

Suggested| Number of Bits specifies the suggested numbgp,of quantization bits per texture coordinate U and |V
components. It is only a suggested value (and has no real value for a JT file loader/reader) because the actual number jof

bits used may differ (increased or decreased) depending’on the range of values for texture coordinates. The acty

number of quantization bits used is specified withih-Texture Quantizer Data. Value must be within range [0:24]

inclusive.

VecU3Z{Int32CDP, Lag1l} : U-Texture Coord Codes

U-Texture|Coord Codes is a vector of quantizer “codes” for all the U-components of a set of vertex texture coordinatgs.

U-Texture|Coord Codes uses the Int32.vérsion of the CODEC to compress and encode data.

VecU3Z{Int32CDP, Lagl}: V-Texture Coord Codes

V-Texture|Coord Codes is aVector of quantizer “codes” for all the V-components of a set of vertex texture coordinatgs.

V-Texture|Coord Codes uSes‘the Int32 version of the CODEC to compress and encode data.

7.1.3.2.4 Quantized Vertex Color Array
The Quantjized, VVertex Color Array data collection contains the quantization data/representation for a set of vertex colo
Quantized“vette orAtray-catacoHectonisonty-presentifprevious eat-CotorBinding-ratue-isnoteatat-to—ze
(See 7.1.3Vertex Based Shape Compressed Rep Data for complete explanation of Color Binding data field).

» C O~ varo O gaa U
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Figure 181: Quantized Vertex Color Array data collection

Color Quantizer Data

\4
U8 : Number of Bits

I8 : Numberof Bits

\ 4
U8 : Number of Color Floats

v
U8 : Component Arrays Flag

Component Arrays Flag = =

v v
VecU32{Int32CDP, Lagl} : Hue/Red Code> VecU32{Int32CDP, NU¥L} : Color Code>

4
VecU32{Int32CDP, Lagl} : Sat/Green Code>

\ 4
VecU32{Int32CDP, Lagl} : Value/Blue Code>

v
VecU32{Int32CDP, Lagl} : Alpha Codes>

P
€

v

bmplete description fok-Color Quantizer Data can be found in 7.1.6 Color Quantizer Data.

imber of Bits:specifies the quantized size (i.e. the number of bits of precision) for each of the 3 or 4 color cqg

U
N
T

U

Npmber of Color Floats specifies the number of floating point values used to represent the color compone

is value rust satisfy the following condition: “0 <= Number Of Bits <= 8.

“Number of Color Floats

mponents.

nts. Valid

values include the following:

©

=1 | — All components packed into a single 32 bit value...8 bits per component.

=3 | — Each RGB/HSV color component representing in its own floating point value. Alpha
always assumed to be 1.

=4 | — Each RGBA/HSVA color component representing in its own floating point value.
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U8 : Component Arrays Flag
Component Arrays Flag is a flag indicating whether color components are encoded as a single integer or if the encoding
is broken up (separated) into an array for each color component.

=0| — Encoded as single integer...thus one compressed collection of codes

=1| - Encoding is broken up (separated) into an array of codes for each color component...thus
a compressed collection of codes for each color component.

VecU32

Hue/Red Cades is a vector of qunnfin-r “cades” far all the Hue/Red color components of a set of vertex calars_ \Whether

{Int32CDP, Lag1} : Hue/Red Codes

HSV or R
Hue/Red (
the CODE

VecU32
Sat/Green
Whether H

Quantizer
the Int32

VecU32
Value/Blu
Whether H
Data. Val
version of

VecU32
Alpha Cog
is only prg
Compress :

VecU32
Color Cod
Componer

GB color model is being used (i.e. Hue or Red) is indicated by a flag stored in the Color Quantizer Da

a.

odes is only present when data field Component Arrays Flag = = 1. Hue/Red Codes uses the Int32 version
C to compress and encode data.

{Int32CDP, Lag1l} : Sat/Green Codes

Data. Sat/Green Codes is only present when data field Component Arrays Flag = = \I:~Sat/Green Codes us
ersion of the CODEC to compress and encode data.

{Int32CDP, Lagl} : Value/Blue Codes

ie/Blue Codes is only present when data field Component Arrays Flag’'= = 1. Value/Blue Codes uses the Int
the CODEC to compress and encode data.

{Int32CDP, Lag1l} : Alpha Codes
es is a vector of quantizer “codes” for all the Alpha colar-components of a set of vertex colors. Alpha Cod
sent when data field Component Arrays Flag = = 15Alpha Codes uses the Int32 version of the CODEC
nd encode data.

{Int32CDP, NULL} : Color Codes
es is a vector of quantizer “codes” for:alset of vertex colors. Color Codes is only present when data fie
t Arrays Flag = = 0. Color Codes uses the Int32 version of the CODEC to compress and encode data.

7.1.4 H

A Point Q
Quantizer

oint Quantizer Data

Pata collection for the“X) Y, and Z values of point coordinates.
Figure 182: Point Quantizer Data data collection

I e NI
X Uniform Quantizer Data

Codes is a vector of quantizer “codes” for all the Saturation/Green color components of a set of vertex colof
SV or RGB color model is being used (i.e. Saturation or Green) is indicated by a flag, stored in the Color

e Codes is a vector of quantizer “codes” for all the Value/Blue color, camponents of a set of vertex colofs.
SV or RGB color model is being used (i.e. Value or Blue) is indicated<dy a flag stored in the Color Quantizer

Liantizer Data collection(isymade up of three Uniform Quantizer Data collections; there is a separate Unifofm

of

w

B2

|

Y Uniform Quantizer Data

\ 4
Z Uniform Quantizer Data

Complete description for X Uniform Quantizer Data, Y Uniform Quantizer Data and Z Uniform Quantizer Data can be

found in 7.

1.7 Uniform Quantizer Data.

184
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A Texture Quantizer Data collection is made up of two Uniform Quantizer Data collections; there is a separate Uniform

Quantizer Data collection for the U, and V values of texture coordinates.

Figure 183: Texture Quantizer Data data collection

r—\
U Uniform Quantizer Data

Fq
fo
cq

_—Y

V Uniform Quantizer Data

lantizer Data.

1.6 Color Quantizer Data

mponents should always be assumed to be the following:
e — h@ Quantizer Range
O Min Max
Hue 0.0 6.0
Saturation 0.0 1.0
Value 0.0 1.0
Alpha 0.0 1.0

bmplete description for U Uniform Quantizer Data, and V Uniform Quantizer Data can be found in 7.1/ Uniform

Color Quantizer Data collection contains the quantizer information for’geach of the color components. [The Color
lantizer utilizes a separate Uniform Quantizer Data collection for eachtef the 4 color components, but if the HSV color
bdel is being used, then it is not necessary to store a complete Uniferm/Quantizer Data Collection.

r the HSV model, since the range values for each color component are constant, only the Number of Bits of precision
I each color component’s Uniform Quantizer is stored. The-Uniform Quantizer range values for the HSV color

©
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Figure 184: Color Quantizer Data data collection

U8 : HSV Flag

HSV Flag==1

\ 4 \ 4
Red Uniform Quantizer Data U8 : Number of Hue Bits

I e N \ 4
Green Uniform Quantizer Data

U8 : Number of Saturation Bits

A 4

¥ U8 : Number of Value Bits

Blue Uniform Quantizer Data

U8 : Number of Alpha Bits

I e N \4
Alpha Uniform Quantizer Data

A

Complete fescriptions for Red Uniform Quantizer Data, Green Uniform Quantizer Data, Blue Uniform Quantizer Da
and AlphalUniform Quantizer Data can be found in 7.1.7 Uniform Quantizer Data. These four Uniform Quantizer Data
collectiond are only present when data field HSV Flag = = 0.

»

U8 : HSV Flag
HSV Flag|is a flag indicating whether color componént data is stored in HSV color model form.

=0| — Color component data stored in RGB color model form.
=1| - Color component data-stored in HSV color model form.

U8 : Number of Hue Bits
Number of Hue Bits specifies thé-quantized size (i.e. the number of bits of precision) for the Hue component of the colr.
Number of Hue Bits data is only,present when data field HSV Flag = = 1.

U8 : Number of Saturation Bits
Number of Saturation Bits specifies the quantized size (i.e. the number of bits of precision) for the Saturation compongnt
of the color. Number of Saturation Bits data is only present when data field HSV Flag = =

U8 : Number of Value Bits

Number of Value Bits specifies the quantized size (i.e. the number of bits of precision) for the VValue component of the
color. Number of Value Bits data is only present when data field HSV Flag = =

U8 : Number of Alpha Bits
Number of Alpha Bits specifies the quantized size (i.e. the number of bits of precision) for the Alpha component of the
color. Number of Alpha Bits data is only present when data field HSV Flag = = 1.

7.1.7 Uniform Quantizer Data

The Uniform Quantizer Data collection contains information that defines a scalar quantizer/dequantizer
(encoder/decoder) whose range is divided into levels of equal spacing.
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F32 : Min

F32 : Max

\ 4
U8 : Number Of Bits

FB2 : Min
Miin specifies the minimum of the quantized range.

FB2 : Max

Mlax specifies the maximum of the quantized range.

U8 : Number Of Bits
Npmber of Bits specifies the quantized size (i.e. the number of bits of precision). In general, this value must
following condition: “0 <= Number Of Bits <= 32",

711.8 Compressed Entity List for Non-Trivial Knot Vector
Compressed Entity List for Non-Trivial Knot Vector data caollection specifies index identifiers (i.e. indices tq
entities within a list of entities) for a set of entities that contain Non-Trivial Knot Vectors. The entity types
cqntain non-trivial knot vectors include:

JT B-Rep NURBS Surfaces

JT B-Rep PCS NURBS Curves
JT B-Rep MCS NURBS Curves
Wireframe MCS NURBS Curves

inflex identifiers for one particular type of the above listed entities. The entity type is inferred based o
cqllection which includes/references the Compressed Entity List for Non-Trivial Knot Vector.

Altrivial knot vector is‘ene’'which completely satisfies all conditions of at least one of the following cases:

1. Case-1fortrivial knot vector
a\>~Number of knots is an even number
p!" Knot vector has a [0:1] knot range
c. There are no interior knots (i.e. NumberKnots = = 2 * (NurbsEntityDegree + 1)

2011(E)

satisfy the

particular
which can

Npte that any one occurrence of €ompressed Entity List for Non-Trivial Knot Vector data collection will ofly contain

n the data

2/} Case-2 for trivial knot vector

a.  Number of knots is an even number.
b. Knot vector has a [0:1] knot range
c. NurbsEntityDegree < 3
d. Difference between successive non-repeating knots (i.e. KnotDelta) is:
i. KnotDelta = 2.0/ (NumberKnots — (2.0 * NurbsEntityDegree))

Any knot vector which does not satisfy one of the above cases for “trivial knot vector” is classified as a “non-trivial knot

vector.”
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Figure 186: Compressed Entity List for Non-Trivial Knot Vector data collection

Vecl32 : Entities of Knot Type Exist Flags

Entities of Knot Type Exist Flags[0] ==

\ 4
Vecl32{Int32CDP, Stridel} : Entity Index Cod@

Vecl32

Entities of
collections
characteris

Entities of Knot Type Exist Flags
Knot Type Exist Flagsyis a vector of flags indicating for each knot vector type whether Entity Index ID dgta
exist/follow for_that knot vector type. Knot Vectors are categorized into types based on the followiphg
tics: whether the knot count is even or odd and whether knot range is [0:1] or some other [x;:x,] range.

A

Entities of Knot Type Exist Flags[1] ==

\ 4
Vecl32{Int32CDP, Stride1} : Entity Index cw@

A

Entities of Knot Type Exist Flagsf2]="=

\ 4
Vecl32{Int32CDP, Stridel} : Entity Index Cod@

A

Entities of Kot Type Exist Flags[3] = =

\ 4
Vecl32{Int82CDP, Stridel} : Entity Index Cod@

A

Currently there are four'knot vector types, so this Entities of Knot Type Exist Flags vector should be of length four. The
four flags have thesfollowing meaning:
[Oh| — Flag indicating whether Entity IDs data collection exists for “Even Count [0:1] Range”
Knot type.
= 0 — No Entity IDs data collection exists.
= 1 — Entity IDs data collection exists.
[1] | — Flag indicating whether Entity IDs data collection exists for “Even Count [x;:X,] Range”
knot type.
= 0 — No Entity IDs data collection exists.
= 1 - Entity IDs data collection exists.
[2] | — Flag indicating whether Entity IDs data collection exists for “Odd Count [0:1] Range”

knot type.
= 0 — No Entity IDs data collection exists.
= 1 — Entity IDs data collection exists.
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[3] | - Flag indicating whether Entity I1Ds data collection exists for “Odd Count [x;:X,] Range”
knot type.

= 0 — No Entity IDs data collection exists.

= 1 — Entity IDs data collection exists.

Vecl32{Int32CDP, Stridel} : Entity Index Codes
Entity Index Codes is a vector of quantizer “codes” representing entity index identifiers for a set of entities (i.e. indices to
particular entities within a list of entities). Entity Index Codes uses the Int32 version of the CODEC to compress and
encode data.

2=

1.9 Compressed Control Point Weights Data

bmpressed Control Point Weights Data collection is the compressed and/or encoded representation of weig
me set of Control Points. All NURBS based geometry use this data collection to compréss/encode Co
eight data.

Figure 187: Compressed Control Point Weights Data{data collection

132 : Weights Count

v
Vecl32{Int32CDP, Stridel} : Weight Indice>

\ 4
VecF64{Float64CDP, NUL.L}: Weight VaIu@

2 : Weights Count
eights Count specifies the total numberof Weights. This count can differ from the Control Point
P.3.1.4.1.3 NURBS Surface Control Point Counts) because if the Control Point Dimensionality is non-ration

fig
st
W
fi

V|
W
ag
er

V|
W

ld NURBS Surface Control Point Dimensionality in 6.2.3.1.4.1 Surfaces Geometric Data), then no Weight
pred for the particular Control-Point. Weights Count value also does not necessarily equate to the actual
eights stored, since if a particular Control Point’s Weight values is “1”, then no actual Weight value is sto
e loaders/readers can infer.that the Weight Value is “1” for Control Points that don’t have a Weight value sto

pcl32{Int32CDR, ' Stridel} : Weight Indices

eight Indices is @ vector of indices representing the index identifiers for the conditional set of weights fo

code data,

peckF64{Float64CDP, NULL} : Weight Values

ht data for
htrol Point

count (see
| (see data
values are
number of
ed (i.e. JT
red).

which an

tual Weight Valtes is stored in Weight Values. Weight Indices uses the Int32 version of the CODEC to compress and

version of

eight Values is a vector of weight values for the conditional set of weights. Weight VValues uses the Float64

th

e CODEC 10 TOMpPTESS and encode uata:

7.1.10 Compressed Curve Data

Compressed Curve Data collection contains JT B-Rep or Wireframe Rep compressed/encoded geometric Curve data.
Currently only NURBS Curve types are supported as part of this data collection. Complete documentation for JT B-Rep
and Wireframe Rep can be found in sections 6.2.3.1 JT B-Rep Element and 6.2.5.1 Wireframe Rep Element respectively.

©
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Figure 188: Compressed Curve Data data collection

Non-Trivial Knot Vector

NURBS Curve Indices

\ 4
\VVecl32{Int32CDP, Lagl} : Curve Base Tv@

A 4
Vecl32{Int32CDP, Lagl} : NURBS Curve Deqr@

\ 4
Vecl32{Int32CDP, Lagl} : NURBS Curve Control Point Cou@

\ 4
Vecl32{Int32CDP, Lagl} : NURBS Curve Control Point Dimensionalitv>

A 4
Vecl32{Int32CDP, Lagl} : NURBS Curve Reserved Field>

y
NURBS Curve Contol
Point Weights

NURBS-Curve Control
Points

\ 4
VecF64{Eleat64CDP, NULL} : NURBS Curve Knot Vect@

Vecl32{Int32CPRRY Lagl} : Curve Base Types
Each Curve is assigned a base type identifier. Curve Base Types is a vector of base type identifiers for each Curve irf a
list of Cufves< 'Currently only NURBS Curve Base Type is supported, but a type identifier is still included in the
specificatipn’tg allow for future expansion of the JT Format to support other curve types.

In an uncompressed/decoded form the Curves base type identifier values have the following meaning:

| =1[ - Curve isa NURBS curve

Curve Base Types uses the Int32 version of the CODEC to compress and encode data.
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Vecl32{Int32CDP, Lagl} : NURBS Curve Degrees

NURBS Curve Degrees is a vector of Curve degree values for each NURBS Curve in a list of Curves (there is a stored
value for each NURBS Curve in the list). NURBS Curve Degrees uses the Int32 version of the CODEC to compress and
encode data.

Vecl32{Int32CDP, Lag1} : NURBS Curve Control Point Counts

NURBS Curve Control Point Counts is a vector of control point counts for each NURBS Curve in a list of curves (there
is a stored value for each NURBS Curve in the list). NURBS Curve Control Point Counts uses the Int32 version of the
CODEC to compress and encode data.

Vecl32{Int32CDP, Lagl} : NURBS Curve Control Point Dimensionality
NPRBS Curve Control Point Dimensionality is a vector of control point dimensionality values for each NURBS Curve in
a list of Curve s(i.e. there is a stored values for each NURBS Curve in the list).

Injan uncompressed/decoded form the control point dimensionality values meaning is dependentupan the NURBS Entity
type.

Fgr NURBS UV Curve entities the dimensionality value has the following definition:

=2 | — Non-Rational (each control point has 2 coordinates)
= 3| — Rational (each control point has 3 coordinates)

F@r NURBS XYZ Curve entities the dimensionality value has the following definition:

=3 | — Non-Rational (each control point has 3 coordinates)
=4 | — Rational (each control point has 4 coordinates)

NPRBS Curve Control Point Dimensionality uses the Int32 version of the CODEC to compress and encode dafa.

VEecl32{Int32CDP, Lagl} : NURBS Curve Reserved Fields
NPRBS Curve Reserved Fields is a vector of data reserved for future expansion of the JT format. Each NURBS Curve
infa list of Curves has one reserved data field entry in this NURBS Curve Reserved Fields vector. NURBS Curve
Reserved Fields uses the Int32 version af the CODEC to compress and encode data

VecF64{Float64CDP, NULL} : NURBS Curve Knot Vectors
NPRBS Curve Knot Vectorsis‘aist of knot vector values for each NURBS Curve having non-trivial knot Vectors in a
ligt of Curves (i.e. there are-stored values for each non-trivial knot vector NURBS Curve in the list). All these NURBS
Cuirve non-trivial knot vecters are cumulated into this single list in the same order as the Curve appears in thg Curve list
(if. Curve-N Non-Trivial’Knot Vector, Curve-M Non-Trivial Knot Vector, etc.). The NURBS Curves for yhich knot
vgctors are stored (i-e,"those containing non-trivial knot vectors) are identified in data collection Non-Trivial Knot Vector
NPRBS Curve fndices documented in 7.1.10.1 Non-Trivial Knot Vector NURBS Curve Indices. NURBS Gurve Knot
Vectors uses-the Float64 version of the CODEC to compress and encode data.

711-10.1 Non-Trivial Knot Vector NURBS Curve Indices

Non-Trivial Knot Vector NURBS Curve Indices data collection Specifies the Curve index identitiers (I.e. indices to
particular NURBS Curves within a list of Curves) for all NURBS Curves containing non-trivial knot vectors. A
description/definition for “non-trivial knot vector” can be found in 7.1.8 Compressed Entity List for Non-Trivial Knot
Vector.

This Curve index data is stored in a compressed format.
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Figure 189: Non-Trivial Knot Vector NURBS Curve Indices data collection

Compressed Entity List

for Non-Trivial Knot

Complete description for Compressed Entity List for Non-Trivial Knot Vector can be found in 7.1.8 Compressed Entity
List for Non-Trivial Knot Vector.

7.1.10.2 NURBS Curve Control Point Weights

NURBS Qurve Control Point Weights data collection defines the Weight values for a conditional set of Controt’Points
for a list ¢f NURBS Curves. The storing of the Weight value for a particular Control Point is conditional;ybecause|if
NURBS {urve Control Point Dimension is “non-rational” or the actual Control Point’s Weight valuedis-**1”, then po
Weight value is stored for the Control Point (i.e. Weight value can be inferred to be “1”).

The NURBS Curve Control Point Weights data is stored in a compressed format.

Figure 190: NURBS Curve Control Point Weights data coHection

Compressed Control

Point Weights Data

Complete |description for Compressed Control Point Weights Data can-be found in 7.1.9 Compressed Control Pojnt
Weights Djata.

7.1.10.3 NURBS Curve Control Points

NURBS Curve Control Points is the compressed and/or€ncoded representation of the Control Point coordinates for eagh
NURBS Qurve in a list of Curves (i.e. there are stored values for each NURBS Curve in the list). Note that these gre
non-homogieneous coordinates (i.e. Control Pojat.coordinates have been divided by the corresponding Control Pojnt
Weight values).

Figure.191: NURBS Curve Control Points data collection

VecE62{Float64CDP, NULL} : Control Poi@

VecF64{Float64CDP, NULL} : Control Points
Control Pqints is.awector of Control Point coordinates for all the NURBS Curves in a list of Curves. All the NURBS
Curve CorjtrolRaint coordinates are cumulated into this single vector in the same order as the Curve appears in the Curje
list (i.e. Cyrves1 Control Points, Curve-2 Control Points, etc.). Control Points uses the Float64 version of the CODEC to
compress and encode data in a "TossIess” manner.

7.1.11 Compressed CAD Tag Data

The Compressed CAD Tag Data collection contains the persistent 1Ds, as defined in the CAD System, to uniquely
identify individual CAD entities (e.g. Faces and Edges of a JT B-Rep, PMI, etc.). Exactly what CAD entity types have
CAD Tags and what order they are stored in Compressed CAD Tag Data is defined by users of this data collection (e.g.
6.2.3.1.6 B-Rep CAD Tag Data, 6.2.6.2.7 PMI CAD Tag Data)
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What constitutes a CAD Tag is outside the scope of the JT File format and is indeed part of the CAD system. The JT
File format simply provides a way to store any kind of CAD Tag as provided by the CAD system which produced the
CAD entity.

Figure 192: Compressed CAD Tag Data data collection

132 : Data Length

\ 4
132 : Version Number

\ 4
132 : CAD Tag Count

CAD Tag Count > 0

Y
Vecl32{Int32CDP, Lagl} : CADTaq Ty@

A

If “Type-1" CAD Tags exist
in CAD Tag Types data.

v
Vecl32{Int32CDP, Lagl} : CAD Tags Type->

A

If “Type-2” CAD Tags exist
in CAD Tag Types data.

Y

Compressed CAD Tag
Type-2 Data

32 : Datalength
Dpta Lengthsspecifies the length in bytes of the Compressed CAD Tag Data collection. A JT file loader/readgr may use
hjs information to compute the end position of the Compressed CAD Tag Data within the JT file and thus sKip reading
he remaining Compressed CAD Tag Data.

— —

132 : Version Number
Version Number is the version identifier for the Compressed CAD Tag Data. Version number “1” is currently the only
valid value.

132 : CAD Tag Count
CAD Tag Count specifies the number of CAD Tags

Vecl32{Int32CDP, Lag1} : CAD Tag Types

CAD Tag Types is a vector of type identifiers for a list of CAD Tags (where each CAD Tag in the list has a type
identifier value).
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In an uncompressed/decoded form the CAD Tag type identifier values have the following meaning:

=1| — 32 Bit Integer CAD Tag Type
=2 | — 64 Bit Integer CAD Tag Type

CAD Tag Types uses the Int32 version of the CODEC to compress and encode data.

Vecl32{Int32CDP, Lag1} : CAD Tags Type-1
CAD Tags Type-1 is a vector of the Type-1 (i.e. 32 Bit Integer Type) CAD Tags for a list of CAD Tags. CAD Tags
Type-1 usgs the Int32 version of the CODEC to compress and encode data. CAD Tags Type-1 is only present if thdre
are Type-1 CAD Tags in the CAD Tag Types vector. Thus a loader/reader of JT file must first uncompress/decode apd
evaluate the previously read CAD Tag Types to determine if there are any Type-1 CAD Tags and if so, themthe CAD
Tags Typef1 data vector is present.

7.1.11.1 Compressed CAD Tag Type-2 Data

Compress¢d CAD Tag Type-2 Data collection contains the Type-2 (i.e. 64 Bit integer Type) €AD Tag data for a list |of
CAD Tagy

The Compfressed CAD Tag Type-2 Data collection is only present if there are Type-2 CAD Tags in the CAD Tag Tyges
vector. Thus a loader/reader of JT file must first uncompress/decode and evaluate the previously read CAD Tag Tyges
vector to determine if there are any Type-2 CAD Tags and if so, then the Compfessed CAD Tag Type-2 Data collectipn
is present.

Figure 193: Compressed CAD Tag Type-2 Data data collection

Vecl32{Int32CDP, Lagl} : First 132 of Type-2 CAD Ta@

A\ 4

Vecl32{Int32CDP, Lagl} : Second 132 of Type-2 CAD Taq>

Vecl32{Int32CDP, Lag1l} : First|I32 of Type-2 CAD Tags
First 132 of Type-2 CAD Tags is a vector of the first 32 bits of each Type-2 CAD Tag in the list of CAD Tags. First 132
Of Type-2|CAD Tags uses the Int32'version of the CODEC to compress and encode data.

Vecl32{Int32CDP, Lag2} : Second 132 of Type-2 CAD Tags
Second 13p of Type-2 CAD.Tags is a vector of the second 32 bits of each Type-2 CAD Tag in the list of CAD Tags.
Second 132 Of Type-2 CAD Tags uses the Int32 version of the CODEC to compress and encode data.

7.2 Encoding Algorithms

The follovdng-sections give a brief technical overview/descriptions of the various encoding algorithms used in the JT
format. Additional information on each of the algorithms can be found within references listed in 2 References and
Additional Information section of this document. Also, a sample implementation of the decoding portion of each
algorithm can be found in Annex C:Decoding Algorithms — An Implementation.

7.2.1 Uniform Data Quantization

Uniform Data Quantization is a lossy encoding algorithm in which a continuous set of input values (floating point data) is
approximated with integral multipliers (i.e. integers) of a common factor. How close the quantization output
approximates the original input data is dependent upon the quantization data range and the number of bits specified to
hold the resulting integer value.
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The quantization is considered “uniform” because the algorithm divides the data input range into levels of equal spacing
(i.e. a uniform scale). The form of Uniform Data Quantization used by the JT format is also considered scalar in nature,

in

Gi

7

The basic algorithm (using C++ style syntax) for Uniform Data Quantization is as follows:

that each input value is treated separately in producing the output integer value.

ven the following definitions:
inputVal: input floating point data to quantize
outputval: resulting quantized output integer value

mininputRange: specified minimum value of input data range
maxInputRange: specified maximum value of input data range

Bt —specifiedmumber of titsof precision(quantizedsizey ]

UInt32 iMaxCode = (nBits < 32) ? (0x1 << nBits) - 1 : OXffffffff;
Float64 encodeMultiplier = Float64(iMaxCode) / (maxInputRange — minlnputRange);

UInt32 outputVal = UInt32( (inputVal - minlnputRange) * encodeMultiplier + @5 );

can otherwise cause “outputVal” to sometimes come out equal to “iMaxCode + 1”.

bte that all compression algorithms in the following sections operate,on’quantized integer data.

2.2 Bitlength CODEC

T

vdlue is seen, the number of bits needed to represent-it' is calculated and compared to the current "field w
cyrrent field width is then adjusted upwards or downwards by a constant “step_size” number of bits (i.e. 2 bitg
format) to accommaodate the input value storageThis increment or decrement of the current field width is in
each encoded value by a prefix code stored with gach value.

The prefix code will be one of the following two forms:

©

e Asingle '0' bit to dengterthe same (i.e. current) field width is to be used for the next value.

incremented(a-"1' bit) or decremented (a '0' bit) by the field step_size, followed by a single ter

decrements in a given prefix code, never both, and that is why the prefix code terminator

Some examples of prefix codes and their interpretation are as follows:

Example 1: Prefix code to maintain same (current) field width.

0

Indicates no bit field width change _T

ISO 2011 — All rights reserved

Note: For reasons of robustness, “outputVal” must also-be’ explicitly clamped to [the range
[0,iMaxCode]. This is because floating-point roundoff errorin the calculation of “encodeMultiplier”

is is a very simple compression algorithm that runs an adaptive-width bit field encoding for each value. Asfeach input

idth". The
for the JT

Hicated for

e A '1l' bit followed by a series of one or more bits where each bit indicates whether the field width is to be

inator bit

(which ig-complement of the previous increment/decrement bit). Note that there can only be incfements or

it can be

recoghized as bits are read by simply looking for the complement of the previous increment/decremnent bit.
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A pseudoqcode sample implementation of bit length decoding is available in Anhex' C:Decoding Algorithms — A
Implementation.

7.2.3 Huffman CODEC

The Huff
Huffman

Bell Labofatories published his seminal paper “A mathematical theory of communication” that launched the new field

Informati

articulation of arithmetic coding, but it lay unpublished until'1976, when Jorma Rissanen and Richard Pasco, of IB

refined it i

Huffman

symbol; that is individual symbols (e.g. characters in a text file) are replaced by bit sequence codes that have a distir

length. T
occurring

Huffman

complete binary tree of minimunmWeighted path length (as shown in Figure 194: Huffman Tree). For the JT forn
usage of Huffman Coding, thé-hist of weights consists of the frequency of symbol occurrence. Although the assignmg

of a binar
consistent
associated

Using this
with the e
important

is only one possible way to decompose a string of codewords into individual symbols.

Example 2: Prefix code to increment field width four times.

A
Indicates bit field width change 41 ’
Indicates increment width by step_size

Indicates increment width by step_size
Indicates increment width by step_size
Indicates increment width by step_size

Termination bit

Example 3: Prefix code to decrement field width two times.

Indicates bit field width change 4T ’
Indicates decrement width by step_size

Indicates decrement width by step_size
Termination bit

an compression algorithm is named after its inventor, David Huffman, and was developed in 1948 while N
as a Ph.D. student at the Massachusetts Institute of Technology (MIT); the same year as Claude Shannon

Theory. In that same class with David Huffman was Peter Elias who reportedly developed the fi
nto a practically useful algorithm.
ompression is a lossless compression~algorithm that uses a variable length codeword to encode a souf

he codes are assigned to the symbols based on the probabilities of the symbol occurring, such that symbq
requently in a file are given ashort sequence while others that are seldom used get a longer bit sequence.

oding is dependent upemHuffman’s algorithm, which takes a list of weights, and builds an extended a

/ value to the edges which leads you to the left or right child of a tree node may be arbitrary, it must
in the tree construction, and typically “0” is associated with an edge leading to a left child and “1”
with an edge leading to a right child.

Huffman Tree, variable length codewords are defined for each symbol by concatenating the value associat
lges, as you follow the path from the root of the tree to the leaf associated with a symbol’s frequency. A
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It can be proven that

“unambiguous decoding” is indeed a property of a Huffman Tree due to the fact that by definition, a Huffman Tree is a
complete binary tree.
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7.2.3.1 Example

Following is an example to demonstrate in practice the basic principles of Huffman coding.
Suppose you want to compress, using Huffman coding, the following sequence/array of integer data:
{1,3,4,1,2,1}

There are 6 integer numbers, so in non compressed form (i.e. fixed size integer coding) this sequence requires 24 bytes or
192 bits.

The frequency count of the numbers in the sequence is as follows:

Number Frequency
1 3
2 1
3 1
4 1
Total 6

Letting, as in the JT format usage of Huffman coding, the frequency counts helthe weights. If we pair egch symbol
(imteger) with its weight, and pass this list of weights to the Huffman algorithm we will get a Huffman [Tree (with
included edge labels) that looks something like the following:

Figure 194: Huffman Tree

“1”, 3

uzn’ 1

usn' 1 u411’ 1

From this tree/we get the following Huffman codes for each of the integer numbers:

Number Frequency Huffman code ,,\:/Yfgtffﬂﬁogfnhfngm 5
\ bt | J — 7
1 3 0 3
2 1 10 2
3 1 110 3
4 1 111 3
Total 6 - 11

Using the Huffman codes the array/sequence of integers can be compressed into the following bit sequence:

01101110100
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So the number of bits required to represent the array/sequence of integers in Huffman codeword form is 11 bits (i.e. total
of “Weighted Code length), versus 192 bits in standard fixed-size integer encoding.

A pseudo-code sample implementation of Huffman decoding is available in Annex C:Decoding Algorithms — An
Implementation.

7.2.4 Arithmetic CODEC

Arithmetic encoding is a lossless compression algorithm that replaces an input stream of symbols or bytes with a single
fixed point output number (i.e. only the mantissa bits to the right of the binary point are output from MSB to LSB). The
total number of bits needed in the output number is dependent upon the length/complexity of the input message (i.e. the
longer the|input message the more bits needed in the output number). This single fixed point number output from pn
arithmetic|encoding process must be uniquely decodable to create the exact stream of input symbols that were dsed [to
create it.

Initially al| symbols being encoded have a probability value assigned to them based on the likelihood that.the symbol will
occur nextfin the input stream (i.e. the frequency of the symbol in the input stream). Given probabjlity value assignments,
each individual symbol is then assigned an interval range along a nominal 0 to 1 “probability:line”, where the size jof
each rangg corresponds to the symbol’s probability value. Note that a particular symbol<owns all values within jts
assigned range up to, but not including, the range high value, and that it does not matter which symbols are assignpd
which segment of the range as long it is done in the same manner by both the encoder and-the decoder.

Given the|above described input stream probability and interval range assignments, a high level description of the
arithmeticjencoding process is as follows:

1. Begin with a “current interval” initialized to [0,1). Note, that inlinterval range notation (i.e. “[0,1)"), the ‘[[“
symbol indicates inclusive of the interval low limit and “)” symbol indicates exclusive of the interval high limif.
2. Sequentially for each symbol of the input stream, perform twe-steps

a. Subdivide the current interval into subintervals,based on the input stream symbol probability values fas
described above.

b. Select the subinterval corresponding to the“current input stream symbol being sequentially processgd
and make it the new “current interval’,

3. Affter all input stream symbols have been sequentially processed; output enough bits to distinguish the final

‘¢urrent interval” from all other possible final intervals.

In pseudo [code form, the algorithm to accomplish the above described arithmetic encoding for an input stream messape
of any length could look as follows:

bt low to 0.0
bt high to 1.0
hile there are still input'symbols do
cur_symhoh="get next input symbol
range = high — low
high.=Tow + range * high_range(cur_symbol)
low= low + range * low_range(cur_symbol)
hd of While
utputdow

S N%)

Qm

So the arithmetic encoding process is simply one in which we narrow the range of possible numbers with every new
sequentially processed input symbol; where the new narrowed range is proportional to the predefined probability values
assigned to each symbol in the input stream.

The arithmetic decoding process is the inverse procedure; where the range is expanded in proportion to the probability of
each symbol as it is extracted. For the arithmetic decoding process we find the first symbol in the message by seeing
which symbol owns the interval range that our encoded message falls in. Then, since we know the low and high range
limit values of the first symbol we can remove their effects by reversing the process that put them in.
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In pseudo code form, the algorithm for decoding the incoming number could look as follows:

Get encoded_number
Do

find symbol whose range straddles the encoded_number

output the symbol

range = symbol_high_value — symbol_low_value
encoded_number = encoded_number — symbol_low_value
encoded_number = encoded_number / range

until no more symbols

ISO/PAS 14306:2011(E)

Fq

Fq

2.4.1 Example

{2,9,12,12,0,7,1, 20, 5, 19}

r this input stream of data, the assigned probability values will be as follows:

llowing is an example to demonstrate in practice the basic principles of arithmetic coding.

Suppose you want to compress, using arithmetic coding, the following sequence/array of integepdata:

Number Probability -
0 140
1 1/10
2 1/10
5 1/10
7 1/10
9 1/10
12 2/10
19 1/10
20 1/10

Then based on each input numbers probability value, an interval range along a 0 to 1 “probability line” can be
each input number as follows:

ssigned to

©

(Number Probability Range
0 1/10 [0.00, 0.10)
1 1/10 [0.10, 0.20)
2 1/10 [0.20, 0.30)
5 1/10 [0.30, 0.40)
7 1/10 [0.40, 0.50)
9 1/10 [0.50, 0.60)
12 2/10 [0.60, 0.80)
19 1/10 [0.80, 0.90)
20 1/10 [0.90, 1.00)

ISO 2011 — All rights reserved

199


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

Now proceeding with encoding the example input integer sequence {2, 9, 12,12, 0, 7, 1, 20, 5, 19}, the first number to be
encoded is “2”; so the final encoded value will be a number that is greater than or equal to 0.20 and less than 0.30. Now
as each subsequent number in the input stream is sequentially processed for encoding, the possible range of the output

number is further restricted. In our example the next number to be encoded is “9” which owns the range [0.50, 0.6

0)

within the new sub-range of [0.20, 0.30); which now further restricts our output number to the range [0.25, 0.26). If we

continue this logic for the complete input integer sequence we end up with the following:

New integer number Low value High value
0.0 1.0
2 0.2 0.3
g 0.25 0.26
12 0.256 0.258
12 0.2572 0.2576
0 0.25720 0.25724
7 0.257216 0.257220
1 0.2572164 0.2572168
20 0.25721676 0.2572168
5 0.257216772 0.257216746
19 0.2572167752 0.2572167756
From the pbove table, are final low values is “0.2572167752” which is the output number that uniquely encodes t

integer nuiber sequence {2, 9, 12, 12,0, 7, 1, 20, 5, 19}.

Given thid encoding scheme, the decoding would simply follow the process previously described. We find the fif

number in the sequence by looking up in the probability range for the‘value, whose range, our encoded numh
“0.257216)7752” falls within. In our example this equates to the value “2*and so our first decoded value must be “2
Then we gpply the previously described decoding subtraction and division steps to arrive at a new encoded value
“0.572167|52”. Using this new “0.572167752” encoded value and-thé same logic of the first step, the second decod

value will pe “9”. We continue this process until there are no more numbers to decode.

In practicd, due to floating point size (i.e. number of bits) restrictions and possible differences in floating point form
on machings, arithmetic encoding is best implemented using 16 bit or 32 bit integer math. Using 16 bit or 32 bit integd
math, an ipcremental transmission scheme can be implemented, where fixed size integer state variables receive new b
in at the Igw end and shift them out the high end, forming a single number that can be as many bits long as are availal
on the computer’s storage medium.
Using our xample as a guide, define the starting range [0.0, 1.0) to instead be 0 to 0.999 (which is .111 in binary). Thg
in order to|use integer registers to store theSe=numbers, justify the values so that the implied decimal point is at the left
hand side ¢f the word. Now load the ipitial range values based on the word size we are using. In the case of a 16 bit

implementation the initial range values will be low equals 0x0000 and high equals OXFFFF. Since we know these valug
will go onfforever (e.g. 0.999... will-continue with FFs) we can shift those extra bits in as needed with no detrimental
effects.

Going back to our example-and using a 5 digit register, we start with the range:

of
bd

er
ts
le

>

w

High: 99999
Lpw: , {00000
Applying

which in this case is 100000 (not 9999 since we assume the high value has an infinite number of 9’s). Next, we calculate

the new high value which in this example will be 30000. But before we store the new high value we must decrement it

to

account for the implied digits appended to it; so new high value will be 29999. Applying similar logic to computing the

new low value results in a new range of:

High: 29999 (999...)
Low: 20000 (000...)
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In looking at the newly computed high and low range values, it can be seen that the most significant digits of high and
low match. A property of arithmetic coding is that as this encoding process continues, the high and low values will
continue to get closer, but will never match exactly. Given this property, once the most significant digit of high and low
match, it will never change, and thus we can output this most significant digit as the first number in the coded word and
continue working with just 16 bit high and low values. This output process is accomplished by shifting both the high and
low values left by one digit and shifting in a “9” in the least significant digit of the high value.

Applying the previously described encoding algorithm and continuing the above described process of shifting out most
significant digit into the coded word as high and low continually grow closer together looks as follows for encoding our
example integer number sequence {2, 9, 12, 12,0, 7, 1, 20, 5, 19}:

High Low Range Cumulative output ™

Initial State 99999 00000 100000

Encode “2” [0.2,0.3) 29999 20000

Shift out 2 99999 00000 100000 2

Encode “9” [0.5, 0.6) 59999 50000 12

Shift out 5 99999 00000 100000 .25

Encode “12” [0.6, 0.8) 79999 60000 20000 .25

Encode “12” [0.6, 0.8) 75999 72000 .25

Shift out 7 59999 20000 40000 .257

Encode “0” [0.0,0.1) 23999 20000 .257

Shift out 2 39999 00000 40000 .2572

Encode “7” [0.4,0.5) 19999 16000 .2572

Shift out 1 99999 60000 40000 25721

Encode “1” [0.1,0.2) 67999 64000 25721

Shift out 6 79999 40000 40000 257216

Encode “20” [0.9, 1.0) 79999 76000 257216

Shift out 7 99999 60000 40000 2572167

Encode “5” [0.3,0.4) 75999 72000 2572167

Shift out 7 59999 20000 40000 25721677

Encode “19” [0.8,0.9) 55999 52000 25721677

Shift out 5 59999 20000 40000 257216775

Shift out 2 2572167752

Shift out 0 25721677520
A$ can be seen in the above table, after all values in the input stream have been encoded and any final mat¢hing most
significant digit has been output] the arithmetic coding algorithm requires that two extra digits be shifted out of either the
high or low value to finish up(the cumulative output word.
Although the above example incrementally encodes very nicely with the arithmetic coding algorithm, there jare certain
cases where the computed high and low values get closer, but never actually converge to one value in the most|significant
dipit (e.g. High =-0.300001, Low = 0.29992). Thus after a few iterations the difference between high and loyv becomes
sg small that 16,bits is not sufficient to represent any difference between the values (i.e. all calculations returp the same
vdlues). This)conditions is known as “underflow” and special logic must added to the arithmetic coding algorithm to
repognizethat “underflow” is occurring and thus head it off before the computations reach an impasse.

underflow = FALSE

if( (High and Low value’s significant digits don’t match but are on adjacent numbers) &&
(2" most significant digit of High is “0” and the 2™ most significant digit of low is “9”) )

{
¥

underflow = TRUE
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When/If it is identified that “underflow” is occurring, the encoding algorithm must perform the following steps to stop
the current “underflow:

Delete the 2™ most significant digit from both the High and Low value.

Shift the other digits (those to the right of the deleted 2™ digit) to the left to fill up the space (note that the

most significant digit stays in place).
Increment a counter to remember that we threw away a digit and don’t know whether it was going
converge to “0” or “9”.

to

A before and after example of performing the above steps to the High and Low values when ‘underflow” occurs is as

follows:

L
U

Now as th
common

“underflov
Os, depend

A pseudo-
Implement

7.25 0

M. Deerin
at SIGGR

Before After

High 40344 43449

bW 39810 38100
nderflow_counter 0 1

encoding algorithm continues and the most significant digit of High and Low values ance again converge tg
alue, then that value must be output to the coded word along with “Underflow_counter” number

” digits that were previously deleted. The underflow digits output to the coded-word will either be all 9s
ing on whether the High and Low value converged to the higher or lower value.

code sample implementation of arithmetic decoding is available inAnnex C:Decoding Algorithms — A

ation.

eering Normal CODEC

) first published his work on geometry compression in 1995 [5] and later helped present a course on the subjé
APH’99 [6]. Although Deering’s approach to geometric compression involves compression of vertices, colg

and normdls, the description detailed here will focus solely-ah compression of normals since this is the only compong

of Deering
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's approach used in the JT format.

oth theoretical examination and empifical testing, Deering found that an angular density of 0.01 radia
brmals (about 100,000 normalized nerrmals distributed over unit sphere) gave results that were not visua
able from results obtained from finer-normal representations. This observation reduced the problem of havi
” represent any general surface-hormal, to only having to represent about 100,000 specific normals (i
face normal replaced by the-appropriate one of the 100,000 specific normals).

re no run-time memary,eoncerns and no concerns for on disk footprint size, these specific 100,000 norm
mply represented ina\table that is indexed into, to reference a particular normal. Instead, Deering’s approa
ymmetrical properties of the unit sphere to reduce the size of the table and allow any normal to be represent
an 18 bit indéxas summarized below:

All nermals are normalized (i.e. can be represented as points on the surface of the unit sphere).
Unit\Sphere is divided into eight symmetrical octants based on sign bits of normal’s X,Y,Z rectiling
representation (see Figure 195). Using three bits to represent the three sign bits of the normals XY

ns
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Each octant of the unit sphere is divided into six identical sextants by folding about the planes of symmetry;
x=y, x=z, and y=z (see Figure 195). The particular sextant can be encoded using another three bits. So now
unit sphere is divided into 48 identically shaped triangle patches reducing the normal look-up table to about
2000 entries (i.e. 100000/48).

Then, a local rectangular orthogonal two dimensional grid is created on the sextant and all normals within
the sextant are represented as two n-bit angular addresses (i.e. a quantization of two angular values along the
unit sphere) where “n” is in the range from 0 to 6 bits.

Resulting in a max grand total of 18 bits (3 + 3 + 6 + 6) to represent any normal on the unit sphere.
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Figure 195: Sphere divided into eight octants and octant divided into six sextants with each sextant
assigned an identifying three bit code.

Npte that the sextant three bit code assignments used by the JT format (as seen in Figure,195) are slightly modified from
the original assignments as specified by Deering.

The representation of all normals within a sextant by two n-bit angular addresses, as summarized above, is bdsed on the
following:

¢ In spherical coordinates, points on a unit sphere can be parameterized by two angles, 6 and ¢; where 0 is the
angle about the y axis and ¢ is the “{longitudinal angle from the y=0 plane.

e Mapping between rectangular and spherical coordinates is:
x = cosf * cosQ y = sin@ z = sinb * cosQ
e All encoding takes place in the positive-octant.

e Angles 6 and ¢ can be quantizedhinto two n-bit integers 6°, and ¢’, (where “n” is in the range of 0 fo 6) and

the relationship between theseR=bit integers and angles 0 and ¢ for a given “n” is:
0 (0°,) = asin tan (Pmac (N -07,) /2")

@ (@°n) = Pmax FQH/ 2"
Thus to encode (i.e. quantize) a given normal N into 6’ and @’,:

o N must Be-first represented (see Figure 195) in the positive octant and appropriate sextant within that octant,
resulting/in N’.

e ThemN’ must be dotted with all quantized normals in the sextant.

e Fora fixed “n”, the corresponding 0, and ¢’, values of the quantized sextant normal that result in|the largest
(nearest unity) dot product defines the proper 6°, and ¢’, encoding of N.

ith-this encoding of normal N into 6’, and ¢’ n-bit integers the complete bit representation of normal N dan now be
defined as TolToWs:

e Uppermost three bits specify the octant.
e Next three bits specify the sextant code as defined in Figure 195.
o Next two n-bit fields specify 0’ and ¢’ values respectively.

7.3 ZLIB Compression

ZLIB compression is a lossless data compression algorithm and is essentially the same as that in gzip and Zip. Zlib’s
compression method, called deflation, creates compressed data as a sequence of blocks. The JT format uses Version
1.1.2 of the ZLIB compression library.
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8 Usage Guide

The proceeding sections of this document specify the mandatory clauses for creating a reference compliant Version 8.1
JT file. This “Usage Guide” section focusing on documenting format conventions that although not required to have a
reference compliant JT file, have become commonplace within JT format translators to the point where these conventions
are considered best practices for constructing JT files.

8.1 Late-toadingDbata
From its ihception, the JT format was designed to scale from representing data necessary for lightweight weh-basgd
viewing, t:f representing data necessary for full product digital mockup and 3D product definition. This abilitysefthe JT
format to fepresent such a robust 3D product definition allows a single JT format based 3D digital asset tohe leveragpd
across the pxtended enterprise by many dissimilar applications with varying data needs/requirements.

With this $haring of the single JT format based 3D digital asset by many dissimilar applications, comes the need to pe
“performance sensitive” (both in runtime memory footprint and actual data load time) to exactly-Wwhat, how much, apd
when certdin JT format data must be loaded. To that end the JT format was designed/structuredsto support not requiripg
all segments of data to be sequentially loaded/read in one pass. This concept of delaying the,loading of segments of data
until actuajly needed is referred to within this JT Format Reference document as “late-loading data”. The JT format has
many structures in support of this concept of late-loading data and it is recommeénded as a best practice that
writers/loaders of JT data leverage these constructs accordingly. Examples of these JT format constructs in support [of
(but not ngcessarily late-loading data include the following (note that “in suppert{of” does not necessarily mean that the
construct (e.g. TOC Segment) is only used for purposes of late loading data):

TOC Segment
Partition Node Element

Meta Data Node Element
Late Loaded Property Atom Element

8.2 Bif Fields

In the 6 File Format section of this reference many bit field data descriptions (e.g. 6.2.1.1.1.1.1 Base Node Data “Nofe
Flags” field) contain the words “All undocumented bits are reserved.” These words should be interpreted to mean that
these undogcumented bits should be set to™@% when writing the bit field data to a JT file.

8.3 Rdserved Field

In the 6 Kile Format section-of this reference some data fields may be named/documented “Reserved Field” (e|g.
6.2.1.1.1.71LOD Node Data "Reserved Field” field). A “Reserved Field” exists for potential future expansion of the
Format angl best practicessuggests that these fields should be treated as follows:

If yau-are writing a JT file whose data did not originate from reading a previous JT file, then Reserved Fielgds
should be set to a value a “0” when writing the field to a JT file.

e If you are writing a JT file whose data originated from reading a previous JT file (i.e. rewriting a JT File),
then “Reserved Fields” should be written with the same value that was read from the originating JT file.

8.4 Metadata Conventions

Although there are really no restrictions/limits/requirements on what metadata (i.e. properties) can/must be attached to
nodes in the LSG in order to have a reference compliant JT file, there are some conventions that have been generally
followed in the industry when translating CAD data to the JT file format. See 6.2.1.2 Property Atom Elements section of
this document for complete description of the file Elements used to attach this property information to nodes.
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8.4.1 CAD Properties

The following table lists the conventions that CAD data translators typically (although not always) follow in placing
CAD information in a JT file as properties on various LSG nodes. Some of these properties are considered required in
order for the data in the file to be interpreted correctly while other properties are optional. See flowing sub-sections for
additional information on required versus optional properties.

The convention is to place these Units properties on every Part and Assembly grouping node in the LSG. By following
this convention, JT file format readers/writers are provided maximum flexibility in understanding/indicating the
appropriate JT data unit processing for both, monolithic and shattered JT file Assembly structures.

. JT File | Encoded Valid ~[\Required /
U PRERERL) X2 Rl Data Type| Data Type Value ,Q Qptional
JT| PROP_MEASUREMENT_UNITS Model Units MbString [ MbString | millipdeters Required
centimeters
meters
inches
feet
yards
micrometers
decimeters
kilometers
mils
miles
CAD_MASS_UNITS Units of mass MhString | MbString | micrograms Required
milligrams
grams
kilograms
ounces
pounds
CAD_SURFACE_AREA Surface akea of solids| MbString F64 numeric Dptional
Within part.
CAD_VOLUME \felume of solids | MbString F64 numeric Dptional
within part
CAD_DENSITY Density of solids | MbString F64 numeric Dptional
within part (6)
CAD_MASS Mass or weight of | MbString F64 numeric Dptional
solids within part
CAD_CENTER_OF GRAVITY Center of gravity of | MbString 3 space 3 numeric Dptional
solids within part separated values
F64
CAD_PROP_MATERIAL _THICKNESS Sheet thickness MbString F64 numeric Dptional
within part
CAD_PART\NAME Component name | MbString | MbString <string> Dptional
from translator
CAD/SOURCE CAD prorgam ther | MbString | MbString <string> Dptional
Part originated from

Table 8: CAD Property Conventions

8.4.1.1 Required Properties

The required unit properties are really necessary for viewers of JT file data to properly interpret numeric data for analysis
operations (e.g. measure) and support the building of assemblies through the reading of multiple JT files in disparate
units. There are two units of measure that are relevant, units of distance and units of weight.
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The JT_PROP_MEASURMENT_UNITS property is used to specify units of distance. The CAD_MASS UNITS
property is used to specify units for weight. JT_PROP_MEASURMENT_UNITS property is strictly required, while
CAD_MASS_UNITS property is "optionally required”. By “optionally required”, we mean, it is required if other
optional metadata intends to specify properties that would depend on these units of measure (e.g. CAD_DENSITY and
CAD_MASS). Notice that the Mass units are specified, instead of the Density units, since Density is a derived unit of

Mass/Volume.

8.4.1.2 Optional Properties

Optional properties can be provided, but if the
consistent |with the JT_ PROP_MEASURMENT_UNITS and CAD_MASS_UNITS properties. Thus the units for,_the

optional units based properties must be as follows:

Optional Property

Units

(o) -

CAD_SURFACE_AREA

(JT_PROP_MEASUREMENT_UNITS)?

CAD_VO[UME (JT_PROP_MEASUREMENT _UNITS)’
CAD_DENSITY CAD_MASS_UNITS/(JT PROP_MEASUREMENT_UNITS)?
CAD_MAES CAD_MASS_UNITS

CAD_CENTER_OF_GRAVITY

JT_PROP_MEASUREMENT_UNITS

CAD_PROP_MATERIAL_THICKNESS

JT_PROP_MEASUREMENT_UNITS

Table 9: CAD Optional Property Units

Note of daution regarding the node placement for the CAD_DENSITY <roperty.

conventiorn for the placing of CAD properties (see description in 8.4.1CAD<Properties) implies that all solids within

single JT part are of a uniform density, which may not be true in all cases.

8.4.2 Tlessellation Properties

When dealing with facetted graphical representations (i.e. LODs) of precise models (e.g. JT B-Rep), depending on t
desired uge it is often useful/necessary to know what_tessellation tolerances were used to generate the facett

Following the recommend

representation. To that end, two properties are typically‘stored on Part Node Elements (if part also has precise model)
indicate the tessellation tolerances used to generate eachr LOD. These two tessellation properties are as follows

N/

JT File

Encoded

I UElpEng eaning Data Data el
Key ’OQM Type Type Values
Chordal::  [Chordal deviation' tessellation tolerance in MCS units|MbString| space Numeric
for each L'OD. Measure of maximum allowable separated
distance.a linear approximation for a curve/surface may, F32 values
deviate from the true curve/surface. Encoded value
string\would look as follows for the case of two LODs:
0.045603 0.069245”
Angular  JAngular tessellation tolerance for each LOD in degrees.[MbString| space Numeric
Two consecutive segments in a linear approximation of| separated
A curve/surface form an angle; this value specifies the F32 values

he
bd
to

maximum angle allowed. Encoded value string would
look as follows for the case of two LODs:

*“30.000000 40.000000”
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JT Property Key

Meaning

JT File
Data

Type

Encoded
Data

Type

Valid

Values

PMI_TYPE_TABLE

May be attached to Part Node
Element to indicate the list of PMI
ype values and associated names for

MbString

<string>

all PMI types (basically equivalent to
the Entity Type field documented in
Generic PMI Entities). The string is a

*” and “” delimited string of the
following form:

“10.Groove Weld,11.Fillet
Weld,12.Plug/Slot
Weld,14.Edge Weld”

JT_PROP_SHAPE_DATA_TYPE

May be attached to Shape Node
Elements to indicate what geometry
type the shape data represents:

MbString

<string>

“SU
“V

rface”
Vire”

JT_PROP_TRISTRIP_DATA_LAYOUT

May be attached to TrisStrip Set
Shape Node Element to indicate that

the Set’s tri-strip primitives are sorted
such that strips of“length 1 (i.e.
triangles) come first'and then strips of
ength 2 (i.e. guads) next and then all
pother strips>of length greater than 2
follow in-no particular order.

MbString

<string>

“TriStr

psSorted”

JI_PROP_ORIGINATING_BREPTYPE

May=‘be attached to Part Node
Element to indicate the type of B-Rep
associated with the Part.

MbString

<string>

“N
“Jt
“XT

one”
Brep”
Brep”

JT_PROP_NAME

May be attached to any form of node
por attribute with which one wants to
pssociate a textual name (e.g.
Part/Assembly/Instance name,
Material name, Light Set name, etc.).

For Part/Assembly/Instance nhames
this string has the following encoded
form where “;” is a delimiter and “:’
s a terminator:

“AlignmentPin.part;0;1:”

g A A
'

Nama

MbString

<string>

Version #
Instance #

FFor attribute names this string has the
following encoded form:

“Chrome material”

- J
Y
Name
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8.5 LSG Attribute Accumulation Semantics

For applications producing or consuming JT format data, it is important that the JT format semantics of how attributes
are meant to be applied and accumulated down the LSG are followed. If not followed, then consistency between the
applications in terms of 3D positioning and rendering of LSG model data will not be achieved.

Although each attribute type defines its own application and accumulation LSG semantics (the details of which can be
found in each attribute type sub-section under 6.2.1.1.2 Attribute Elements), there are some general rules which apply:

1.

arwmn

Attributes at lower level in the LSG take precedence and replace or accumulate with attributes set at higher

levels

odes without associated attributes inherit those of their parents.

tributes inherit only from their parents, thus a node’s attributes do not affect that node’s siblings.

The root of a partition inherits the attributes in effect at the referring partition node.

tributes can be declared “final”, which terminates accumulation of that attribute type at that @ttribute a
pfopagates the accumulated values there to all descendants of the associated node. Descendants.can explici
do a one-shot override of “final” using the attribute “force” flag, but do not by default. Note that “force” dg

not turn OFF “final” — it is simply a one-shot override of “final” for the specific attribute marked as “forcing.

n analogy for this “force” and “final” interaction is that “final” is a back-door in the attribute accumulati
s¢mantics, and that “force” is a doggy-door in the back-door!

8.6 L3G Part Structure

The JT Fofmat Reference does not mandate that a particular node hierarchy be used for modeling physical Parts withir
LSG strucfure. In fact there are many node hierarchies for representing Parts-in LSG that will function correctly in mg
JT enabled applications. Still, there is a convention that most JT translatorssfollow (and some JT enabled applicatio

the following node hierarchy:

208

Figure 196: JT Format Convention for Modeling each Part in LSG

Element

130BRang
e LOD

Node

Group
Node

Group
Node

hd

ly
eS

7

DN

ns

Element Element

© I1SO 2011 - All rights reserved


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

8.7 Range LOD Node Alternative Rep Selection

Best practices suggest that LSG traversers apply the following strategy, at Range LOD Nodes (see 6.2.1.1.1.8 Range
LOD Node Element), when making alternative representation selection decisions based on Range Limits: The first
alternate representation is valid when the distance between the center and the eye point is less than or equal to the first
range limit (and when no range limits are specified). The second alternate representation is valid when the distance is
greater than the first limit and less than or equal to the second limit, and so on. The last alternate representation is valid
for all distances greater than the last specified limit
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Annex A: Object Type Identifiers

All objects stored in a JT file are classified by type and thus include an object type identifier as part of their persisted
data. The data format for these Object Type identifiers is a GUID. These Object Type identifiers are consistent for all
objects, of a particular type, in all Version 8.1 JT files.

Table 10: Object Type Identifiers lists the assigned identifier for each Object Type that can exist in a Version 8.1 JT file.

GUID Object Type
OXFFFFFFfT, OXTTTT, OXTTTT, OXTT, OXTT, OXTT, OXTT, OXIT, OXTT, OXTT, OXTT Taentifier to signal End-Of-Elements.

Types Stored Within LSG Segment (Segment Type = 1)
0x10dd[L.035, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 Base Node Element
0x10ddJL01b, 0x2ac8, 0x11d1, 0x9b, 0x6h, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97 | Group Node Element
0x10dd[L02a, 0x2ac8, 0x11d1, 0x9b, 0x6h, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97 | Instance Node Element
0x10dd].02c, 0x2ac8, 0x11d1, 0x9b, 0x6h, 0x00, 0x80, 0xc7, 0xbb, 0x59, 0x97 | LOD Node Element

0xce357245, 0x38fb, 0x11d1, Oxa5, 0x6, 0x0, 0x60, 0x97, Oxbd, Oxc6, Oxel Meta Data Node’Element
0xd239¢7b6, Oxdd77, 0x4289, 0xa0, 0x7d, Oxb0, Oxee, 0x79, 0xf7, 0x94, 0x94 NULL Shapge Node Element
0xce357244, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, Oxbd, Oxc6, Oxel Part Node Element

0x10dd[L03e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, Oxc7, 0xbb, 0x59, 0x97 Partition Node Element
0x10dd|L04c, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 Range LOD Node Element
0x10dd|L0f3, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 Switch Node Element

0x10dd]L059, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0X97 Base Shape Node Element
0x9813f1716, 0x0010, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83, 0x5d, 0x5a Point Set Shape Node Element
0x10dd[L048, 0x2ac8, 0x11d1, 0x9h, Ox6b, 0x00, 0x80, 0xc7, Oxbh,0x59, 0x97 | Polygon Set Shape Node Element
0x10dd[L046, 0x2ac8, 0x11d1, 0x9hb, Ox6b, 0x00, 0x80, 0xc7, 0xbby 0x59, 0x97 | Polyline Set Shape Node Element
0xe403¥3c1, 0x1ad9, 0x11d3, 0x9d, Oxaf, 0x0, 0xa0, 0xc9, Oxc7, Oxdd, Oxc2 Primitive Set Shape Node Element
0x10dd|L077, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, Oxc?, Oxbb, 0x59, 0x97 | Tri-Strip Set Shape Node Element
0x10dd|LO7f, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x800xc7, Oxbhb, 0x59, 0x97 Vertex Shape Node Element

Wire Harness Set Shape Node
Element

0x4cc73521, 0x728, 0x11d3, 0x9d, 0x8h, 0x0, 0xa0, 0xc9, 0xc7, Oxdd, Oxc2

0x10dd[L001, 0x2ac8, 0x11d1, 0x9b, 0Xx6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 Base Attribute Element
0x10dd].014, 0x2ac8, 0x11d1, 0x9h, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 | Draw Style Attribute Element
Oxad8dg¢cc2, 0x7a80, 0x456d,-0xb@, 0xd5, Oxdd, 0x3a, 0xb, 0x8d, 0x21, Oxe7 Fragment Shader Attribute Element
0x10dd]L083, 0x2ac8, 0x11d1,-0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 | Geometric Transform Attribute Element|
0x10dd[L028, 0x2ac8, .0xd1d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 Infinite Light Attribute Element
0x10dd[L096, 0x2a¢8,\0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 Light Set Attribute Element
0x10dd[l0c4, Qx2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 Linestyle Attribute Element
0x10dd]L030}.0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 Material Attribute Element
0x10dd]L045, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 Point Light Attribute Element
0x8d57c010, Oxe5ch, 0x11d4, 0x84, Oxe, 0x00, 0xa0, 0xd2, 0x18, 0x2f, 0x9d Pointstyle Attribute Element
Oxaalb831d, Ox6e47, Ox4fee, 0xa8, 0x65, Oxcd, 0x7e, Ox1f, 0x2f, 0x39, Oxdb Shader Effects Attribute Element
0x10dd1073, 0x2ac8, 0x11d1, 0x9h, Ox6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 | Texture Image Attribute Element
0x2798bcad, 0xe409, 0x47ad, 0xbd, 0x46, 0xb, 0x37, 0x1f, 0xd7, 0x5d, 0x61 Vertex Shader Attribute Element

0x10dd104b, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 | Base Property Atom Element
0xce357246, 0x38fh, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, Oxbd, 0xc6, Oxel Date Property Atom Element
0x10dd102b, 0x2ac8, 0x11d1, 0x9b, 0x6bh, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 Integer Property Atom Element
0x10dd1019, 0x2ac8, 0x11d1, 0x9h, Ox6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97 | Floating Point Property Atom Element
0xe0b05be5, 0xfbbd, 0x11d1, 0xa3, 0xa7, 0x00, Oxaa, 0x00, Oxd1, 0x09, 0x54 Late Loaded Property Atom Element
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GUID

Object Type

0x10dd1004, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97

JT Object Reference Property Atom

Element

0x10dd106e, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97

String Property Atom Element

Types Stored Within JT B-Rep Segment (Segment Type = 2)

0x873a70c0, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97

JT B-Rep Element

Types Stored Within PMI ngmpm‘ (ngm

ent Type = '2)

Types Stored Within Meta Data Segment (Se

gment Type = 4)

0xce357249, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, Oxbd, Oxc6, Oxel

PMI Manager Meta-Data Elems

0xce357247, 0x38fb, 0x11d1, 0xa5, 0x6, 0x0, 0x60, 0x97, Oxbd, Oxc6, Oxel

Property Proxy Meta Data Elem

ent

Types Stored Within Shape LOD Segment (Segment Type =6, 7, 8;-9,°10, 11, 12, 13, 14, 15, 16)
0x3e637aed, 0x2a89, 0x41f8, 0xa9, Oxfd, 0x55, 0x37, 0x37, 0x3, 0x96, 0x82 Null"Shape LOD Element
0x98134716, 0x0011, 0x0818, 0x19, 0x98, 0x08, 0x00, 0x09, 0x83, 0x5d, Ox5a Point Set Shape LOD Element
0x10dd109f, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97, Polygon Set Shape LOD Elemept

0x10dd10al, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, 0xc7, Oxbb, 0x59,:0x97

Polyline Set Shape LOD Eleme

Primitive Set Shape Element
Tri-Strip Set Shape LOD Element
Vertex Shape LOD Element
Wire Harness Set Shape Elemer

0xe40373c2, 0x1ad9, 0x11d3, 0x9d, Oxaf, 0x0, 0xa0, 0xc9, Oxc7, Oxdd, Oxc2
0x10dd10ab, 0x2ac8, 0x11d1, 0x9b, 0x6b, 0x00, 0x80, Oxc7, 0xbh, 0x59, 0x97
0x10dd10b0, 0x2ac8, 0x11d1, 0x9b, Ox6b, 0x00, 0x80, 0xc7, Oxbb, 0x59, 0x97
0Ox4cc7a523, 0x728, 0x11d3, 0x9d, 0x8b, 0x0, 0xa0, 0xc9, Oxe7, Oxdd, Oxc2

—

Types Stored Within XT B-Rep Segment (Segment Type = 17)
0x873a70e0, 0x2ac9, 0x11d1, 0x9b, 0x6b, 0x00,0x80, 0xc7, Oxbb, 0x59, 0x97 XT B-Rep Element

Types Stored Within Wireframe Segment (Segment Type = 18)
0x873a70d0, 0x2ac8, 0x11d1, 0x9byp0x6b, 0x00, 0x80, Oxc7, Oxbb, 0x59, 0x97 | Wireframe Rep Element

Table 10: Object Type Identifiers
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Annex B:

Semantic Value Class Shader Parameter Values

6.2.1.1.2.12 Vertex Shader Attribute Element and 6.2.1.1.2.13 Fragment Shader Attribute Element contain shader

parameters. These shader parameters can be of a “Semantic” Value Class which indicates that the shader parameter is
implicitly tied/bound to a piece of either OpenGL or JT graphics system state. Table 11 below documents all the possible
“Semantic” Value Class shader parameter Values (i.e. the graphics system state the parameter is bound to).

Table 11: Semantic Value Class Shader Parameter Val

ues

Value Description of Semantically Bound Graphics State Notes

=0 Unknown
Related to Current OpenGL State
= 3( View Transform Matrix Cg only
=31 Combined Model-View Transform Matrix Cgonty
=37 Projection Transform Matrix Cgonly
=37 Texture Transform Matrix Cgonly
=34 Combined Model-View-Projection Transform Matrix Cgonly
= 34 View Matrix Transposed Cg only
= 34 Combined Model-View Transform Matrix Transposed Cgonly
=37 Projection Transform Matrix Transposed Cgonly
= 3§ Texture Transform Matrix Transposed Cgonly
=39 Combined Model-View-Projection Transform Matrix T ransposed Cgonly
= 4( View Transform Matrix Inverse Cgonly
=41 Combined Model-View Transform Matrix Inyerse Cgonly
=42 Projection Transform Matrix Inverse Cgonly
=43 Texture Transform Matrix Inverse Cgonly
=44 Combined Model-View-Projection Transform Matrix Inverse Cgonly
=44 View Transform Matrix Inverse Transposed Cgonly
= 44 Combined Model-View Transform Matrix Inverse Transposed Cgonly
=47 Projection Transform Matrix-Inverse Transposed Cgonly
=44 Texture Transform Matrix Tnverse Transposed Cgonly
=44 Combined Model-View-Projection Transform Matrix Inverse Cgonly
Transposed
Related to Current JT State

=7( Current Model Transform
=71 Current'Model Transform Transposed
=72 Current Model Transform Inverse
=73 Current Model Transform Inverse Transposed
=75 Current Material Emissive Color
=76 Current Material Diffuse Color
=71 Current Material Specular Color
=78 Current Material Ambient Color
=79 Current Material Shininess
=80 Current Fog Color
=81 Separate Specular Color Flag
=82 Global Ambient Light Color
=99 Number of VPCS Lights
=100 VPCS Light-0 Diffuse Color
=101 VPCS Light-0 Specular Color
=102 VPCS Light-0 Ambient Color
=103 VPCS Light-0 Attenuation

212
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Value Description of Semantically Bound Graphics State Notes
=104 VPCS Light-0 Position
=105 VPCS Light-0 Direction
=106 VPCS Light-0 Spot Direction
=107 VPCS Light-0 Spot Cone Angle
=108 VPCS Light-0 Cosine of Spot Cone Angle
=109 VPCS Light-0 Spot Exponent
=110 VPCS Light-0 Shadow Opacity
=120 — 130 Same as values 100 — 110 except for VPCS Light-1
= 14U — 10U Same as values 100 — 110 except tor VPCS Light-2
=160 — 170 Same as values 100 — 110 except for VPCS Light-3
=180 — 190 Same as values 100 — 110 except for VPCS Light-4
=200 — 210 Same as values 100 — 110 except for VPCS Light-5
=220 — 230 Same as values 100 — 110 except for VPCS Light-6
=240 — 250 Same as values 100 — 110 except for VPCS Light-7
=499 Number of MCS Lights
=500 — 510 Same as values 100 — 110 except for MCS Light-0
=520 — 530 Same as values 100 — 110 except for MCS Light-1
=540 — 550 Same as values 100 — 110 except for MCS Light-2
=560 — 570 Same as values 100 — 110 except for MCS Light=3
=580 — 590 Same as values 100 — 110 except for MCS{L ight-4
=600 — 610 Same as values 100 — 110 except for MCS Light-5
=620 — 630 Same as values 100 — 110 except forMCS Light-6
=640 — 650 Same as values 100 — 110 except for MCS Light-7
=899 Number of WCS Lights
=900 — 910 Same as values 100 — 110:except for WCS Light-0
=920 — 930 Same as values 100 —110 except for WCS Light-1
=940 — 950 Same as values 100.— 110 except for WCS Light-2
=960 — 970 Same as values200 — 110 except for WCS Light-3
=980 — 990 Same as values’100 — 110 except for WCS Light-4
= 1000 — 1010| — Same as Vialuies 100 — 110 except for WCS Light-5
= 1020 — 1030| — Same(a$ values 100 — 110 except for WCS Light-6
= 1040 — 1050| — Same’as values 100 — 110 except for WCS Light-7
= 1500 Current Texture Object-0 Cg only
=1501 Current Texture Object-1 Cg only
= 1502 Current Texture Object-2 Cg only
=1503 Current Texture Object-3 Cg only
= 1504 Current Texture Object-4 Cg only
= 1505 Current Texture Object-5 Cg only
= 1506 Current Texture Object-6 Cg only
= 1507 Current Texture Object-7 Cgonly
= 1600 Current Texture Unit-0 GLSL only
= 1601 Current Texture Unit-1 GLSL only
= 1602 Current Texture Unit-2 GLSL only
= 1603 Current Texture Unit-3 GLSL only
= 1604 Current Texture Unit-4 GLSL only
= 1605 Current Texture Unit-5 GLSL only
= 1606 Current Texture Unit-6 GLSL only
= 1607 Current Texture Unit-7 GLSL only
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214

Value Description of Semantically Bound Graphics State Notes
=1700 Texture Channel-0 VVCS Texture Coordinate Generation S-Plane
=1701 Texture Channel-0 VVCS Texture Coordinate Generation T-Plane
=1702 Texture Channel-0 VVCS Texture Coordinate Generation R-Plane
=1703 Texture Channel-0 VCS Texture Coordinate Generation Q-Plane
=1710 — 1713| — Same as 1700 — 1703 except for Chanel-1 VCS
=1720 — 1723| — Same as 1700 — 1703 except for Chanel-2 VCS
=1730 — 1733| — Same as 1700 — 1703 except for Chanel-3 VCS
= 1/340— 743 — Same as 1700 — 1703 except for Chanel-4 VCS
= 1450 — 1753| — Same as 1700 — 1703 except for Chanel-5 VCS
=1460 — 1763| — Same as 1700 — 1703 except for Chanel-6 VCS
=1470 — 1773| — Same as 1700 — 1703 except for Chanel-7 VCS
= 2000 — 2003| — Same as 1700 — 1703 except for Chanel-0 MCS
= 2010 — 2013| — Same as 1700 — 1703 except for Chanel-1 MCS
= 2020 — 2023| — Same as 1700 — 1703 except for Chanel-2 MCS
= 2030 — 2033| — Same as 1700 — 1703 except for Chanel-3 MCS
= 2040 — 2043| — Same as 1700 — 1703 except for Chanel-4 MCS
= 2050 — 2053| — Same as 1700 — 1703 except for Chanel-5 MCS
= 2060 — 2063| — Same as 1700 — 1703 except for Chanel-6 MCS
=2(70 — 2073| — Same as 1700 — 1703 except for Chanel-7 MCS
=3(00 Texture Channel-0 Matrix

3001 Texture Channel-1 Matrix

3002 Texture Channel-2 Matrix

3003 Texture Channel-3 Matrix

3704 Texture Channel-4 Matrix

3005 Texture Channel-5 Matrix

3006 Texture Channel-6 Matrix
= 3(07 Texture Channel-7 Matrix

3300 Texture Channel-0.Map Resolution

3101 Texture Channel-1 Map Resolution

3102 Texture Channel-2 Map Resolution

3103 Texture ‘Channel-3 Map Resolution

3104 Texture-Channel-4 Map Resolution

3105 Textdre Channel-5 Map Resolution

3106 Texture Channel-6 Map Resolution
=3107 Texture Channel-7 Map Resolution
= 3400 Texture Channel-0 Map Resolution Inverses (i.e. 1.0 /”Map Resolution™)
= 3401 Texture Channel-1 Map Resolution Inverses
=3202 Texture Channel-2 Map Resolution Inverses
=3203 Texture Channel-3 Map Resolution Inverses
=3204 Texture Channel-4 Map Resolution Inverses
= 3205 Texture Channel-5 Map Resolution Inverses
= 3206 Texture Channel-6 Map Resolution Inverses
=3207 Texture Channel-7 Map Resolution Inverses
= 3300 Texture Channel-0 Blend Color
=3301 Texture Channel-1 Blend Color
= 3302 Texture Channel-2 Blend Color
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Value Description of Semantically Bound Graphics State Notes
= 3303 — Texture Channel-3 Blend Color
= 3304 — Texture Channel-4 Blend Color
= 3305 — Texture Channel-5 Blend Color
= 3306 — Texture Channel-6 Blend Color
= 3307 — Texture Channel-7 Blend Color
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Annex C: Decoding Algorithms — An Implementation

This Appendix provides a sample C++ implementation for the decoding portion of the various compression CODECs (as
detailed in 7.2 Encoding Algorithms) used in the JT format. This sample code is not intended to be fully functional
decoder class implementations, but is instead intended to demonstrate the fundamentals of implementing the decoding
portion of the CODEC algorithms used in the JT format.

C.1 Common classes
The following sub-sections define some general classes used by all the decoding algorithms.

C.1.1 CptxEntry class

//
// Type| used to build probability context tables.
// Used| by ProbabilityContext class.

//
class ChtxEntry
{
public:
Int3R iSym; // Symbol
Int3R cCount; // Number of occurrences
Int3R cCumCount; // Cumulative number of occufrences
INt3R iNextCntx = 0; // Next context if this symbol seen
¥

C.1.2 ProbabilityContext class

//
// Type| used to build probability context tables.
// Used| by CodecDriver class.

//
class ProbabilityContext

{
public:

// Rpturns total cumdbative count for all context entries
Int3p totalCount(),

// Returns number) of context entries
INnt3R numEntries();

// Rpturns—context entry of index iEntry

Bool| getEntry(Int32 iEntry, CntxEntry& rpEntry);
// Leeks—up—the—rext—econtext—Firetd—yg
// with input symbol “iSymbol”

Bool lookupNextContext(Int32 iSymbol, Int32& iNextContext);

Arai—a—tk o %+ o S
VETT— Iy CilC— CUOUTMcCATT CITery

// Looks up the index of the context entry for the given
// input symbol “iSymbol”
Bool lookupSymbol(Int32 iSymbol, Int32& iOutEntry);

// Looks up the index of the context entry that falls just above

// the accumulated count.
Bool lookupEntryByCumCount(Int32 iCount, Int32& iOutEntry);
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C.1.3 CodecDriver class

//

// A class that deals with the conversions from SYMBOL to VALUE and
// provides end-consumer APls for using the codecs.

//

class CodecDriver

77— Codec Decoding Imterface —————————
// Returns the number of symbols to be read
Int32 numSymbolsToRead();

// Returns index of the Ffirst context entry and total number of-bits
Bool getDecodeData(Int32& iFirstContext, Int32& nTotalBits);

// Returns the next encoded symbol and its number of bits
Bool getNextCodeText(UInt32& uCodeText, Int32& nBits);

// Adds the decoded symbol back to the driver
Bool addOutputSymbol(Int32 iSymbol, Int32& iNextContext) ;

// - Symbol Probability Context Interface -----——--—-
Bool clearAllContexts();

// Retrieves a new probability context
Bool getNewContext(ProbabilityContexts& rpCntx);

// Returns the total number of contexts
Int32 numContexts();

// Returns the probability context for a given index
Bool getContext(Int32 iSymCaontext, ProbabilityContext& rpCntx);

/- Predictor \Type Residual Unpacking ----—--—--
typedef enum

PredLagl
PredLag2
PredStridel
PredStride2
PredStriplndex
PredRamp
PredXorl
RPredXor2
PredNULL
Y PredictorType:

1 | T A | VO VO |
o~NO UM~ WNEO

// Returns the original values from the predicted residual values.
static Bool unpackResiduals(Vector<Int32>& rvResidual,
Vector<Int32>& rvVvals,
PredictorType ePredType);

static Bool unpackResiduals(Vector<Float64>& rvResidual,
Vector<Float64>& rvVals,
PredictorType ePredType);

// Predict values
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stat

stat

}

Bool CodecDriver::unpackResiduals(Vector<Int32>& rvResidual,

ic Int32 predictValue(Vector<Int32>& vVval,
Int32 ilndex,
PredictorType ePredType);

ic Float64 predictValue(Vector<Float64>& vval,

Int32 ilndex,
PredictorType ePredType);

\Vactor<lntl22>52 mmA/alc
H o=Vt

PredictorType ePredType)
{
Int3pR iPredicted;
Int3p len = rvResidual.length(Q);
rvValls.setLength(len);
Int3p* avals = (Int32 *) rvVals;
Int3R* aResidual = (Int32 *) rvResidual;
for({ Int32 1 = 0; i1 < len; i++ )
{
ifCi<4)
{ _ _ _
// The first four values are just primers
aVals[i] = aResidual[i];
}
ellse
{
// Get a predicted value
iPredicted = predictvValue(rvvals,-#%, ePredType);
if( ePredType == PredXorl || _eRredType == PredXor2 )
// Decode the residual:.as the current value XOR predicted
aVals[i] = aResidual[1)] » iPredicted;
}
else
{
// Decode the ‘residual as the current value plus predicted
aVals[i1] =-aResidual[i] + iPredicted;
}
}
3
retuyn Trues
}
Bool CogecCDriver::unpackResiduals(Vector<Float64>& rvResidual,
Vector<Float64>& rvVvals,
PredictorType ePredType)
{
if( ePredType == PredXorl || ePredType == PredXor2 )
return False;
if( ePredType == PredNULL )
rvals = rvResidual;
return True;
}
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{
if(i <4)
// The first four values are just primers
rvvals[i] = rvResidual[i];
al
J
else
{
// Get a predicted value
iPredicted = predictvalue(rvvals, 1, ePredType);
// Decode the value as the residual plus predicted
rvvals[i] = rvResidual[i] + iPredicted;
}
}

return True;

nt32 CodecDriver::predictValue(Vector<Int32>& vVal,
Int32 ilndex,
PredictorType ePredType)

Int32* avals = (Int32 *) rvvals;
JtInt32 iPredicted,

vl = aVals[ilndex-1],
v2 = aVals[ilndex-2],
v3 = aVals[ilndex-3],
v4 = aVals[ilIndex-4});

switch( ePredType )
{
default:
case PredLagl:
case PredXorl:
iPredicted = vi1;
break;

case PredLag2:

case\PredXor2:
iPredicted = v2;
break;

case PredStridel:

iPredicted = vl + (v1 - v2);
break;

case PredStride2:
iPredicted = v2 + (v2 - v4);
break;

case PredStriplndex:
if(v2 - v4 <8 && Vv2 - v4d > -8)
iPredicted = v2 + (v2 - v4);
else
iPredicted

v2 + 2;
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break;

case PredRamp:

iPredicted = ilndex;
break;

return iPredicted;

CodecDriverBase: :predictValue(Vector<Float64>& vVval,
Int32 ilndex,
PredictorType ePredType)
t64* aVals = (Float64 *) rvVvals;
t64 iPredicted,

vl = aVals[ilndex-1],
v2 = aVals[ilndex-2],
v3 = aVals[ilndex-3],
v4 = aVals[ilndex-4];

ch( ePredType )

efault:
ase PredlLagl:
iPredicted
break;

vl;

hse PredlLag2:
iPredicted
break;

v2;

hse PredStridel:
iPredicted = vl + (vl - v2);
break;

hse PredStride2:
iPredicted = v2 +-(v2 - v4);
break;

hse PredStriplndex:

if(v2 - v4 <8 &% V2 - v4 > -8)
iPredicted = v2 + (v2 - v4);
else
iPredicted = v2 + 2;
break;

ase PredRamp:

}
}
Float64
{
Floa
Floa
swit
{
d
C
C
C
C
C
c
b
retu
b
220

iPredicted = i1lndex;
break;

rn iPredicted;
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C.2 Bitlength decoding classes

The following sub-sections contain a sample implementation of the decoding portion of the Bitlength CODEC

algorithm. A summary technical explnation of the Bitlength CODEC can be found in 7.2.2 Bitlength CODEC.

C.2.1 BitLengthCodec class

class BitlLengthCodec

{
public:
// This method decodes a given stream of symbols into their values.
// The stream 1s described by the codec driver
Bool decode(CodecDriver* pDriver);
Int32 cStepBits = 2;
}
Bpol BitLengthcodec: :decode(CodecDriver* pDriver)
{
Int32 iBit; // Codetext bit number
Int32 nBits = 0; // Number of codetext bits decoded so far

Int32 nTotalBits 0; // Total number of codetext bits expected

Int32 nValBits = 0; // Number of accumulated «value bits
Int32 iContext = 0; // Probability context, number

Int32 iSymbol; // Decoded symbol value

Ulnt32 uval = 0; // Current chunk of~codetext bits
Ulnt32 uAccVal = 0O; // Number of valid bits returned from

// getNextCodeText
UInt32 uLastIncBit = 0; // Used to calculate whether terminator bit

// is 0 or 1
Int32 cNumCurBits = 0; // Current«field width in bits
Int32 nAccBits = 0; // NumberZof bits accum®ed in uAccVal

Int32 iDecodeState = 0; // State‘*of decoder; see below

// Get codetext from the driver and loop over it until it"s gone!
pDriver->getDecodeData(i€antext, nTotalBits);

while( nBits < nTotalBits )

{
// Get the next ;32 bits from the input stream
pDriver->getNextCodeText(uval, nvalBits);

// Scan _through each bit either walking the Huffman code
// treé or accumulating escaped bit values.
Int32n = min(32, min(nValBits, nTotalBits - nBits));
for(‘iBit = O; iIBit < n ; iBit++ )
£

// Code-accumulation mode is handled is this block

// as many bits at a time as possible.

A Y

- 3 DocodeStato == 2
=

T octoogcotatT

{

7

// Slice off as many bits as we can all at once.
Int32 m = min(n - iBit, cNumCurBits - nAccBits);
if(m<32)
{
uAccVal <<= m;
uAccval |= ((uval >> (32 - m)) & ((1 << m) - 1));
nAccBits += m;
iBit +=m - 1;
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// Advance the bit-marching counters
uval <<= m;

nBits += m;

nvalBits -= m;

}
else
{
uAccval = uval;
nAccBits += m;
iBit +=m - 1;
// Advance the bit-marching counters
uval = 0;
nBits += m;
nvalBits -= m;
¥
if( nAccBits >= cNumCurBits )
{
// Convert and sign-extend the symbol
iSymbol = Int32(uAccval);
iSymbol <<= (32 - cNumCurBits);
iSymbol >>= (32 - cNumCurBits);
// Output the symbol and restart
pDriver->addOutputSymbol (iSymbol, iCéntext);
iDecodeState = 0;
uAccval = 0;
nAccBits = 0;
}
}
else
{

// All other decode states“are handled one bit at a time
// inside this block.

// Get the next bit

uAccval = (uval >> 31);

switch( 1DecodeState )
{

// DecobdeState = 0: Recognize prefix bit (0=Same size
// code, 1=Different size code).
casev0:
// Recognize "same length" prefix code
if( uAccval == 0 )
iDecodeState = 2;
else

{

// Recognize "different length™ prefix code
iDecodeState = 1;
uLastincBit = 2;

}

uAccval = 0;
break;

case 1: // Length adjustment mode
// Recognize the terminator bit
if( uLastIncBit = 2 && (uAccVal » uLastIncBit) )

{
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iDecodeState = 2;
uLastiIncBit = 2;

}
else
{ _ _ _
// Recognize the "increment" prefix code
if( uAccval == 1)
{
cNumCurBits += cStepBits;
}
else
{
// Recognize the "‘decrement™ prefix code
cNumCurBits -= cStepBits;
bs
uLastIncBit = uAccVval;
}
uAccval = 0;
break;

}

// Advance the bit-marching counters /that keep track of the
// ''current codetext bit", and how many bits are left.
uval <<= 1;
NnBits++;
nvValBits--;
}
}
}

// 1T the last symbol was zero~and the current bit length
// is also zero, then the above loop terminated before
// actually decoding the last zero-valued symbol. Test
// for that condition here' and decode it if necessary.
iT( iDecodeState == 2 _&& cNumCurBits == 0 )

{

// Output the symbol and restart

iSymbol = Int32(0);

pDriver->addQutputSymbol (iSymbol, iContext);
}

return True;
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C.3 Huffman decoding classes
The following sub-sections contain a sample implementation of the decoding portion of the Huffman CODEC algorithm.
A summary technical explnation of the Huffman CODEC can be found in 7.2.3 Huffman CODEC

C.3.1 HuffCodeData class
HuffCodeData is a helper class for keeping track of a given symbol and the bits used to describe it.

class HuffCodeData

{
public:
HuffCodeData() :
ipymbol (0), iBitCode(0), nCodelLen(0)
{
}
HuffCodeData(Int32& symbol,
UInt32& bitCode,
Int32& codelLen) :
ipymbol (symbol), iBitCode(bitCode), nCodeLen(codelLen)
{
}
HuffCodeData(Int32& symbol) :
ipymbol (symbol), iBitCode(0), nCodeLen(0)
{
}
Bool| operator < (HuffCodeData& rhs)
{
iff( this->iSymbol < rhs.iSymbol )
return True;
ellse
return False;
}
Bool| operator == (HuffCodeData& rhs)
{
iff( this->iSymbol == rhs.iSymbol )
return True;
ellse
return False;
}
Int3R iSymbaly
Int3p nCodeken;
UIntB2 iB#tCode;
}:

C.3.2 HuffTreeNode class
HuffTreeNode is a helper class used in the construction of the Huffman tree. It contains the symbol, its frequency, the
Huffman code and its length, and pointers to the ‘left” and ‘right’ nodes.

class HuffTreeNode
{
public:

HuffTreeNode() :
cSymcounts(0)
{
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}

Bool operator < (HuffTreeNode& rhs)

ifT( this->cSymCounts < rhs.cSymCounts )
return True;

else
return False;

}

H 32 SSYMCOURESS
HuffTreeNode* pLeft;

HuffTreeNode* pRight;
HuffCodeData sData;

Cl.3.3 HuffCodecContext class
HyffCodecContext is a class that defines the Huffman context

c
{
p

C
H

c
{
p

ass HuffCodecContext

bblic:

HuffCodecContext() :
cLength(0), nCodeLength(0), uCode(0)
{

}

// Used when constructing the Huffman code

Int32 clLength; // Length of Huffman)code currently
// under construction-

Ulnt32 uCode; // Code under construction

// Used to store the final Huffman code table
OrderedVector<HuffCodeData>\vCodes; // Ordered by symbol number

// Used during encoding
Int32 nCodeLength; //«Used to tally up total encoded code length

.3.4 HuffmanCodeg, class
IffmanCodec is the classthat decodes Huffman encoded data.

ass HuffmanCodec

bblic:

// DBecodes the Huffman codetext present in the vInCode entries to
// \a list of symbols, placing the symbols onto the driver object.
7/" This method must contruct a Huffman tree from the symbol

L/ ctatactrice neracont on desv/nye Ahan~t

77 Sttt IOt IrCo POt O U FveT OO TTtT

Bool decode(CodecDriver* pDriver);

private:

©

// Build Huffman tree for each probability context
Bool builldHuffmanForest(CodecDriver* pDriver);

// Build Huffman tree from symbol statistics
Bool builldHuffmanTree(ProbabilityContext* pCntx,
HuffTreeNode* pRootNode);

// Assign Huffman bit-codes to leaves of tree

ISO 2011 — All rights reserved

225


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

};

Bool Hu

{

Bool assignCodeToTree(HuffTreeNode* pRoot,
HuffCodecContext& rCntxt);

// Convert codetext vector to symbol vector
Bool codetextToSymbols(CodecDriver* pDriver);

Vector<HuffTreeNode*> vpHuffTrees; // Indexed by context number

Vector<HuffCodecContext> vHuffCntx; // HuffmanCodecContexts

// Build a Huffman tree for each probability context
bui lgHuffmanForest(pDriver);

// Cpnvert codetext to symbols
codeftextToSymbols(pDriver);

Bool HufffmanCodec: -buildHuffmanForest(CodecDriver* pDriver)

HuffiTreeNode* pRoot = NULL;
Int3R nCntx = pDriver->numContexts();
INt3p i;
for(J1 = 0; 1 < nCntx; i++ )
/Y Get the i"th context
ProbabilityContext* pCntx = NULL;
river->getContext(i, pCntx);

/Y Create Huffman tree from probability context
bui ldHuffmanTree(pCntx, pRoot);

/Y Assign Huffman codes
apsignCodeToTree(pRoot, VHUFFCntx[i]);

/Y Store the completed Huffman tree
vpHuffTrees[i] = pRoet;

retufn True;

Bool HujfffmanCedec: :buildHuffmanTree(ProbabilityContext* pCntx,

HuffTreeNode* pRootNode)

{
Heappector<HuffTreeNode*> heap;
HuffTreeNode* pNode = NULL;
// Initialize all the nodes and add them to the heap.
INnt32 nEntries = pCntx->numEntries();
for( Int32 1 = 0; i1 < nEntries; i++ )
{
CntxEntry* pEntry = NULL;
pCntx->getEntry(i, pEntry);
pNode->sData. iSymbol = pEntry->iSym;
pNode->cSymCounts = pEntry->cCount;
pNode->pLeft = NULL;
pNode->pRight = NULL;
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heap.add(pNode) ;

}
HuffTreeNode* pNewNodel = NULL;
HuffTreeNode* pNewNode2 = NULL;

while( heap.length() > 1)
{

// Get the two lowest-frequency nodes.
heap.getMin(pNewNodel);

haan agotMinnNawNoda2) -
HEapP=—ge- eV P ae =)

//Combine the low-freq nodes into one node.

pNode->sData. iSymbol = Oxdeadbeef;

pNode->pLeft = pNewNodel;

pNode->pRight = pNewNode2;

pNode.cSymCounts = pNewNodel->cSymCounts + pNewNode2->cSymCounts;

//Add the new node to the heap.
heap.add(pNode) ;
}

// Set the root node.
heap.getMin(pNode);
pRootNode = pNode;

return True;

Bpol HuffmanCodec: :assignCodeToTree(HuffTreeNode* pNode,
HufFfCodecContext& rCntxt)

{

if( pRoot->pLeft 1= 0 )

{
rCntxt._uCode <<= 1;
rCntxt.uCode |= 1;
rCntxt.cLength++;
assignCodeToTree(pRoot->pLeft, rCntxt);
rCntxt.cLength~~;
rCntxt.uCode >>= 1;

}

if( pRoot->pRight '= 0 )

rCntxt.uCode <<= 1;

réntxt.cLength++;
assignCodeToTree(pRootpRight, rCntxt);
rCntxt.cLength--;

rCntxt.uCode >>= 1;

}

if( pRoot->pRight = 0 )
return True;

// Set the code and its length for the node.
pRoot->sData. iBitCode rcntxt.uCode;
pRoot->sData.nCodelLen rCntxt.clLength;

// Setup the internal symbol look-up table.
Int32 null = 0;
rcntxt.vCodes. insert(HuffCodeData(pRoot->sData. iSymbol,
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pRoot->sData. iBitCode,
pRoot->sData.nCodelLen), null);

return True;

}
Bool HuffmanCodec: :codetextToSymbols(CodecDriver* pDriver)
{
HuffTreeNode* pHNode = NULL;
UInt32 mask = 1 << 31;
Int32—
nBits = 0,
nTotalBits = 0,
nvValBits = O,
iContext = 0O;
UuIntB2 uval;
pDrijer->getDecodeData(iContext, nTotalBits);
pHNode = vpHuffTrees[iContext];
whilp( nBits < nTotalBits )
{
/Y Get the next 32 bits from the input stream
pDriver->getNextCodeText(uval, nvValBits);
/Y Scan through each bit either walking the HGffman code
/Y tree or accumulating escaped bit values.
for( J = 0; j < 32 && nBits < nTotalBits && nValBits > 0; j++ )
{
// March to the next node
pHNode = (uval & mask) ? pHNode->pkeft : pHNode->pRight;
// 1T the node is a leaf, output a symbol and restart
iT( pHNode->pLeft == 0 && pHNode->pRight == 0 )
{
pDriver->addOutputSymbol (pHNode->sData. iSymbol, iContext);
pHNode = vpHuffTrees[iContext];
¥
uval <<= 1;
NnBits++;
nvalBits--;
}
}
retuyn Trues
}
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C.4 Arithmetic decoding classes
The following sub-sections contain a sample implementation of the decoding portion of the Arithmetic CODEC
algorithm. A summary technical explnation of the Arithmetic CODEC can be found in 7.2.4 Arithmetic CODEC.

C.4.1 ArithmeticProbabilityRange class

class ArithmeticProbabilityRange

{
public:
Ulntl6 low_count;
Uulntlé high_count;
Ulntl6 scale;
}
Cl4.2 ArithmeticCodec class
AfithmeticCodec class is the class that decodes arithmetic encoded data.
class ArithmeticCodec
{
public:
ArithmeticCodec() :
code = 0x0000,
low = 0x0000,
high = OxFfff,
nUnderflowBits = O,
bitBuffer =0x00000000,
nBits = 0
{
bs
// Decodes a list of symbols. The‘codecDriver provides the range
// info for the symbols to decoede. It also stores the symbols as
// they are decoded.
Bool decode(CodecDriver* pDriver);
private:
// Remove the most recently decoded symbol from the front of the
// list of encoded(symbols.
Bool removeSymbolEromStream(ArithmeticProbabilityRange& sym,
CodecDriver™* pDriver);
//State vary¥ables used in decoding.
Ulntl6 code; // Present input code value, for decoding only
Uulntl6 dow; // Start of the current code range
ulntl6 )high; // End of the current code range
Udnt32 bitBuffer; // Temporary i/0 buffer
nt32 nBits; // Number of bits in _bitBuffer
}.
Bool ArithmeticCodec::decode(CodecDriver* pDriver )
{

ArithmeticProbabilityRange newSymbolRange;
Int32 iCurrContext, nDummyTotalBits, cSymbolsCurrCtx, iCurrEntry;

Int32 nSymbols = pDriver->numSymbolsToRead(),

ProbabilityContext* pCurrContext = NULL;
CntxEntry* pCntxEntry = NULL;
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// Initialize decoding process
Int32 nBitsRead = -1;
pDriver->getNextCodeText(bitBuffer, nBitsRead);

low = 0;
high = Oxffff;
code = (bitBuffer >> 16);

bitBuffer <<= 16;

nBits = 16;
// Bpgin decoding
pDrijer->getDecodeData(iCurrContext, nDummyTotalBits);
for(] Int32 1i = 0; 1i < nSymbols; ii++ )
{
pPriver->getContext(iCurrContext, pCurrContext);
cBymbolsCurrCtx = pCurrContext->totalCount();
Ullntl6 rescaledCode =
uint32)(code - low) + 1) * (UInt32) cSymbolsCurrCtx - 1) /
(UInt32) thigh - low) + 1));
pLurrContext->lookupEntryByCumCount((Int32)rescaledCode,
iCurrkntry);
pLurrContext->getEntry(iCurrEntry, pCntxEntry)g
newSymbolRange_high_count = pCntxEntry->cCumCount +
pCntxEntry<cCount;
newSymbolRange. low_count = pCntxEntry->cCumCount;
newSymbolRange.scale = cSymbolsCurrCtx;
removeSymbolFromStream(newSymbolRange, pDriver);
pDPriver->addOutputSymbol (pCntXEntry);
iCurrContext = pCntxEntry=>iNextCntx;
¥
retuyn True;
}
Bool ArjithmeticCodec:=ZremoveSymbolFromStream(
ArithmeticProbabilityRange& sym,
CodecDriver* pDriver)
{
// Flirst;. the range is expanded to account for the symbol removal.
UlntB27range = UInt32(Chigh - Tow) + 1;
high| =Dlow + (UInt32)((range * sym.high_count) / sym.scale - 1);
low = low + (UInt32)((range * sym.low_count ) / sym.scale);

//Next, any possible bits are shipped out.
for (53
{
// 1T the most signif digits match, the bits will be shifted out.

if( (~(high~low)) & 0x8000 )
{

3
else if( (low & 0x4000) && !(high & 0x4000) )

// Underflow is threatening, shift out 2nd most signif digit.
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code ™= 0x4000;

low &= Ox3fff;

high |= 0x4000;
}

else

// Nothing can be shifted out, so return.

return True;

}

Low = 1-
Oy

ISO/PAS 14306:2011(E)

C

CQ

c
{
p

high <<= 1;
high |= 1;
code <<= 1;
if( nBits == 0 )

Int32 nBits = -1;

pDriver->getNextCodeText(bitBuffer, nBits);

nBits = 32;
3

code |= (UIntl6)(bitBuffer >> 31);
bitBuffer <<= 1;
nBits—-;

C.5 Deering Normal decoding classes
The following sub-sections contain a sample implementation of the decoding portion of the Deering Norm
algorithm. A summary technical explnation of the ‘Deering Normal CODEC can be found in 7.2.5 Deeri
CODEC.

.5.1 DeeringNormalLookupTable class

| CODEC
ng Normal

The DeeringNormalLookupTable_Class represents a lookup table used by the DeeringNormalCodec class

nversion from the compressed“normal representation to the standard 3-float representation.

precomputed results of the trig functions called during conversion.

ass DeeringNormallLookupTable

bblic:

DeeringNormalLookupTable();

// koeokup and return the result of converting iTheta and iPsi to

// \real angles and taking the sine and cosine of both.

7/ a slight speedup for normal decoding.

This gives

The t

for faster
hbles hold

Int32 iPsi,

UInt32 numberBits,
Float32 outCosTheta,
Float32 outSinTheta,
Float32 outCosPsi,
Float32 outSinPsi );

UInt32 numBitsPerAngle() {return nBits;}

private:

©

UInt32 nBits;
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Vector vCosTheta;
Vector vSinTheta;
Vector vCosPsi;
Vector vSinPsi;

};

DeeringNormalLookupTable: :DeeringNormalLookupTable()
{

UInt32 numberbits = 8;

nBits = min(numberbits, (UInt32)31);

Int3R tableSize = (1 << nBits);

vCos[Theta.setLength(tableSize+l);
vSinTheta.setLength(tableSize+l);
vCosPsi .setlLength(tableSize+l);
vSinpPsi.setLength(tableSize+l);

Floajt32 fPsiMax = 0.615479709;
Float32 fTableSize = (Float32)tableSize;

for(| Int32 ii = 0; ii <= tableSize; ii++ )

{
Float32 fTheta =

asin(tan(fPsiMax * Float32(tableSize - ii) /A fTableSize));

loat32 f

P fPsiMax * (((Float32)ii) / fTableSize);
CosTheta[

[

i

i

cos(fTheta);
sin(fTheta);
cos(fPsi);
sin(fPsi);

i

]
SinTheta[ii]
CosPsi[i
SinPsi[i

< << < T

S
i
i
1
1

}
}

Bool DepringNormalLookupTable::lookupThetaPsi(Int32 iTheta,

Int32 iPsi,

UInt32 numberBits,
Float32 outCosTheta,
Float32 outSinTheta,
Float32 outCosPsi,
Float32 outSinPsi)

{
Int3p offset = pBits - numberBits;
outCpsTheta = vCosTheta[iTheta << offset];
outSjinTheta\z vSinTheta[iTheta << offset];
outCpsPsi = vCosPsi[iPsi << offset];
outSlinPsi = vSinPsi[iPsi << offset];
return True;

}

C.5.2 DeeringNormalCodec class
The DeeringNormalCodec class converts a normal vector to and from the standard 3-float representation and a lower-
precision representation. The precision can be adjusted using the nbits parameter.

class DeeringNormalCodec

£
public:
DeeringNormalCodec(Int32 numberbits = 6)
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{
}

// Converts a compressed normal into a vector.
Bool convertCodeToVec(UInt32 code, Vector& outVec);

numBits = numberbits;

// Converts a compressed normal into a vector.
Bool convertCodeToVec(UInt32 iSextant,

UInt32 iOctant,

Uat32 1 TFheta;

Uulnt32 iPsi,

Vectoré& outVec);

// Separates an encoded normal into its 4 pieces
Bool unpackCode(UInt32 code,

UInt32& outSextant,

UInt32& outOctant,

UInt32& outTheta,

UInt32& outPsi );

private:
INnt32 numBits;
Bpol DeeringNormalCodec: :convertCodeToVec(UInt32 code, Vector& outVec)

ulnt32 s=0, o0=0, t=0, p=0;
unpackCode(code, s, o, t, p);

convertCodeToVec(s, o, t, p, outVee);

return True;

Bpol DeeringNormalCode: :convertCodeToVec(UInt32 iSextant,
UInt32 iOctant,
UInt32 iTheta,
ulnt32 iPsi,
Vectoré& outVec)

// Size of code = 6+2*numBits, and max code size is 32 bits,
// so numBiats must be <= 13.

// Codelayout: [sextant:3][octant:3][theta:numBits][psi:numBits]

outVec.setValues(0,0,0);
Float32 fPsiMax = 0.615479709;

UInt32 iBitRange
Float32 fBitRange

l<<numBits;
Float32(iBitRange);

// For sextants 1, 3, and 5, i1Theta needs to be incremented
iTheta += (iSextant & 1);

Float32 fCosTheta, fSinTheta, fCosPsi, fSinPsi;
DeeringNormalLookupTable LookupTable;

if( (LookupTable.numBitsPerAngle() < (UInt32)numBits) ||
TLookupTable. lookupThetaPsi(iTheta, iPsi, numBits,
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fCosTheta, fSinTheta,
fCosPsi, fSinPsi) )

Float32 fTheta = asin(tan(fPsiMax * Float32(iBitRange - iTheta) /

Float32 fPsi = fPsiMax * (iPsi / fBitRange);

fCosTheta
fSinTheta
fCosPsi

fC;nDo;

fBitRange));

cos(fTheta);
sin(fTheta);

cos(fPsi);

canCFDca) -
S-S5

L En ey

Floaft32 x,vy,
Floajt32 xx =
Float32 yy =
Floajt32 zz =

//Ch
swit

¥

cpse O:
break;

chse 1:

Z = XX
X = zZ
break;

chse 2:

V4 XX

X yy
y zz
break;

chse
Yy
X
break;

I w

cpse

Yy
z Yy
X zz
break;

n s

cpse

ZN\= Yy
Y = zz

117 e

XX;
Yys

XX

// No op

// Mirror

// Rotate

// Mirror

// Rotate

// Mirror

fCosTheta * fCosPsi;
fSinPsi;
fSinTheta * fCosPsi;

ange coordinates based on the sextant
ch( iSextant )

about x=z plane

Ccw

about x=y plane

CCw

about y=z plane

break;

//Change some more based on the octant

//if first bit is 0, negate x component
if( I(iOctant & 0x4) )

X = =X3

//it second bit is 0, negate y component
if( 1(i0ctant & 0x2) )

234

y = -Y;
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//if third bit is 0, negate z component
if( I(i0ctant & Ox1) )

z = -z;
outVec.setValues(X,Y,2);

return True;

3
Beel—DbeerinrgNermalcedec=unpackcodetHnrt32——codes
UInt32& outSextant,
UInt32& outOctant,
UInt32& outTheta,
UInt32& outPsi)
{
UInt32 mask = (1l<<numBits)-1;
outSextant = (code >> (numBits+numBits+3)) & Ox7;
outOctant = (code >> (numBits+numBits)) & OX7;
outTheta = (code >> (numBits)) & mask;
outPsi = (code) & mask;
return True;
3
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Annex D: Parasolid XT Format Reference

November 2008
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This Parasolid® Transmit File Format manual describes the formats in which Parasolid represents model
information in external files. Parasolid is a geometric modeling kernel that can represent wireframe, surface,

SG
P
fi
us
T

re
tr

T

T
C4

lid, cellular and general non-manifold models.

rasolid stores topological and geometric information defining the shape of models in transmit files
es have a published format so that applications can have access to Parasolid models withput necess
ing the Parasolid kernel.

nis manual documents the Parasolid transmit file format. This format will change in.subsequent Pan

These
arily

asolid

leases at which time this manual will be updated. As new versions of Parasolid can read and write ¢lder

hinsmit file formats these changes will not invalidate applications written based\on the information i

ypes of File Documented

nere are a number of different interface routines in Parasolid for writing transmit files. Each of thes
n write slightly different combinations of Parasolid data, the ones-that are documented herein are:

Individual components (or assemblies) written using SAVAIMOD
Individual components written using PK_PART _transmit

Lists of components written using PK_PART _transmit
Partitions written using PK_PARTITION_trafismit

ne basic format used to write data in all the-above cases is identical; there are a small number of no
at are specific to each of the above file.types.

erein.

b routines

e types

©
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Text and Binary Formats
Parasolid can encode the data it writes out in four different formats:

1. Text (usually ASCII)

2. Neutral binary

3. Bare binary (this is not recommended)
4. Typed binary

In text foJmat all the data is written out as human readable text, they have the advantage that they are readable
but they dlso have a number of disadvantages. They are relatively slow to read and write, converting to-and
from text[forms of real numbers introduces rounding errors that can (in extreme cases) cause problems and
finally the¢re are limitations when dealing with multi-byte character sets. Carriage return or line feed characters
can appegr anywhere in a text transmit file but other unexpected non-printing characters will catise-Parasolid
to reject the file as corrupt.

Neutral bjnary is a machine independent binary format.

Bare binary is a machine dependent binary format. It is not a recommended format,since the machine type
which wrpte it must be known before it can be interpreted.

Typed binary is a machine dependent binary format, but it has a machine independent prefix describing the
machine fype that wrote it and so can be read on all machine types.

Standard File Names and Extensions

Due to chianging operation system restrictions on file names over the years Parasolid has used several differept
file extensions to denote file contents. The recommended set,of file extensions is:

e X Tland .X_B for part files, .P_T and .P_B for partition files.
Extensior}s that have been used in the past are:
o xmt_{xt, xmp_txt - text format files on VMSor Unix platforms

e xmt_bin, xmp_bin - binary format files 0nyVMS or Unix platforms
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The logical layout of a Parasolid transmit file is:

A human-oriented text header.

:2011(E)

e The initial text header is read and written by applications' Frustrums and is not accessible to Parasolid.

Its detailed format is described in the section "Physical layout'.

A short flag sequence describing the file format, followed by maodeller identification informatio

and user

field size.

e The various flag sequences (mixtures of text and numbers) are documented under "Physical layout';

the content of the modeller identification information is:

the modeller version used to write the file, as a text string of the form:
: TRANSMIT FILE created by modeller version 1200123
This information is used by routines such as PK_PART _ask_kernel_version.

the schema version describing the field sequences of the part nodes as-a-text string of the form:
SCH_1200123_12006

This example denotes a file written by Parasolid VV12.0.123 using schema number 12006: thg
a corresponding file sch_12006 in the Parasolid schema distribution.

Note that applications writing XT files should use version 1200000 and schema number 120
e The user field size is a simple integer.
The objects (known as ‘nodes’) in the file in aftunordered sequence, followed by a terminator.

e Every node in the file is assigned an integer index from 1 upwards (some indices may not be
Pointer fields are output as these indices,-or as zero for a null pointer.

¢ Each node entry begins with the'node type. If the node is of variable length (see below), this
followed by the length of the variable field. The index of the node is then output, followed by the
the node. If the file contains User fields, and the node is visible at the PK interface, then the field
followed by the user field, in integers.

e The terminator which follows the sequence of nodes is a two-byte integer with value 1, follo
an index with value-0” The index is output as ‘0’ in a text file, and as a 2-byte integer with value
binary file.

e The node-with index 1 is the root node of the transmit file as follows:

re will be

used).

is
fields of
are

ved by
|l ina

Contents of file Type of root node

Body BODY.

Assembly ASSEMBLY

Array of parts POINTER_LIS BLOCK
Partition WORLD
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Schema

Parasolid permanent structures are defined in a special language akin to C which generates the appropriate
files for a C compiler, the runtime information used by Parasolid, along with a schema file used during
transmit and receive. The schema file for version 12.0 is named sch_12006 and is distributed with Parasolid. It
is not necessary to have a copy of this file to understand the XT format.

For each node type, the schema file has a node specifier of the form

<nodetype> <nodename>; <description>; <transmit 1/0> <no. of fields> <variable 1/0>
e.g.
29 POINT; Point; 16 0

This is followed by a list of field specifiers which say what fields, and in what order, occur in thectransmit fil

w

Field spegifiers have the format:

<fieldname>; <type>; <transmit 1/0> <node class> <n_elements>

e.g.
owner; p;(1 1011 1

Nodes anfl fields with a transmit flag of zero are ephemeral information not written to a transmit file. Only
pointer figlds have non-zero node class, in which case it specifies the set.afinode types to which this field is
allowed tp point. The element count is interpreted as follows:

0 h scalar, a single value

1 h variable length field (see below)

n>1 hn array of n values

Note thatin the schema file, fins are referred to as ‘halfedges’, and groups are referred to as ‘features’. Thesd
are internpl names not used elsewhere in this document.

Embedded schemas

When reading a part, partition, or deltas.Rarasolid converts any data that it encounters from older versions of
Parasolid|to the current format using‘a_mixture of automatic table conversion (driven by the appropriate
schemas)| and explicit code for more’complex algorithms.

However| backwards compatibility of file information — that is, reading data created by a newer version of
Parasolid|into an applicatiarz(such as data created by a subcontractor) — can never be guaranteed to work
using thig method, because the older version does not contain any special-case conversion code.

From Pargsolid V14 gnwards, parts, partitions and deltas can be transmitted with extra information that is
intended {o replace*the schema normally loaded to describe the data layout. This information contains the

differencls between its schema and a defined base schema (currently V13's SCH_13006).
This enables-parts—partitions—and-deltasto-be-suecesstuthyread-irto-olderversions-of Rarasolid-wi of
information.

The only fields that are included in this information are those which can be referenced in a cut-down version
of the schema pertaining only to the XT part data that is transmitted. Specifically, a full schema definition can
contain fields that are not relevant in the context of the transmitted data (fields relating to snapshots, for
example), and these fields are excluded.

Fields that are included are referred to as effective fields, and are either transmittable (xmt_code == 1) or
have variable-length (n_elts ==1)
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Physical layout

Most of the data are composed of integers, logical flags, and strings, but are of restricted ranges and so
transmitted specially in binary format. The binary representation is given in bold type, such as “integer
(byte)”. This is relevant to applications that attempt to read or write Parasolid data directly. Two important
elements are

short strings

:2011(E)

These are transmitted as an integer length (byte) followed by the characters (without trailing zero).

X

P
th

ty
T

@D

rr_'mcifi\m infngnrc
These are transmitted similarly to the pointer indices which link individual objects together, iwe.,
values 0..32766 are transmitted as a single short integer, larger ones encoded into two.

I format

esence of the new format is indicated by a change to the standard header: the archive’name is exter
e number of the base schema, e.g., SCH_1400068_14000_13006, and then the‘maximum number
pes is inserted (short).

ansmission then continues as normal, except that when transmitting the-first node of any particular,
tra information is inserted between the nodetype and the variable-length;index data as follows:

The arrays of effective fields in the base schema node and the current schema node are assemble
If the nodetype does not exist in the base schema then it is©utput as follows:

o number of fields (byte)

e name and description (short strings)

o fields one by one as

name short string

ptr_class|Short

n_elts  |Positive integer

The field type. Allowed values are
type short string described in “Field types”, below. Omitted
if ptr_class non-zero

xmt_codeflogical (byte) |Omitted for fixed-length (n_elts !=1)

small

ded by
of node

type,

©
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o If the two arrays match (equal length and all fields match in name, xmt_code, ptr_class, n_elts and
type) then output the flag value 255 (byte Oxff).

e [f the two arrays do not match, output the number of effective fields in the current schema (byte), and an
edit sequence as follows.

o Initialize pointers to the first base field and first current field, then while there are still unprocessed
base and current fields, output a sequence of Copy, Delete and Insert instructions

o |f the base field matches the current field, output 'C' (char) to indicate an unchanged (Copied)

field and advance to the next base and current finlde;

o[ If the base field does not match any unprocessed current field, output ‘D' (char) to indicate &
Deleted field and advance to the next base field:;

¢| Otherwise, output 'l' (char) to indicate an Inserted field, followed by the current field.inrthe aboye
format, and advance to the next current field.

o If there are any unprocessed current fields, then output an Append sequence, eachCigstruction being "A'
(¢har) followed by the field.

¢ Finally, output 'Z' (char) to signal the end.

Space|compression

For text data in transmit formats PK_transmit_format_text _c and PK_transmit_format_xml_c, a new escape
sequence fis defined: the 2-character sequence \9 denotes a sequence ofnine spaces. At V14, this applies to
attribute gefinition names, field names, and attribute strings.

Field types

The XT fprmat is not itself a binary protocol, and so dogs:not define data sizes; the only requirement is that
runtime implementation has sufficient room for the infarmation. The available implementations run with 8bit
ASCII chpracters, 8bit unsigned bytes (0..255), 16bit_short integers (0..65535 or -32768..32767), 32bit
integers (P..4G-1, -2G..2G-1) and IEEE reals. The-implementation used in a given binary file is specified by
the "PS<qode>" at the start of the file. See the Chapter on “Physical Layout” for more information.

The full l|st of field types used in transmit files is as follows:

u  unsigned byte 0-255
c char
I unsigned byte 0-1-ie! logical)
typedefchar logical;

short int

n
w  unicpde,character, output as a short int
d int
p

pointer-index

Small indices (less than 32767) are treated specially in binary files to save space.
See the section below on binary format.

f  double
i These correspond to a region of the real line:
typedef struct { double low, high; }interval,
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v array [3] of doubles
These correspond to a 3-space position or direction:
typedef struct { double x,y,z; } vector;
b array [6] of doubles
These correspond to a 3-spce region:

typedef struct { interval x,y,z; } box;
Note-thatthe-ordering-is-notthe-same-aspresented-at-Parasolid's-exdermal RKor Kl

interfaces.

h| array [3] of doubles

These represent points of intersection between two surfaces; only the position
vector is written to a transmit file, as Parasolid will recalculate other data as
required. The structure is documented further in the section on intersection curves.

Point
Ak an example, consider a POINT; its formal description is

struct POINT _s // Point

{
int node_id; /1 $d
union ATTRIB_GROUP u attributes_groups; Il $p
union POINT_OWNER u owner; 11'$p
struct POINT _s *next; Il $p
struct POINT _s *previous; Il $p
vector pVec; Il $v
Y
typedef struct POINT _s *POINT;

—

corresponding‘schema file entry is
29 POINT; Paint; 16 0
node_id;<d>100

attributes_groups; p; 110190

owner; p; 110110

next; p; 1290

previous; p; 129 0

pvec;v; 100

Pointer classes

In the above example, the attributes_groups field must be of class ATTRIB_GROUP_cl, the owner must be of
class POINT_OWNER _cl, and the next and previous fields must refer to POINTSs. A full list of node types
and node classes is given at the end of the document.
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Each node class corresponds to a union of pointers given in the Schema Definition section.

Variable-length nodes

Variable-length nodes differ from fixed-length nodes in that their last field is of variable length, i.e. different
nodes of the same type may have different lengths. In the schema the length is notionally given as 1, e.g.

struct REAL_VALUES s // Real values
{
Douple values[1]; 11 $f]
};

Its schemp file entry would be
83 REAL] VALUES; Realvalues;111

values; f;[10 1

The number of entries in each such node is indicated by an integer in the transmit file between its nodetype
and index, so an example might be

88315123

Unresolved indices

In some dases a node will contain an index field which dges*not correspond to a node in the transmit file, in
this case the index is to be interpreted as zero.

Simple example
Here is a feformatted text example of a sheet'circle with a color attribute on its single edge:

** ABCDEFGHIJKLMNOPQRSTUVAWX Y ZabcdefghijKimnopgrstuywxyz# s
**PARABOLID I"#$%&'()*+,/13<=>2@[\]"_ {|}~0123456789sskskskskakaeoeos

**PART1; MC=0sf65;MC (MODEL=alpha;MC_ID=sdlosf6;0S=0SF1;0S_RELEASE=V4.0;FRU=sdl_pargs
olid_test [osf64; APPL=unknown;SITE=sdl-cambridge-
u.k.;USER=davidj;FORMAT=text;GUISE=transmit;DATE=29-mar-2000;

**PART2;SCH=SCH_1200000_12006;USFLD_SIZE=0;
“*PARTS;

** E N D 0 F H E’I_\‘D E R***************************************************

T51 : TRANSMIT FILE created by modeller version 120000017 SCH_1200000_120060

121120200001e31e-800010313450670 body
702010041208881T list

133301090069 shell
5041109000+000001100 plane
31510070004+0000011001 circle
196501003V region
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16760710005001 edge
17100111010012700+ fin

1511701090 loop
17120000010700 - fin (dummy)
149213?001134+00003 face
8111312149000015 attribute (variable 1)
801140168004 00003500 FFFFETETRRFFFE2 — attrib-def {varable 1}
83315123 real_values (variable 3)
79 15 16 SDL/TYSA_COLOUR att_def_id (variable 15)
7420810130000000000000000000 pointer_lis_block

10 terminator

ag

Npte that the tolerance fields of the face and edge are unset, and representedas “?” in the text transmi
that the annotations in the column *body’ to ‘terminator’ give the node type of each line and are not gart of the

the lines are necessary).

tual file. If the above file had no trailing spaces, it would be a valid XT file (the leading spaces on

:2011(E)

it file and

some of
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Physical Layout

Parasolid transmit files have two headers:

e atextual introduction containing human-directed information about the part, written by the Frustrum and

not accessible to Parasolid, and

e Part ] data: a sequence of keyword-value pairs, separated by semicolons, of pgssibly interesting
information. All are optional.

MC = vax, hppa, sparc, ...

I/l make of computer

MC_MODEL = 4090, 9000/780, sun4m, ...
/I model of computer
MC_ID =
/I unique machine identifier
Qgs = vms, HP-UX, SunOs, ...
/I name of eperating system
OS_RELEASE = V6.2, B.10.20, 551, ...
/I vérsion of operating system
FRU = sdl_parasolid_testyvax,

mdc_ugii_y»7:0”djl_can_vrh, ...

/I frustrum supplier anchimplementation name
APPL = kid, unigraphics, ...
/I applicgtion which is using Parasolid

SITE =

/I site at which application is running
USER

/I login name of user

FORMAT = binary, text, applio
/I format of file
GUISE = transmit, transmit_partition

Il guise of file

250
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KEY =
/I name of key

FILE =
/I name of file
DATE = dd-mmm-yyyy

e.g. 5-apr-1998

:2011(E)

Tha ‘nart 12 data ic ‘ctandard’ infarmatinonwhich chauld ha accaccihla tntha Ertictrinm (o a hyvy nrnratin
The-part-1 data-is~standard—information-which-should-be-accessible-to-the-Frustrum-(e-g—by-operating

I

I

A

* 4
* 4

* 4

d
u.
14

*4
*4

* 4

e
system calls). It is the responsibility of the Frustrum to gather the relevant information and to for

described in this specification.
part 2 data: a sequence of keyword-value pairs, separated by semicolons.
SCH = SCH_m n
name of schema key e.g.SCH_1200000_12006

UBFLD_SIZE = m

length of user field (0 - 16 integer words)
Applications writing XT files must use a schema name of SCH_1200000_12006
part 3 data: non-standard information, which is only comprehiensible to the Frustrum which wrot
The “part 3’ data is non-standard information, which is enly comprehensible to the Frustrum whi
header), and it should therefore conform to the saméZkeyword/value syntax as for ‘part 1’ and ‘p4

data. However, the choice and interpretation of keywords for the ‘part 3’ data is entirely at the di
of the Frustrum which is writing the header.

a trailer record.

h example is:

FABCDEFGHIJKLMNOPQRSTUVWXY ZabcdefghijKimnopgrstuywxyz**#*xx s
FPARASOLID "#$%&'()*+,:/5<=>2@[\]*_{|}~0123456789****#kkkxhkdkkkskhkk

'PART1;MC=vax;MC_MODEL=4090;MC_ID=VAX14;0S=vms;0S_RELEASE=V6.2;FRU=sdI|
| test_vax;APPL=unknown;SITE=sdl-cambridge
K.;USER=ALANS;FORMAT=text;GUISE=transmit;KEY=temp;FILE=TEMP.XMT_TXT;DATE;
097,

'PART2;SCH=SCH_701169_7007;USFLD_SIZE=0;
'PART3;

‘END OF HEADER***************************************************

mat it as

b it

Ch wrote

it. However, other Frustrum implementations must be‘able to parse it (in order to reach the end of the

irt 2°
scretion

| parasoli

-8-sep-

K
A

yword Syntax

Il keyword definitions which appear in the three parts of data are written in the form
<name>=<value> e.g. MC=hppa;MC_MODEL=9000/710;

where

©

<name> consists of 1 to 80 uppercase, digit, or underscore characters

<value> consists of 1 or more ASCII printing characters (except space)
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Escape sequences provide a way of being able to use the full (7 bit) set of ASCII printing characters and the
new line character within keyword values. Certain characters must be escaped if they are to appear in a
keyword value:

e Character | Escape sequence
newline n

space N

semicolgn n

uparrow AN

The two gharacter escape sequences may be split by a new line character as they are vitten to file. They must
not causelany output lines to be longer than 80 characters.

Only thode characters which belong to the ASCII (7 bit) printing sequence, plus the new line character, can
included gs part of a keyword value.

[©)

Text

Parasolid|has no knowledge of how files are stored. On writing, Parasolid produces an internal bytestream
which is then split into roughly 80-character records separated.by newline characters (\n'). The newlines are
not signifjcant.

[72]

As operating systems vary in their treatment of text data,“on reading all newline and carriage return character
('\r") are ignored, along with any trailing spaces added. to the records. However, leading spaces are not ignore
and the fije must not contain adjacent space characters not at the end of a record.

=

Text XT files written by version 12.1 and laterwversions use escape sequences to output the following
characterg, except for \n' at the end of each line:

null "\0"
carriage rgturn "\n"

line feed I'\r"

backslash "\\"

These chgracters are noet-escaped by versions 12.0 and earlier.

The flag §equenee-is’the character “T’. This is followed by the length of the modeler version, separated by a
space frofn the eharacters of the modeler version, similarly the schema version, finally the userfield size. For|
example:

T
51 : TRANSMIT FILE created by modeller version 1200000

17 SCH_1200000_12006

0

NB: because of ignored layout, what Parasolid would read is

T51: TRANSMIT FILE created by modeller version 120000017 SCH_1200000_120060

252 © 1SO 2011 — All rights reserved


https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

ISO/PAS 14306:2011(E)

For partition files, the modeller version string would be given as
63 : TRANSMIT FILE (partition) created by modeller version 1200000

All numbers are followed by a single space to separate them from the next entry. Fields of type ¢ and | are not
followed by a space.

Logical values (0,1) are represented as characters F,T.

There are two special humeric values (-32764 for integral values, -3.14158e13 for floating point) which are

used inside Parasolid to mark an “unset’ or ‘null’ value, and they are represented in a text transmit file as the
questtor-mark—2—H-a-ve has-ene-compenertruH—theratthree-compenen ustbe-ruH—are-will be
oytput in a text file as a single “?”.

Binary

There are three types of binary file: "bare' binary, typed binary, and neutral binary. They’are distingu{shed by a
short flag sequence at the beginning of the file. In all cases, the flag sequence is followed by the length of the
mpdeller version as a 2-byte integer, the characters of the modeller version, the length of the schema|version
ag a 4-byte integer, the characters of the schema version, and finally the userfield:Size as a 4-byte intdger.

AB with text files, there are two special numeric values (-32764 for integral values, -3.14158e13 for fjoating
paint) which are used inside Parasolid to mark an ‘unset’ or ‘null’ valueyand they are represented in f text
transmit file as the question mark “?’.

bare binary

In bare binary, data is represented in the natural format of the machine which wrote the data.[The flag
sequence is the single character 'B' (for ASCII maehines, \102"). The data must be read on a nachine
with the same natural format with respect to chafacter set, endianness and floating point fornpat.

typed binary

In typed binary, data is represented in the natural format of the machine that wrote the data. The flag
sequence is the 4-byte sequence “PS*followed by a zero byte and a one byte, i.e., ‘P” ‘S “\0[ \1’,
followed by a 3-byte sequence af;machine description.

Byte order Double Character
representation representation
0 Big+endian IEEE ASCII
1 Little-endian VAX D-float EBCDIC

neutral binary

Invedtral binary, data is represented in big-endian format, with IEEE floating point numberg and
ASCII characters. The flag sequence is the 4-byte sequence "PS" followed by two zero bytes i.e., 'P'
'S'"\0'\0'. At Parasolid V9, the initial letters are ASCII, thus \120' \123".

The nodetype at the start of a node is a 2-byte integer, the variable length which may follow it is a 4-byte
integer.

Logical values (0,1) are represented as themselves in 1 byte.
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Small pointer indices (in the range 0-32766) are implemented as a 2-byte integer, larger indices are

represented as a pair, thus:

if (index < 32767)
{ /I case: small index
op_short(index + 1); I/ offset sois > 0
}
else
{ /1 case: big index

op_short( -(index % 32767 + 1) );
op_short( index / 32767 );

¥

where op| short outputs a 2-byte integer.

The inverge is performed on reading:

shortg|=0, r;
ip_shoft( &r);
if (r<0)
{

ip_short( &q );
r=-r;

}

index 3 q * 32767 +r-1;

where ip_|short reads a 2-byte'integer.

// remainder: add 1 s0o >0

// nonzero quotient

254
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Model Structure

Topology

This section describes the Parasolid Topology model, it gives an overview of how the nodes in an XT file are
joined together. In this section the word “entity’ means a node which is visible to a PK application — a table of
which nodes are visible at the PK interface appears in the section "Node Types'.

The topological representation allows for:

¢ | Non-manifold solids

¢ | Solids with internal partitions

e | Bodies of mixed dimension (i.e. with wire, sheet, and solid "bits’)

e | Pure wire-frame bodies

e | Disconnected bodies

Eqch entity is described, and its properties and links to other entities given.

General points

In this section a set is called finite if it can be enclosed in a ball ofdfinite radius - not that it has a finite number
off members.

Alset of points in 3-dimensional space is called open if it dogs not contain its boundary.

Bhck-pointers, next and previous pointers in a chain, and-derived pointers are not described explicitly here.
For information on this see the following description*of the schema-level model.

ntity definitions

h assembly is a collection of instances of bodies or assemblies. It may also contain construction gegmetry.

E
Assembly
A
An assembly has the following fields:

o A set of instances.

o | Aset of geometry (surfaces, curves and points).

stance
An instance is a-reference to a body or an assembly, with an optional transform:

=1

¢ | Body orassembly.

e | Transform. If null, the identity transform is assumed.

Bedy
A body is a collection of faces, edges and vertices, together with the 3-dimensional connected regions into

which space is divided by these entities. Each region is either solid or void (indicating whether it represents
material or not).

The point-set represented by the body is the disjoint union of the point-sets represented by its solid regions,
faces, edges, and vertices. This point-set need not be connected, but it must be finite.
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A body has the following fields:
e Aset of regions.

A body has one or more regions. These, together with their boundaries, make up the whole of 3-space, and
do not overlap, except at their boundaries. One region in the body is distinguished as the exterior region,
which must be infinite; all other regions in the body must be finite.

e Aset of geometry (surfaces, curve and/or points).

e A body-type. This may be wire, sheet, solid or general.

Region
A region |s an open connected subset of 3-dimensional space whose boundary is a collection of vertices;
edges, anfl oriented faces.

Regions gre either solid or void, and they may be non-manifold. A solid region contributes to the-point-set of
its owning body; a void region does not (although its boundary will).

Two regidns may share a face, one on each side.

—

A region may be infinite, but a body must have exactly one infinite region. The infinite region of a body mus
be void.

A region has the following fields:

e Aloglical indicating whether the region is solid.

e A setlof shells. The positive shell of a region, if it has one, is not-distinguished.

The shell$ of a region do not overlap or share faces, edges or vertices.

A region may have no shells, in which case it represents all.space (and will be the only region in its body,
which will have no faces, edges or vertices).

Shell
A shell is|a connected component of the boundary of a region. As such it will be defined by a collection of
faces, eagh used by the shell on one “side’, or_on both sides; and some edges and vertices.

A shell has the following fields:

o A setlof (face, logical) pairs.

Each |pair represents one side-of a face (where true indicates the front of the face, i.e. the side towards
which the face normal paints), and means that the region to which the shell belongs lies on that side of th
face. [The same face fmay appear twice in the shell (once with each orientation), in which case the face is
2-dimensional cut subtracted from the region which owns the shell.

DD

o A setfof wireframe edges.

Edges are.called wireframe if they do not bound any faces, and so represent 1-dimensional cuts in the
shell's region. These edges are not shared by other shells.

e A vertex.

This is only non-null if the shell is an acorn shell, i.e. it represents a 0-dimensional hole in its region, and
has one vertex, no edges and no faces.

A shell must contain at least one vertex, edge, or face.
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ace

A face is an open finite connected subset of a surface, whose boundary is a collection of edges and vertices. It

is

the 2-dimensional analogy of a region.

A face has the following fields:

A set of loops. A face may have zero loops (e.g. a full spherical face), or any number.

Surface_This may be null_and may he used hy ather faces

Sense. This logical indicates whether the normal to the face is aligned with or opposed to that.of
surface.

hop

will be defined by a collection of fins and a collection of vertices.

Alloop has the following fields:

An ordered ring of fins.

in each direction.

The ordering of the fins represents the way in which their-owning edges are connected to each ot
common vertices in the loop (i.e. nose to tail, taking-the sense of each fin into account).

The loop direction is such that the face is locally on the left of the loop, as seen from above the f
looking in the direction of the loop.

A vertex.

This is only non-null if the loop is anstsolated loop, i.e. has no fins and represents a 0-dimension
the face.

bnsequently, a loop must consist either of:
A single fin whose owning.ring edge has no vertices, or
At least one fin and@t)least one vertex, or

A single vertex

n
fin represents the oriented use of an edge by a loop.

finhasthe following fields:

the

loop is a connected component of the boundary of a face. It is the 2-dimensional analogy of a shell[. As such

Each fin represents the oriented use of an edge by a loop. The sense*of the fin indicates whether {he loop
direction and the edge direction agree or disagree. A loop may: ot contain the same edge more thjan once

her via

ice and

il hole in

N

©

A Ingiral sense indirm‘ing whether the fin's arientation (anrl thus the arientation of its nwning lod
same as that of its owning edge, or different.

A curve. This is only non-null if the fin’s edge is tolerant, in which case every fin of that edge wi

p) is the

reference a trimmed SP-curve. The underlying surface of the SP-curve must be the same as that of the
corresponding face. The curve must not deviate by more than the edge tolerance from curves on other fins

of the edge, and its ends must be within vertex tolerance of the corresponding vertices.

ote that fins are referred to as ‘halfedges’ in the Schema file.
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Edge
Anedge i

s an open finite connected subset of a curve; its boundary is a collection of zero, one or two vertices.

It is the 1-dimensional analogy of a region.

An edge has the following fields:

e Start vertex.

o End vertex. If one vertex is null, then so is the other; the edge will then be called a ring edge.

e An ordered ring of distinct fins.

The grdering of the fins represents the spatial ordering of their owning faces about the edge (with a right}
hand crew rule, i.e. looking in the direction of the edge the fin ordering is clockwise). The edge may ha

Zero

e Acur
tolerd

corre
mode
e Sensq
curve
e Atol

mode]

Vertex
A vertex

A vertex

e A geq

e Atol
mode

Attributé

An attribdte is an entity which contains data, and which can be attached to any other entity except attributes,

fins, lists,

o Defirfition. An attribute definition is an entity which defines the number and type of the data fields in a

speci
attrib
defin
that t
attrib

r any number of fins; if it has none, it is called a wireframe edge.

ve. This will be null if the edge has a tolerance. Otherwise, the vertices must lie withirpvertex

nce of this curve, and if it is a Trimmed Curve, they must lie within vertex tolerance of the
ponding ends of the curve. The curve must also lie in the surfaces of the faces of‘the edge, to withi
ler resolution.

>

. This logical indicates whether the direction of the edge (start to end) is.the same as that of the

prance. If this is null-double, the edge is accurate and is regarded as-having a tolerance of half the
ler linear resolution, otherwise the edge is called tolerant.

epresents a point in space. It is the 0-dimensional analegy of a region.

nas the following fields:

metric point.

prance. If this is null-double, the vertex is‘accurate and is regarded as having a tolerance of half the

ler linear resolution.
bS

transforms or attribute definitions. An attribute has the following fields:

ic type of attribute,.which entities may have such an attribute attached, and what happens to the
ite when its owRiyig entity is changed. An XT document must not contain duplicate attribute
tions. Each.attribute of a given type should reference the same instance of the attribute definition for
pe. It is_incorrect, for example, to create a copy of an attribute definition for each instance of the
ite of that type. Only those attribute definitions referenced by attributes in the part occur in the

transTit file.

e  Owneér

o Fields. These are data fields consisting of one or more integers, doubles, vectors etc.

There are

a number of system attribute definitions which Parasolid creates on startup. These are documented

in the section "System Attribute Definitions'. Parasolid applications can create user attribute definitions during
a Parasolid session. These are transmitted along with any attributes that use them.
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Groups

A group is a collection of entities in the same part. Groups in assemblies may contain instances, surfaces,
curves and points. Groups in bodies may contain regions, faces, edges, vertices, surfaces, curves and points.
Groups have

e Owning part.
e A set of member entities.

e Type. The type of the group specifies the allowed type of its members, e.g. a ‘face’ group in a body may

onbzcantain facas wwharaac 2 ‘“mivad’ araun mavs hava anvzvalid mamhare
SRRt RGeS e FeaSa—hxea—grodp-HayHavea/YaHaHHeroers:

Npde-ids

All entities in a part, other than fins, have a non-zero integer node-id which is unique within-a.part. This is
intended to enable the entity to be identified within a transmit file.

Entity matrix

Thus the relations between entities can be represented in matrix form as follows. The numbers represent the
nymber of distinct entities connected (either directly or indirectly) to the given one.

Body Region | Shell Face Loop Fin Edge Vertex
Body - >0 any any any any any any
Region 1 - any any any any any any
$hell 1 1 - any any any any any
fFace 1 1-2 1-2 - any any any any
Loop 1 1-2 1-2 1 - any any any
Fin 1 1-2 1-2 1 1 - 1 0-2
Edge 1 any any any any any - 0-2
ertex 1 any any any any any any -

Representation of manifold bodies

Bpdy types
Parasolid bodies*have a field body_type which takes values from an enumeration indicating whether the body

o | solid,representing a manifold 3-dimensional volume, possibly with internal voids. It need not be
connected.

e —SNeet, representing a Z-dimensionat SUbSet of 3-space Which 1S elther manifold or manifotd wWith boundary
(certain cases are not strictly manifold — see below for details). It need not be connected.

e wire, representing a 1-dimensional subset of 3-space which is either manifold or manifold with boundary,
and which need not be connected. An acorn body, which represents a single 0-dimensional point in space,
also has body-type wire.

e general - none of the above.

A general body is not necessarily non-manifold, but at the same time it is not constrained to be manifold,
connected, or of a particular dimensionality (indeed, it may be of mixed dimensionality).
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Restrictions on entity relationships for manifold body types

Solid, sheet, and wire bodies are best regarded as special cases of the topological model; for convenience we
call them the manifold body types (although as stated above, a general body may also be manifold).

In particular, bodies of these manifold types must obey the following constraints:
e Anacorn body must consist of a single void region with a single shell consisting of a single vertex.

e A wire body must consist of a single void region, with one or more shells, consisting of one or more
wireframe edges and zero or more vertices (and no faces). Every vertex in the body must be used by
exact i i f

So each connected component will be either: closed, where every vertex has exactly two edges; or gpen,
wherg all but two vertices have exactly two edges each, and the

A wite is called open if all its components are open, and closed if all its components are closed:

¢ Solid|and sheet bodies must each contain at least one face; they may not contain any wireframe edges or
acornfvertices.

e Asoljd body must consist of at least two regions; at least one of its regions must be solid. Every face in &
solid pody must have a solid region on its negative side and a void region on,its_positive side (in other
words, every face forms part of the boundary of the solid, and the face normals always point away from
the sqlid).

e Every edge in a solid body must have exactly two fins, which will have opposite senses. Every vertex in
solid pody must either belong to a single isolated loop, or belong. te.one or more edges; in the latter case,
the faces which use those edges must form a single edgewise<connected set (when considering only
conngctions via the edges which meet at the vertex).

D

Thesg constraints ensure that the solid is manifold.

e All the regions of a sheet body must be void. It is known as an open sheet if it has one region, and a closg¢d
sheet|if it has no boundary.

o Every edge in a sheet body must have exactly-one or two fins; if it has two, these must have opposite
sensep. In a closed sheet body, all the edges will have exactly two fins. Every vertex in a sheet body mus
eithen belong to a single isolated loop, ‘ar belong to one or more edges; in the latter case, the faces which
use those edges must either form assingle edgewise-connected set where all the edges involved have
exact|y two fins, or any number-of-edgewise-connected sets, each of which must involve exactly two
edgeq with one fin each (again,.considering only connections via the edges which meet at the vertex).

Note that, although the censtraints on edges and vertices in a sheet body are very similar to those which
applyjto a solid, in this\ease they do not guarantee that the body will be manifold; indeed, the rather
complicated rules abeut vertices in an open sheet body specifically allow bodies which are non-manifold
(such|as a body-cansisting of two square faces which share a single corner vertex, say).
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Underlying types

union CURVE_OWNER_u

Schema Definition

ISO/PAS 14306:2011(E)

{
stract EDGE—S *edge:
struct FIN_s *fin;
struct BODY _s *body;
struct ASSEMBLY _s *assembly;
struct WORLD _s *world;
b

umion SURFACE_OWNER _u
{
struct FACE_s *face;
struct BODY _s *body;
struct ASSEMBLY _s *assembly;
struct WORLD _s *world;
b

union ATTRIB_GROUP_u
{
struct ATTRIBUTE 5 *attribute;
struct GROUP_s *group;

struct
MEMBERZOF_GROUP s

}

*member_of_group;

typedef.union ATTRIB_GROUP_u ATTRIB_GROUP;

jeametry

union CURVE_u
{
struct LINE_s
struct CIRCLE_s
struct ELLIPSE s
struct INTERSECTION_s

© 1SO 2011 — All rights reserved

*line;
*circle;
*ellipse;
*Intersection;
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struct TRIMMED_CURVE s *trimmed_curve;

struct PE_ CURVE_s *pe_curve;
struct B_CURVE_s *b_curve;
struct SP_CURVE_s *sp_curve;
Y

typedef union CURVE _u  CURVE;

union SUI?FACE_U

{
stryct PLANE_s *plane;
stryct CYLINDER s *cylinder;
stryct CONE_s *cone;
stryct SPHERE s *sphere;
stryct TORUS s *torus;
stryct BLENDED EDGE_s *blended_edge;
stryct BLEND _BOUND _s *blend_bound,;
stryct OFFSET_SURF _s *offset_surf;
stryct SWEPT_SURF s *swept_surf;
stryct SPUN_SURF s *spun_surf;
stryct PE_SURF s *pe_surf;
stryct B SURFACE _s *b_surface;
Y

typedef upion SURFACE_u SURFACE;

union GEOMETRY _u
{
unipn SURFACE_ u surface;
uniEn CURYE‘uU curve;
stryct POINT s *point;
stryctHTRANSFORM _s *transform;
¥

typedef union GEOMETRY_u GEOMETRY;
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In the following field tables, ‘pointer0’ means a reference to another node which may be null. ‘pointer’ means

a non-null reference.

All curve nodes share the following common fields:

Field name Data type Description
node_id int Integer value unique to curve in part
httributes_groups | pointer0 Attributes and groups associated with curve
owner pointer0 topological owner
next pointerQ next curve in geometry chain
previous pointer0 previous curve in geometry chain
jeometric_owner | pointer0 geometric owner node
sense char sense of curve: “+” or -’ (see end of Geometry
section)
struct ANY_CURVE_s /I Any Curve
{
int node_id; //$d
union ATTRIB_GROUP u attributes_groups; /Il $p
union CURVE_OWNER _u owner; Il $p
union CURVE_u next, Il $p
union CURVE_u previous; Il $p
struct *geometric_owner; I1'$p
GEOMETRIC_OWNER_s
char sense; I $c
Y
typedef struct ANYZCURVE_s *ANY_CURVE;
e[ LINE
Alstraight-lirie has a parametric representation of the form:
R(t)=P'+tD
ere

e Pisapoint on the line

e Disitsdirection

© 1SO 2011 — All rights reserved
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Field name Data type Description
pvec vector point on the line
direction vector direction of the line (a unit vector)

struct LINE_s == ANY_CURVE_s // Straight line

node_id;
n ATTRIB_GROUP u attributes_groups;
n CURVE_OWNER_u owner;
n CURVE_u next;
n CURVE_u previous;
t *geometric_ owner;
PMETRIC_OWNER _s
sense;
Dr pVec;
Dr direction;

typedef sfruct LINE_s  *LINE;

as a parametric representation of the farm
r X cos(t) + rY sin(t)

ne centre of the circle

e radius of the circle

Y are the axes in‘the plane of the circle.
==

€ +Xcos{ 1) +Yam( t}

/1 $d
I1'$p
I1'$p
11'$p
11'$p
11.$p

1l $c
/I $v
/I $v

{
int
unio
unio
unig
unig
stru
GE(
char
vect
vect
Y
CIRCLHE
A circle i
R(t) = CH
Where
e Cist
e risth
e Xang
264

X

T
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Field Data type Description

name

centre vector Centre of circle
normal vector Normal to the plane containing the circle (a unit vector)
X_axis vector X axis in the plane of the circle (a unit vector)
radius double Radius of circle

stfuct CIRCLE_s == ANY_CURVE_s
{

int

union ATTRIB_GROUP_u
union CURVE_OWNER _u
union CURVE_u

union CURVE_u

struct
GEOMETRIC_OWNER_s

char

vector

vector

vector

double

j

typedef struct CIRCLE_s *CIRCLE;

o[ ELLIPSE

Al

R[t) = C+a X cos(t) + b Y sin(t)
W

here

e | C is thecentre of the circle

o | X is the major axis

/I Circle

node_id;
attributes_groups;
owner;

next;

previous;

*geometric_owner;

sense;
centre;

normal!
Xy 8XIS;

radius;

h ellipse has a parametric representation of the form

The Y axis in the definition above is the vector cross product of the normal and x_axis.

/1 $d
1-$p
11'$p
I1'$p
11'$p
11'$p

I '$c
I1'$v
I $v
I $v
11 $f

r is the major radius

© 1SO 2011 — All rights reserved

Y and b are the minor axis and minor radius respectively.
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€ +Xacos{ t) + Yoam( 1)

A
X
e
C a /
Field name Data type Description
ceptre Vector Centre of ellipse
nofmal Vector Normal to the plane containing the ellipse
(a unit vector)
X_pXis Vector major axis in the plane of the ellipse (a unit vector)
major| radius Double major radius
minor| radius Double minor radius
The minof axis (Y) in the definition above is the vector cross product of the normal and x_axis.

struct ELLIPSE_s == ANY_CURVE_s // Ellipse

{

int nodecid; //$d
unign ATTRIB_GROUP_u attributes_groups; I1'$p
unign CURVE_OWNER _u owner, 11'$p
unign CURVE_u next; Il $p
unign CURVE_u previous; Il $p
stru¢t GEOMETRIC-OWNER_s  *geometric_owner; 11'$p
vectpr centre; Il $v
chan sense; 1 $c
vectpr normal; /I $v
vectee X—axis; TRV
double major_radius; 1l $f
double minor_radius; 1l $f

}

typedef struct ELLIPSE_s *ELLIPSE;
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B_CURVE (B-spline curve)
Parasolid supports B spline curves in full NURBS format. The mathematical description of these curves is:

e Non Uniform Rational B-splines as (NURBS)

n-1
hofiw,
P(f:] _ !Z‘h 2 171
— n-1r
3 byiim,
i=n

¢ | and the more simple Non Uniform B-spline
-1
Pl = o
|: :l :z‘hb!(fjl‘i

o Where:
n = number of vertices (n_vertices in the PK standard form)

Vg ---Vp.1 are the B-spline vertices
W ...W,_1 are the weights

bj (),1 = 0...n-1 are the B-spline basis functions

KNOT VECTORS

The parameter t above is global. The user supplies an.ordered set of values of t at specific points. The points
are called knots and the set of values of t is called the knot vector. Each successive value in the set must be
eater than or equal to its predecessor. Where twg@or more such values are the same we say that the knots are
caincident, or that the knot has multiplicity greater than 1. In this case it is best to think of the knot st as
cgntaining a null or zero length span. The principal use of coincident knots is to allow the curve to hgve less
cgntinuity at that point than is formally required for a spline. A curve with a knot of multiplicity equal to its
deagree can have a discontinuity of first.derivative and hence of tangent direction. This is the highest permitted
multiplicity except at the first or last knot where it can go as high as (degree+1) .

order to avoid problems associated, for example with rounding errors in the knot set, Parasolid stofes an
array of distinct values and(@n-array of integer multiplicities. This is reflected in the standard form usgd by the
PK for input and output(©f,B-curve data.

ost algorithms inthefiterature, and the following discussion refer to the expanded knot set in which a knot
ofl multiplicity n appears explicitly n times.

THE NUMBER OF KNOTS AND VERTICES

The knot'set determines a set of basis functions which are bell shaped, and non zero over a span of (degree+1)
ervals. One basis function starts at each knot, and each one finishes (degree +1) knots higher. The[control
vectors are the coefficients applied to these basis functions in a linear sum to obtain positions on the gurve.
Thus it can be seen that we require the number of knots n_knots = n_vertices + degree + 1

THE VALID RANGE OF THE B-CURVE

So if the knot set is numbered {to to t, o1 } it can be seen then that it is only after tyeq. that sufficient
(degree + 1) basis functions are present for the curve to be fully defined, and that the B-curve ceases to be
fU"y defined a.fter tn_knots -1- degree.

The first degree knots and the last degree knots are known as the imaginary knots because their parameter
values are outside the defined range of the B-curve.
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PERIODIC B-CURVES

When the end of a B-curve meets its start sufficiently smoothly Parasolid allows it to be defined to have
periodic parametrisation. That is to say that if the valid range were from tgegree t0 t knots - 1 - degree then the
difference between these values is called the period and the curve can continue to be evaluated with the same
point reoccurring every period.

The minimal smoothness requirement for periodic curves in Parasolid is tangent continuity, but we strongly
recommend C gegree-1 , OF CONtinuity in the (degree-1)" derivative. This in turn is best achieved by repeating the
first degree vertices at the end, and by matching knot intervals so that counting from the start of the defined
range, teeqaethe first degree intervals between knots match the last degree intervals, and similarly matching
the last dg¢gree knot intervals before the end of the defined range to the first degree intervals.

CLOSED|B-CURVES
A periodip B-curve must also be closed, but is permitted to have a closed Bcurve that is not periodic:

3%

In this cage the rules for continuity are relaxed so that only C, or positional continuity is required between th
start and énd. Such closed non-periodic curves are not able to be attached to topology.

RATIONAL B-CURVE

In the ratijonal form of the curve, each vertex is associated with a weight, which increases or decreases the
effect of trrJ]e vertex without changing the curve hull. To ensure that the convex:hull property is retained, the
curve equation is divided by a denominator which makes the coefficients of the vertices sum to one.

-1
> by
Pipy =20

n-1
> Byl
i=0

Where wy... w4 are weights.

Each weight may take any positive value, and-the larger the value, the greater the effect of the associated
vertex. Hpwever, it is the relative sizes of the-weights which is important, as may be seen from the fact that ip
the equation given above, all the weightSimay be multiplied by a constant without changing the equation.

In Parasolid the weights are stored with the vertices by treating these as having an extra dimension. In the
usual casg of a curve in 3-d cartesian space this means that vertex_dim is 4, the x, y, z values are multiplied
through bly the correspondingdwgight and the 4th value is the weight itself.

B-SURFACE DEFINITION

#-1m-YX

Z Zbi(uj bvy  wily
_ iZ0i=0

Fiu,w) : :'e—?l:w—l

N N b Bawl oW

el et o L]

i=07=0

The B-surface definition is best thought of as an extension of the B-curve definition into two parameters,
usually called u and v. Two knot sets are required and the number of control vertices is the product of the
number that would be required for a curve using each knot vector. The rules for periodicity and closure given
above for curves are extended to surfaces in an obvious way.

For attachment to topology a B-surface is required to have G; continuity. That is to say that the surface normal
direction must be continuous.
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Parasolid does not support modelling with surfaces that are self-intersecting or contain cusps. Although they

can be created they are not permitted to be attached to topology.
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Field name Data type Description
nurbs Pointer Geometric definition
data Pointer0 Auxiliary information

struct B_CURVE_s == ANY_CURVE_s
{

int

union ATTRIB_GROUP u

union CURVE_OWNER _u

union CURVE_u

union CURVE_u

struct GEOMETRIC_OWNER s

/I B curve

node_id;
attributes_groups;
owner;

next;

previous;

*geometric_owner;

char Sense;
struct NURBS_CURVE_s *nurbs;
struct CURVE_DATA s *data;
Y

typedef struct B_.CURVE_s  *B_CURVE;

The data stored in an XT file for a NURBS*CURVE is

/1 $d
11'$p
3p
I1'$p
11'$p
11'$p
I '$c
I1'$p
11'$p

Field name Data type Description
degree Short degree of the curve
n_vertices Int number of control vertices (‘poles’)
vertex_dim Short dimension of control vertices
n_knots Int number of distinct knots
knot_type Byte form of knot vector
periodic Logical true if curve is periodic
closed Logical true if curve is closed
rational Logical true if curve is rational
curve_form Byte shape of curve, if special
bspline_vertices Pointer control vertices node
knot_mult Pointer knot multiplicities node
knots Pointer knots node

© 1SO 2011 — All rights reserved



https://standardsiso.com/api/?name=32851ef522a70be1d6d9d90267306bee

	1 Scope
	2 References and Additional Information
	3 Definitions
	3.1 Terms
	3.2 Coordinate Systems

	4 Acronyms and Abbreviations
	5 Notational Conventions
	5.1 Diagrams and Field Descriptions
	5.2 Data Types

	6 File Format
	6.1 File Structure
	6.1.1 File Header
	6.1.2 TOC Segment
	6.1.2.1 TOC Entry

	6.1.3 Data Segment
	6.1.3.1 Segment Header
	6.1.3.2 Data
	6.1.3.2.1 Element Header
	6.1.3.2.2 Element Header ZLIB
	6.1.3.2.3 Object Data



	6.2 Data Segments
	6.2.1 LSG Segment
	6.2.1.1 Graph Elements
	6.2.1.1.1 Node Elements
	6.2.1.1.1.1 Base Node Element
	6.2.1.1.1.1.1 Base Node Data

	6.2.1.1.1.2 Partition Node Element
	6.2.1.1.1.2.1 Vertex Count Range
	6.2.1.1.1.2.2 Node Count Range
	6.2.1.1.1.2.3 Polygon Count Range

	6.2.1.1.1.3 Group Node Element
	6.2.1.1.1.3.1 Group Node Data

	6.2.1.1.1.4 Instance Node Element
	6.2.1.1.1.5 Part Node Element
	6.2.1.1.1.6 Meta Data Node Element
	6.2.1.1.1.6.1 Meta Data Node Data

	6.2.1.1.1.7 LOD Node Element
	6.2.1.1.1.7.1 LOD Node Data

	6.2.1.1.1.8 Range LOD Node Element
	6.2.1.1.1.9 Switch Node Element
	6.2.1.1.1.10 Shape Node Elements
	6.2.1.1.1.10.1 Base Shape Node Element
	6.2.1.1.1.10.1.1 Base Shape Data
	6.2.1.1.1.10.1.1.1 Vertex Count Range
	6.2.1.1.1.10.1.1.2 Node Count Range
	6.2.1.1.1.10.1.1.3 Polygon Count Range


	6.2.1.1.1.10.2 Vertex Shape Node Element
	6.2.1.1.1.10.2.1 Vertex Shape Data
	6.2.1.1.1.10.2.1.1 Quantization Parameters


	6.2.1.1.1.10.3 Tri-Strip Set Shape Node Element
	6.2.1.1.1.10.4 Polyline Set Shape Node Element
	6.2.1.1.1.10.5 Point Set Shape Node Element
	6.2.1.1.1.10.6 Polygon Set Shape Node Element
	6.2.1.1.1.10.7 NULL Shape Node Element
	6.2.1.1.1.10.8 Primitive Set Shape Node Element
	6.2.1.1.1.10.8.1 Primitive Set Quantization Parameters

	6.2.1.1.1.10.9 Wire Harness Set Shape Node Element


	6.2.1.1.2 Attribute Elements
	6.2.1.1.2.1 Base Attribute Element
	6.2.1.1.2.1.1 Base Attribute Data

	6.2.1.1.2.2 Material Attribute Element
	6.2.1.1.2.3 Texture Image Attribute Element
	6.2.1.1.2.3.1 Texture Vers-1 Data
	6.2.1.1.2.3.1.1 Vers-1 Image Format Description
	6.2.1.1.2.3.1.2 Vers-1 Texture Environment

	6.2.1.1.2.3.2 Texture Vers-2 Data
	6.2.1.1.2.3.2.1 Vers-2 Texture Environment
	6.2.1.1.2.3.2.2 Texture Coord Generation Parameters
	6.2.1.1.2.3.2.3 Inline Texture Image Data
	6.2.1.1.2.3.2.3.1 Vers-2 Image Format Description



	6.2.1.1.2.4 Draw Style Attribute Element
	6.2.1.1.2.5 Light Set Attribute Element
	6.2.1.1.2.6 Infinite Light Attribute Element
	6.2.1.1.2.6.1 Base Light Data

	6.2.1.1.2.7 Point Light Attribute Element
	6.2.1.1.2.7.1 Attenuation Coefficients

	6.2.1.1.2.8 Linestyle Attribute Element
	6.2.1.1.2.9 Pointstyle Attribute Element
	6.2.1.1.2.10 Geometric Transform Attribute Element
	6.2.1.1.2.11 Shader Effects Attribute Element
	6.2.1.1.2.12 Vertex Shader Attribute Element
	6.2.1.1.2.12.1 Base Shader Data
	6.2.1.1.2.12.1.1 Shader Parameter


	6.2.1.1.2.13 Fragment Shader Attribute Element


	6.2.1.2 Property Atom Elements
	6.2.1.2.1 Base Property Atom Element
	6.2.1.2.1.1 Base Property Atom Data

	6.2.1.2.2 String Property Atom Element
	6.2.1.2.3 Integer Property Atom Element
	6.2.1.2.4 Floating Point Property Atom Element
	6.2.1.2.5 JT Object Reference Property Atom Element
	6.2.1.2.6 Date Property Atom Element
	6.2.1.2.7 Late Loaded Property Atom Element

	6.2.1.3 Property Table
	6.2.1.3.1 Node Property Table


	6.2.2 Shape LOD Segment
	6.2.2.1 Shape LOD Element
	6.2.2.1.1 Vertex Shape LOD Element
	6.2.2.1.1.1 Vertex Shape LOD Data

	6.2.2.1.2 Tri-Strip Set Shape LOD Element
	6.2.2.1.3 Polyline Set Shape LOD Element
	6.2.2.1.4 Point Set Shape LOD Element
	6.2.2.1.5 Polygon Set Shape LOD Element
	6.2.2.1.6 Null Shape LOD Element

	6.2.2.2 Primitive Set Shape Element
	6.2.2.2.1 Lossless Compressed Primitive Set Data
	6.2.2.2.2 Lossy Quantized Primitive Set Data
	6.2.2.2.2.1 Compressed params1
	6.2.2.2.2.2 Compressed params3
	6.2.2.2.2.3 Compressed params2
	6.2.2.2.2.4 Compressed Colors


	6.2.2.3 Wire Harness Set Shape Element
	6.2.2.3.1 Wire Harness Set
	6.2.2.3.1.1 Entity Counts
	6.2.2.3.1.2 Topological Entities
	6.2.2.3.1.2.1 Harness
	6.2.2.3.1.2.2 Bundle
	6.2.2.3.1.2.3 Wire
	6.2.2.3.1.2.4 Wire Segment
	6.2.2.3.1.2.5  Branch Node

	6.2.2.3.1.3 Geometric Entities
	6.2.2.3.1.3.1 Bundle Spine Curve
	6.2.2.3.1.3.1.1 NURBS XYZ Curve


	6.2.2.3.1.4 Entity Tag Counters



	6.2.3 JT B-Rep Segment
	6.2.3.1 JT B-Rep Element
	6.2.3.1.1 Topological Entity Counts
	6.2.3.1.2 Geometric Entity Counts
	6.2.3.1.3 Topology Data
	6.2.3.1.3.1 Regions Topology Data
	6.2.3.1.3.2 Shells Topology Data
	6.2.3.1.3.3 Faces Topology Data
	6.2.3.1.3.4 Loops Topology Data
	6.2.3.1.3.5 CoEdges Topology Data
	6.2.3.1.3.6 Edges Topology Data
	6.2.3.1.3.7 Vertices Topology Data

	6.2.3.1.4 Geometric Data
	6.2.3.1.4.1 Surfaces Geometric Data
	6.2.3.1.4.1.1 Non-Trivial Knot Vector NURBS Surface Indices
	6.2.3.1.4.1.2 NURBS Surface Degree
	6.2.3.1.4.1.3 NURBS Surface Control Point Counts
	6.2.3.1.4.1.4 NURBS Surface Control Point Weights
	6.2.3.1.4.1.5 NURBS Surface Control Points
	6.2.3.1.4.1.6 NURBS Surface Knot Vectors

	6.2.3.1.4.2 PCS Curves Geometric Data
	6.2.3.1.4.2.1 Trivial PCS Curves

	6.2.3.1.4.3 MCS Curves Geometric Data
	6.2.3.1.4.4 Point Geometric Data

	6.2.3.1.5 Topological Entity Tag Counters
	6.2.3.1.6 B-Rep CAD Tag Data


	6.2.4 XT B-Rep Segment
	6.2.4.1 XT B-Rep Element
	6.2.4.1.1 XT B-Rep Data


	6.2.5 Wireframe Segment
	6.2.5.1 Wireframe Rep Element
	6.2.5.1.1 Wireframe MCS Curves Geometric Data


	6.2.6 Meta Data Segment
	6.2.6.1 Property Proxy Meta Data Element
	6.2.6.1.1 Date Property Value

	6.2.6.2 PMI Manager Meta Data Element
	6.2.6.2.1 PMI Entities
	6.2.6.2.1.1 PMI Dimension Entities
	6.2.6.2.1.1.1 PMI 2D Data
	6.2.6.2.1.1.1.1 PMI Base Data
	6.2.6.2.1.1.1.1.1 2D-Reference Frame

	6.2.6.2.1.1.1.2 2D Text Data 
	6.2.6.2.1.1.1.2.1 Text Box
	6.2.6.2.1.1.1.2.2 Text Polyline Data

	6.2.6.2.1.1.1.3 Non-Text Polyline Data


	6.2.6.2.1.2 PMI Note Entities
	6.2.6.2.1.3 PMI Datum Feature Symbol Entities
	6.2.6.2.1.4 PMI Datum Target Entities
	6.2.6.2.1.5 PMI Feature Control Frame Entities
	6.2.6.2.1.6 PMI Line Weld Entities
	6.2.6.2.1.7 PMI Spot Weld Entities
	6.2.6.2.1.7.1 PMI 3D Data

	6.2.6.2.1.8 PMI Surface Finish Entities
	6.2.6.2.1.9 PMI Measurement Point Entities
	6.2.6.2.1.10 PMI Locator Entities
	6.2.6.2.1.11 PMI Reference Geometry Entities
	6.2.6.2.1.12 PMI Design Group Entities
	6.2.6.2.1.12.1 Design Group Attribute

	6.2.6.2.1.13 PMI Coordinate System Entities

	6.2.6.2.2 PMI Associations
	6.2.6.2.3 PMI User Attributes
	6.2.6.2.4 PMI String Table
	6.2.6.2.5 PMI Model Views
	6.2.6.2.6 Generic PMI Entities
	6.2.6.2.6.1 PMI Property
	6.2.6.2.6.1.1 PMI Property Atom


	6.2.6.2.7 PMI CAD Tag Data


	6.2.7 PMI Data Segment


	7 Data Compression and Encoding
	7.1 Common Compression Data Collection Formats
	7.1.1 Int32 Compressed Data Packet
	7.1.1.1 Int32 Probability Contexts
	7.1.1.1.1 Int32 Probability Context Table Entry


	7.1.2 Float64 Compressed Data Packet
	7.1.2.1 Float64 Probability Contexts
	7.1.2.1.1 Float64 Probability Context Table Entry


	7.1.3 Vertex Based Shape Compressed Rep Data
	7.1.3.1 Lossless Compressed Raw Vertex Data
	7.1.3.2 Lossy Quantized Raw Vertex Data
	7.1.3.2.1 Quantized Vertex Coord Array
	7.1.3.2.2 Quantized Vertex Normal Array
	7.1.3.2.3 Quantized Vertex Texture Coord Array
	7.1.3.2.4 Quantized Vertex Color Array


	7.1.4 Point Quantizer Data
	7.1.5 Texture Quantizer Data
	7.1.6 Color Quantizer Data
	7.1.7 Uniform Quantizer Data
	7.1.8 Compressed Entity List for Non-Trivial Knot Vector
	7.1.9 Compressed Control Point Weights Data
	7.1.10 Compressed Curve Data
	7.1.10.1 Non-Trivial Knot Vector NURBS Curve Indices
	7.1.10.2 NURBS Curve Control Point Weights
	7.1.10.3 NURBS Curve Control Points

	7.1.11 Compressed CAD Tag Data
	7.1.11.1 Compressed CAD Tag Type-2 Data


	7.2 Encoding Algorithms
	7.2.1 Uniform Data Quantization 
	7.2.2 Bitlength CODEC
	7.2.3 Huffman CODEC
	7.2.3.1 Example

	7.2.4 Arithmetic CODEC
	7.2.4.1 Example

	7.2.5 Deering Normal CODEC

	7.3 ZLIB Compression

	8 Usage Guide
	8.1 Late-Loading Data
	8.2 Bit Fields
	8.3 Reserved Field
	8.4 Metadata Conventions
	8.4.1 CAD Properties
	8.4.1.1 Required Properties
	8.4.1.2 Optional Properties

	8.4.2 Tessellation Properties
	8.4.3 Miscellaneous Properties

	8.5 LSG Attribute Accumulation Semantics
	8.6 LSG Part Structure
	8.7 Range LOD Node Alternative Rep Selection




