INTERNATIONAL ISO/IEC
STANDARD 10373-6

Second edition
2011-01-15

AMENDMENT 4
2012-12-15

Identification cards — Test methods —

Part ©:
Proximity cards

AMENDMENT 4: Bitrates of fc/8, fc/4 and
fc/2 and frame size from 512 to 4096 bytes

Cartes d'identification — Méthodes d'essai —
Partie 6: Cartes de proximité

AMENDEMENT 4: Débits binaires de fc/8, fc/4 et fc/2 et tailles de tramg
allant de 512 a 4096 octets

D

Reference number
ISO/IEC 10373-6:2011/Amd.4:2012(E)

© [SO/IEC 2012

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

COPYRIGHT PROTECTED DOCUMENT

@ 1SO/IEC 2012
All*rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,

electronic or mechanical, including photocopying and microfiim, Without permission In writing from eirher 1ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20

Tel. +412274901 11

Fax +41 2274909 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2012 — All rights reserved

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnicg
Commission) form the specialized system for worldwide standardization. National bodies that are membeérs'Q
ISO or IEC participate in the development of International Standards through technical committee
established by the respective organization to deal with particular fields of technical activity. 1ISQ, and IE(
technical committees collaborate in fields of mutual interest. Other international organizations, governmenta
and non-governmental, in liaison with 1ISO and IEC, also take part in the work. In the fieldvof informatio
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

o — U ==

International Standards are drafted in accordance with the rules given in the ISO/IEC Dijrectives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft Internationg
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication a
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

L2

—

Attention is drawn to the possibility that some of the elements of this,decument may be the subject of paten
rights. ISO and IEC shall not be held responsible for identifying any orall such patent rights.

Amendment 4 to ISO/IEC 10373-6:2011 was prepared bysJaint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 17, Cards and perSonal identification.

© ISO/IEC 2012 — All rights reserved iii

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Identification cards — Test methods —

Part G:
Proximity cards

AMENDMENT 4: Bit rates of fc/8, fc/4 and fc/2 and frame size from
512 to 4096 bytes

Page 10, Figure 5

Replace component "C3" in Figure 5 with the following:
c3 — —
a ‘\ J) b
J2 I

Page 11, 5.4.2

Add the following two paragraphs at the end of 5.4.2:
"Position 'a' of J2 shall.be. used for testing bit rates of fc/128, fc/64, fc/32 and fc/16.

Position 'b' of J2 shall be used for testing bit rates of fc/8, fc/4 and fc/2."

Page 16)7.1.4.1

Replace paragraph with the following:

>

"This test is used to determine the index of modulation of the PCD field as well as the rise and fall times an
the overshoot values as defined in ISO/IEC 14443-2 for all supported PCD to PICC bit rates."

Page 17, 7.1.4.2
Replace step g) with the following:

g) Repeat steps c) to f) for various positions within the operating volume and all supported PCD to PICC bit
rates.

© ISO/IEC 2012 — All rights reserved 1

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Page 17, 7.1.5.1
Replace paragraph with the following:

"This test is used to verify that a PCD correctly detects the load modulation of a PICC which conforms to
ISO/IEC 14443-2 for PICC to PCD bit rates of fc/128, fc/8, fc/4 and fc/2, if supported.”

fPage 17, 7.1.5.2
Replace step h) with the following:

) Repeat steps b) to g) for various positions within the operating volume for PICC to PCD bit rates, of fc/128,
fc/8, fcl4 and fc/2, if supported.

fPage 18, 7.2.1.1
Delete NOTE and replace first sentence of paragraph with the following:

The purpose of this test is to determine the load modulation amplitude Vi of the PICC within the operating
fleld range [Hmin, Hmax] @s specified in ISO/IEC 14443-2 for PICC to PCD.bit rates of fc/128, fc/8, fc/4 and fc/2,
if supported.”

fPage 18, 7.2.1.2

Replace second paragraph of Step 2 with the followings:

"A REQA or a REQB command sequence as defined in ISO/IEC 14443-3 shall be sent by the Test PCD to
gbtain a signal or load modulation response from the PICC when testing PICC transmission at a bit rate of
£/128. An S(PARAMETERS) sequence as-defined in ISO/IEC 14443-4 and an I-block shall be sent by the
Test PCD to obtain a signal or load medulation response from the PICC when testing optional PICC
transmission bit rates of fc/8, fc/4 and fc/2."

Add Note 1 after second paragraph of Step 2 and renumber subsequent Notes:

"NOTE 1 No load modulatien.test is required for bit rates of fc/64, fc/32 and fc/16 because these bit rates use the same
qubcarrier frequency of fc/128-*

fPage 19, 7.2.2.2

Replace %.2:2.2 heading text with the following:

"PICC Type A for bit rates of fc/128, fc/64, fc/32 and fc/16"

Page 20, 7.2.2.3

Replace 7.2.2.3 heading text with the following:

"PICC Type B for bit rates of fc/128, fc/64, fc/32 and fc/16"

2 © ISO/IEC 2012 — All rights reserved

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Page 20, 7.2.2.3.1
Replace first paragraph with the following:

"Three test conditions are defined with timings at the border of the PICC modulation waveform timing
parameters zone defined in ISO/IEC 14443-2, 9.1.2:"

Replace last dash text with the following:

— minimum and maximum modulation index m for the associated field strength applied,”(se
ISO/IEC 14443-2, 9.1.2).

W

Page 20, 7.2.2.3.2
Replace second, third and fourth paragraph with the following:
"For each optional PCD to PICC bit rate supported by the PICC, the PICC shall*operate under the condition

defined in 7.2.2.3.1 after selection of that optional bit rate. This PICC shallrespond correctly to an I-bloc
transmitted at that optional bit rate."

A U

Page 20

Renumber existing subclause 7.2.2.4 to 7.2.2.5 and add-néw subclause 7.2.2.4:

7.2.24 PICC Type A or Type B for bit rates of'fe/8, fc/4 and fc/2

See 7.2.2.3.

Page 23, Annex A

Replace all occurrences of "ferbit rates of fc/64, fc/32 and fc/16" with "for bit rates higher than fc/128".

Page 27, Table A.d

Replace "From-fc/128 to fc/16" with "All bit rates".

Page'34

Add new subclause E.2.1 and move second sentence of E.2 and Figure E.2 to this subclause:

E.2.1 Sampling for bit rates of fc/128, fc/64, fc/32 and fc/16

© ISO/IEC 2012 — All rights reserved 3

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

E.2.2 Sampling for bit rates of fc/8, fc/4 and fc/2

ISO/IEC 10373-6:2011/Amd.4:2012(E)
Add new subclause E.2.2:

Page 35

l

£

4 1+ £ ool '+ l L lat
o urmme arid VUILOHC Udia ulr art v imaltic vuriiarll IIIIH STt ariu 1ul IH mouudiativit puioCo \p|C|clcu.u_y a LUITIPICLC

$(DESELECT) command) as illustrated in Figure E.3, with at least 20 carrier periods before the first and after

the last modulation pulse, shall be transferred to a suitable computer.

P |

lacvet. ol

pu | alat DO £

Clo,

MNNHNN«MMWMM“NM\M‘N\ImHm

Long modulation pulse

Figure E.3 — Modulation pulses

A 4th order, Butterworth type band pass filter with center frequency of 13,56 MHz and 15 MHz 3-dB bandwidth

Add new subclause E.3.1 and’move existing paragraph of E.3 and Figure E.3 to this subclause:
shall be used for filtering the DC and higher harmonic components.

.3.1 Filtering for bit-rates of fc/128, fc/64, fc/32 and fc/16

.3.2 Filtering for bit rates of fc/8, fc/4 and fc/2

Add.new subclause E.3.2:

fPage 35
fPage 35

© ISO/IEC 2012 — All rights reserved

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Page 36

Add new subclause E.5.1 and move existing paragraph of E.5 and Figure E.4 to this subclause:

E.5.1 Envelope smoothing for bit rates of fc/128, fc/64, fc/32 and fc/16

Page 36

Add new subclause E.5.2:

E.5.2 Envelope smoothing for bit rates of fc/8, fc/l4 and fc/2

No smoothing of signal envelope shall be applied.

Page 36, E.6
Add the following paragraph and figure after the paragraph:

For bit rates of fc/8, fc/4 and fc/2 the minimum value of modulation.index m shall be determined within the
complete PCD frame (see Figure E.5.). The PCD frame shall contain (10101010)b.

A Amplitude

. e — - Minimum-value of -
TITT] modulation index m |

/.

\ ‘ ‘ i Time
>
Figure E.5 — Minimum value of modulation index m

Page 36, E.7

Add at the end of paragraph:

For bit rates of fc/8, fc/4 and fc/2 the timings shall be determined at positions with long modulation pulse
positions e.g. f; at transition to SOF low and {, at transition to EOF high.

© ISO/IEC 2012 — All rights reserved 5

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Page 38
Add after line "double b; //Type B"

"double bVHBR; //Bit rates of fc/8, fc/4 and fc/2"

FPage 53
Replace function "createtime" with:

"Woid createtime (TIMES *new, double tr, double tf, double b, double bVHBR, (double
rstartind, double trendind, double tfstartind, double tfendind, double t1,
ouble tlstartind, double tlstart, double tlendind, double t2, double ¢(t2startind,
ouble t2start, double t3, double t3end, double t3endind, double 4, double
4endind, double t5, double tbSstartind, double t6, double t6end, double t6endind,
ouble a, double tploone)"

Q £ O O ot

Add after line "new->b=b;":

"new->bVHBR=bVHBR; "

fPage 59
Add following function:
/ Finds the value of m min for bit rates (b fc/8, fc/4 and fc/2

Jyoid Mminfinder (double *env, double Hmax, double Hmin, double *HmaxVHBR, TIMES
{timeres, int numsamples)

int 1=0;

int j=0;

double compare hi=0.0;
double compare 1lo=0.0;
double compare=0.0;
double difference=0.0v
int going up=0;

double ampl=0.0;

double ampl max=0.0; // represents the amplitude (Hmax-b), and indirectly
lm".

double m_deviation=0.0; // countermeasure 1: m min < 0.2*m is not considered

double Hmax cm=0.0; // countermeasure 2: m min does not start or end on
Borders

doubile 'b cm=0.0;
deuble mmin=0.0;
double mmin cum=0.0;

Skip all zeros
while (env[]j]==0)
J++i

// where do we start?

difference=env[j]-env[j+1];
if (difference<0)

6 © ISO/IEC 2012 — All rights reserved

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

going up=1; // going up
compare lo=env([j];

}

else if (difference>0)

{
going up=0; // going down

compare hi=env[j];
}

compare=env[j];

ampl max=(Hmax-Hmin) ;

m _deviation=ampl max*0.2;
Hmax cm=Hmax*0.95;

b cm=Hmin*1.05;
timeres->bVHBR=0;

for (i=j; i<=numsamples-j; i++)
{
if (going up==0) // GOING DOWN
{
if (compare>=env[i])
{
compare=env[i];
}
else if (compare<env[i])
{
compare=env[i];
compare lo=env([i];
going up=1; // change ,divection
ampl=(compare hi-compare 1o0);
mmin= (ampl/ (compare hi+compare lo))*100;
if (ampl>m deviation”&& ampl<ampl max &&
compare lo>b cm)) //Countermeasures
{
*HmaxVHBR#£sompare hi;
timeres¢>bVHBR=compare lo;
ampl_smax=ampl;

}
}
if (goimg-up==1) // GOING UP
{
if~ (compare<=env[i])
{
compare=env[i];
}
else 1if (compare>env[i])
{
compare=env([i];
compare hi=env[i];

(compare hi<Hmax cm ||

cgodinoag yuo=0-: chance diroccotion
= g 7 >

ampl=(compare hi-compare 1lo);
mmin= (ampl/ (compare hi+compare lo))*100;
if (ampl>m deviation && ampl<ampl max &&
compare lo>b cm)) //Countermeasures
{
*HmaxVHBR=compare hi;
timeres->bVHBR=compare lo;
ampl max=ampl;

© ISO/IEC 2012 — All rights reserved

(compare hi<Hmax cm ||

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

A

ISO/IEC 10373-6:2011/Amd.4:2012(E)

mmin cum=mmin;

}
}

if (*HmaxVHBR==0 || timeres->bVHBR==0) // in case Waveform has only two

levels (typical 1M7) Mmin=M

{
*HmaxVHBR=Hmax;
timeres->bVHBR=Hmin;

fPage 59
Replace function "envfilt" with the following:

int envfilt(int rate, double *output, double *toutput, int ,fiilterlength,
ttini, double tend, int lengthp, double *envelope)

{
LinearConvolution (cof, output,venvelope, lengthf, lengthp);
}

else 1f (rate==1700 || rate=<3400 || rate==6800)
{
cof[0]=1;
for (xx=1; xx<2000,; “Xx++)
cof [xx]=0;
lengthf=1;
LinearConvolu@tion (cof, output, envelope, lengthf, lengthp);

Page 62

\dd infunction "tfinder" after line " int i=0;" the following:

double

fPage 60
Replace line "LinearConvolution (cof, output, envelop€, lengthf, lengthp) ;" with the
fpllowing:

if (rate==106 || rate==212 || rate==424 || rate==848)

double *toutput2=NULL;
int counter=0;

int rev_counter=0;

int VHBR step=0;
double VHBR tr=0.0;
double VHBR tf=0.0;
double tr accum=0.0;

© ISO/IEC 2012 — All rights reserved

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

double tf accum=0.0;

int tr counter=0;

int tf counter=0;

double t one sample=0.0;
double tlo=0.0;

double v10=0.0;

double thi=0.0;

double vhi=0.0;

toutput2=toutput;

Page 65
Replace line "createtime (timeres, 0,0,0,0,0,0,0,t1,....,0,0,0,0) ;" with:

"createtime (timeres,0,0,0,0,0,0,0,0,tl,tlstartind, tlstart, tiendind, t2,t2startind,
t2start,t3,t3end, t3endind, t4, t4dendind, 0,0,0,0,0,0,0);"

Page 67
Replace line "createtime (timeres, 0,0,0,0,0,0,0,...4a) tploone) ;" with:

"createtime (timeres,0,0,0,0,0,0,0,0,tl,tlstartind, tlstart,tlendind,0,0,0,0,0,0,0,
0,t5,t5startind, t6, téend, téendind, a, tplorte) ;"

Page 67
Replace complete code for 'case Blwith:

{
switch (rate)
{
casenl106:
case212:
case 424:
case 848:
{
B low=pb+0.1* (Hmax-b); // Calculates target
flag=localizador (envc, toutput,B low, &crosses,env_length); //
Finds/target
if (flag>=2)
{
crosses WORK=crosses;
tploone=crosses WORK->time; // Temporary values
are stored for future use

while (x_improv<flag)
{
tplotwo=crosses WORK->time; // Temporary values
are stored for future use
vplotwo=crosses WORK->volt;
crosses_WORK=crosses WORK->sig;
X _improv++;

© ISO/IEC 2012 — All rights reserved

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

freelist (crosses);

}

else

{

fprintf (stdout, "Monotony not fulfilled\n");

}

HFinds target
if (flag>=2)
{
x improv=0;
flag improv=0;
crosses_ WORK=crosses2;
while (x_improv<flag)
{
if (crosses WORK->time<tploone)
{
tphione=crosses WORK->time;
dre stored for future use
vphione=crosses WORK->volt;

if (crosses WORK->time>tplotw¢

tphitwo=crosses WORK->time;
gre stored for future use

vphitwo=crosses WORK~>volt;
flag improv=1;

X_improv++;
}

freelist (crosses?) ;

}

else

{
}

gtored for display
tr=tphitwo-tplotwo;

functions

tfendind=tploone;
trstartind=tplotwo;
trendind=tphitwo;

crosses WORK=cnosses WORK->sig;

B_hi=Hmax-0.1* (Hmax-Db); // Calculates target
flag=localizador (envc, toutput,B hi, &crosses2,env_length); //

//~Témporary values

&& flag improv==0)

// Temporary values

fprintf{stdout, "Monotony not fulfilled\n");

tf£tploone-tphione; // Definitive values are calculated and

tfstartind=tphione; // Other important values for the coming

¢,9,0,0,0,0,0,0,0,0,0,0,0,0,0);
}

break;

case 1700:
case 3400:
case 6800:
{

10

CICdCLECINME(CINNEres, L, L, 0, U, CISCar CIIIO, CIeuUlld, CIstarcIng, crenarng, v, 0, v, Uy

© ISO/IEC 2012 — All rights reserved

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

B low=b+0.1* (Hmax-b); // Calculates target
B hi=Hmax-0.1* (Hmax-b); // Calculates target

flag=localizador (envc, toutput,B low, &crosses,env_length);
flag2=localizador (envc, toutput,B hi, &crosses2,env_length);

tfstartind=crosses2->time; // Reused as start point for

overshoot

tfendind=crosses->time; // and undershoot

// LOCATE ADJACENT POINTS
while (crosses->sig!=NULL && crosses2->sig!=NULL)

{

tlo=crosses->time;
thi=crosses2->time;
if (thi<tlo) // FALLING EDGE

{

if

else if (crosses2->sig->time > tle) // Analysis tf

{

(crosses2->sig->time < tlo) // Discard Point
crosses2=crosses2->sig;

vlo=crosses->volt;
vhi=crosses2->volt;
while (toutput2[counteri}s==0) // set counters
{
counter++;
rev_counter+4;
}
t_one samplezBodtput2[counter+2]-toutput2[counter+l];
while (toutput2[counter]<=thi) // set counters
{
counter++;
rev,counter++;
}
whide (toutput2[rev counter]<=tlo) // set counters
rev_counter++;

while (vlo<vhi)

{
vlo=envc2[rev _counter-VHBR step];
vhi=envc2[counter+VHBR step];
VHBR step++;

}

if (vlo==vhi)
VHBR step=VHBR step*2;

else 1if (vlo>vhi)
VHBR step=VHBR step*2-1;

VHBR tf=VHBR step*t one sample;
tf counter++;
tf accum=tf accum+VHBR tf;

VHDE_DLCP—U.U, RESTL CLOUIILEL S
VHBR tf=0.0;

counter=0;

rev_counter=0;
crosses2=Ccrosses2->sig;

else 1if (tlo<thi) // RISING EDGE

© ISO/IEC 2012 — All rights reserved

11

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

if (crosses—->sig->time < thi) // Discard Point
crosses=crosses->sig;
else if (crosses->sig->time > thi) // RAnalysis tr

{

vlo=crosses->volt;
vhi=crosses2->volt;

while (toutput2[counter]==0) // set counters
{
counter++;
rev_counter++;
}
t one sample=toutput2[counter+2]-toutput2[counter#ly;
while (toutput2[counter]<=tlo) // set counters
{
counter++;
rev_counter++;
}
while (toutput2[rev counter]<=thi) /) -set counters
rev_counter++;

while (vlo<vhi)

{
vhi=envc2[rev counter-VHBR\step];
vlo=envc2 [counter+VHBR (step];
VHBR step++;

}

if (vlo==vhi)
VHBR step=VHBR &tep*2;

else 1f (vlo>vhi)
VHBR step=VHBR step*2-1;

VHBR tr=VHBRsStep*t one sample;
tr countexts;
tr accumsfr accum+VHBR tr;

VHBR“step=0.0; // Reset Counters
VHBR tr=0.0;

counter=0;

Tev_counter=0;

crosses=crosses->sig;

}
i

J/ Calculate and Save Parameters

tf=tf accum/tf counter; // Definitive values are calculated
and stored £for display
tr=tr accum/tr_ counter; // Reused as end point for overshoot

trendind=crosses2->time;
trstartind=crosses->time;

cregtetImettImeTres, t by O trstar t Tttt sttt e 05050560
¢,0,0,0,0,0,0,0,0,0,0,0,0,0,0);

break;

12 © ISO/IEC 2012 - All rights reserved

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Page 71
Replace:
"while (index samples<=samples)

{

if (env?[index samples]l>above)"

with:
"while (env2[index samples]!=0)

{

if (env2[index samples]>above)

Page 72

Replace:

"while (toutput[index samples]<(timesp->trstartind))

if (env2[index samples]<above b && env2[index’samples]!=0)"
with:

"while (env2[index samples]!=0)

{

if (env2[index samples]<above (b)

Page 72

Replace function declaration "display" with the following:

"void display((char type, int rate, SHOOTREADER *shootreader2, TIMES *timesp
double Hmax({ ‘double m, double mmin)"
Page-/3
Replace line "fprintf (stdout, "Type B - Bitrate %d\n", rate) ;" with the following
"if (rate<=848)
fprintf (stdout, "Type B - bit rate %d\n", rate);
else
fprintf (stdout, "Type VHBR - bit rate %d\n", rate);"
© ISO/IEC 2012 — All rights reserved 13

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Page 74

Add after line " fprintf (stdout,"m = %f %% \n",m);"

"if ((rate==1700 || rate==3400 || rate==6800))
fprintf (stdout,"m min = $f %% \n", mmin); "
fPage 74

Replace function "main" with the following:

int main (int argc, char *argvl[])

char type;

int rate;

char voltstr[25]; // intermediate char array to modify the voltage
Yalues

char timestr[25]; // intermediate char array o modify the time
Yalues

double snum=0;

double tnum=0;

double t=0;

int filterlength=0;

double Hmax=0;

double HmaxVHBR=0;

double Hmin=0;

double Hmax2=0;

double Hmin2=0;

FILE *pointfile=NULL;

FILE *input_uZZNULL;

FILE *poutput=NULL;

double m=0.0;

double mmin=0.0;

int length=0;

double val=0;

int posval=0;

int negval=0;

double tini=0;

double tfin=0;

int samples=07

int out i=0y

int lenggh) total=0;

int samgle ini=0;

int sample end=0;

ingx1ag cut=0;

int- samplesp=0;

int £i=0; // Filter generic index
double 11-0: Filter parameters

double b2=0;
double b3=0;
double b4=0;
double b5=0;
double al=0;
double a2=0;
double a3=0;
double a4=0;

14 © ISO/IEC 2012 - All rights reserved

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

double a5=0;
double freql=0;
double freqg2=0;
double as[5]={0};
double bs[5]={0};
double t0=0;
double tlast=0;

int lineskip=0;

double *voutput=malloc (sizeof (double)*MAX SAMPLES) ;

double *toutput=malloc (sizeof (double)*MAX SAMPLES) ;

double *envelope=malloc (sizeof (double)*MAX SAMPLES) ;

double *vfilter=malloc (sizeof (double)*MAX SAMPLES) ;

double *tfilter=malloc (sizeof (double)*MAX SAMPLES) ;

TIMES *timesp=(TIMES *)malloc(sizeof (TIMES))

TIMES *timesp2=(TIMES *)malloc(sizeof (TIMES))

SHOOTREADER *shootreader2=(SHOOTREADER *)malloc (sizeof (SHOOTREADER)) ;

if (voutput!=NULL && toutput!=NULL && envelope!=NULL && wfidter!=NULL &&
tfilter!=NULL && timesp!=NULL && timesp2!=NULL && shootreader?2!=NULL)
{
memset (voutput, 0, MAX SAMPLES) ;
memset (toutput, 0, MAX SAMPLES);
memset (envelope, 0, MAX SAMPLES) ;
memset (vfilter, 0, MAX SAMPLES);
memset (tfilter, 0, MAX SAMPLES);

type=*argv([1l];
rate=atoi (argv[2]);
if (type!='A' && type!='B' && typeh=E'V')
fprintf (stdout, "Wrong Types{A, B or VHBR))");
else 1if ((type=='A' || type==%B)) && (rate!=106 && rate!=212 && rate!=424
&& rate!=848))
fprintf (stdout, "Wrong*pit rate (106, 212, 424, 848)");
else if ((type=='V') && (rate!=1700 && rate!=3400 && rate!=6800))
fprintf (stdout, "Wiorg bit rate (1700, 3400, 6800)"™);
else
{
if (type=='V')

type="'B*;
pointfile=fopen(argv[3],"r");
input u2=fopen ("pre Hilbert.txt","w"); // modified-

intermediate amplitude vector

if (pointfile!=NULL && input u2!=NULL)
{
//1. LOAD DATA + CHECKING DATA (WITHOUT FILTER)
for (lineskip=0; lineskip<l1l0; lineskip++) // Skips the first 1
linesSwhich are the header of csv files
{
skip line (pointfile);
}

read line (pointfile,voltstr, timestr);

LU=alLOL \LJ’.J.[[CD cL)
while (!feof (pointfile)) // Reading the lines of
the voltage input file
{
if (voltstr[0]!='\0")
{
snum=atof (voltstr);
tnum=atof (timestr) ;
if (snum<0)

© ISO/IEC 2012 — All rights reserved 15

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

negval++;
else
posval++;
vfilter[samplesp]=snum;
tfilter[samplesp]=tnum;
samplesp++;
read line (pointfile,voltstr, timestr);

}
tlast=tfilter[samplesp-1];

}

samplesp=samplesp+3;
samplesp=datacheck (posval, negval, samplesp, tlast, pointfile)+%
tlast=tfilter[samplesp];

//2. DATA FILTER BANDWIDTH (10 MHz OR 20 MHz DEPENDING-ON BIT RATE)
if (rate==106 || rate==212 || rate==424 || rate==848)
{
freql=8.56e6/ (1/(2* ((tlast-t0)/ (samplesp-1)))
freq2=18.56e6/ (1/(2* ((tlast-t0) / (samplesp-1)N"Y ;
}
else 1f (rate==1700 || rate==3400 || rate==6800)
{
freql=6.06e6/ (1/(2* ((tlast-t0)/ (samplesp-1))));
freq2=21.06e6/ (1/(2* ((tlast-t0)/ (samplesp-1))));
}

butterworth coeffs (freql, freq2)as, bs);
bl=bs[0];

for (fi=0;\\fi<samplesp; fi++)

1f0(fi<7 || fi>samplesp-7)
voutput [f1]=0;
else
voutput [fi]l=(bl*vfilter[fi]l+b2*vfilter[fi-1]1+b3*vfilter[fi-
11+
bd*vfilter [fi-3]1+b5*vfilter[fi-4]-a2*voutput[fi-1]-
a3*voutput[fi-2]-ad*voutput[fi-3]-a5*voutput[fi-
41) /als

}

LCWj.lld \pUj.llLLj.lC[I3
lineskip=0;
for (lineskip=0; lineskip<10; lineskip++) // Skips the first 10
lines (header of csv files)

{

skip line (pointfile);

}

for (£i=0; fi<(samplesp-7); fi++) // Reading the lines of
the voltage input file

16 © ISO/IEC 2012 — All rights reserved

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

val=voutput[fi];
read line (pointfile,voltstr,timestr);
fprintf (input u2,"%s,%$f\n", timestr,val);
length++;

}

//3. HILBERT TRANSFORM AND THE COMPLEX ENVELOPE
rewind (input u2);

hilbert ("pre Hilbert.txt"); // performs Hilbert transform
poutput=fopen ("output.txt","r"); // Hilbert transform gutput
vector
read line (poutput,voltstr,timestr);
tini=atof (timestr);
rewind (poutput);
if (poutput !=NULL)
{
while (!feof (poutput)) // Reading the Rhines of the voltage input
file */
{
read line (poutput,voltstr,timestr);
if (timestr[0]!="\0")
{
snum=atof (voltstr);
voutput [samples]=snldm;
t=atof (timestr) ;
toutput [samplesy=t;
samples++; //%&3US // Same variable as the one in
Hmaxfinder

tfin=t;

}
}
else

fprintf{stdout, "Error in Hilbert transform\n");
fclose (poutput) ;

/ /4. \USING A SMOOTHING FILTER (MOV. AVG) TO REDUCE THE NOISE

filterlength=3;

length total=envfilt(rate, voutput, toutput, filterlength, tini,
tfin, samplés),® envelope);

//5. 100% OF H INITIAL
Hmaxfinder (envelope, &Hmax, &Hmin, length total);

//6. COMPUTING THE ISO BASED TIMES

tfinder (type,envelope, toutput, tini, Hmax, Hmin, rate, length total, timesp);

7. Ll_lllJ’.ll FURN DIl RAILOS UL LC/ Oy L C :.l AND LC
if (rate==1700 || rate==3400 || rate==6800)
Mminfinder (envelope, Hmax, Hmin, &HmaxVHBR, timesp,
length total);

//8. CHECKING FOR ISO DEFINED MONOTONY

if (rate==106 || rate==212 || rate==424 || rate==848)
monocheck (envelope, toutput, Hmax, timesp, rate, type);

© ISO/IEC 2012 — All rights reserved 17

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

out i=0;
while (out i<MAX SAMPLES) // Finds how many zeros are at the
beginning of vector envelope
{
if (envelopelout i]==0 && flag cut==0)
{

sample ini=out i;

tini=toutput[sample ini+1];

if (envelope[out 1i]!=0)

flag cut=1;
sample end=out i;
tfin=toutput[sample end];
}
out i++;
}

samples=sample end-sample ini-1; //==>US

for (out i=0; out i<samples; out i++)

{
voutput [out i]=envelope[out i+sample imivl];
toutput [out i]=toutput[out i+sample_ Gni+1];

for (out i=samples+1l; out i<MAX SAMPIES; out i++)

voutput [out 1]=0.0;
toutput[out i1]=0.0;

}

tini=toutput[0];
tfin=toutput[samples];

//9. OVERSHOOT OF THE®READER
fprintf (stdout,"\®m"); // 2nd set of functions, "New Line" printed
for debug purposes
if (rate==106"\}\ rate==212 || rate==424 || rate==848)
{

filtexrlength=3;

length total=envfilt (rate, voutput, toutput, filterlength, tini,
tfin, samples, envelogpe); // 2nd Filtering to find the alternate envelope
Hmaxfinder (envelope, &Hmax2, &Hmin2, length total);

tfinder (type,envelope, toutput, tini, Hmax2, Hmin2, rate, length total, timesp2);
monocheck (envelope, toutput, Hmax2, timesp2, rate, type);
/Y The parameters of the alternate envelope are calculated
overshoot (timesp2, Hmax2, envelope, toutput, rate, type, samples,
ghootreader?) ; // This time the over- and undershoots are found
}
else 1if (rate==1700 || rate==3400 || rate==6800)

1

filterlength=3;

length total=envfilt (106, voutput, toutput, filterlength, tini,
tfin, samples, envelope); // 2nd Filtering to find the alternate envelope

Hmaxfinder (envelope, &Hmax2, &Hmin2, length total);

overshoot (timesp, Hmax, envelope, toutput, rate, type, samples,
shootreader?2) ; // This time the over- and undershoots are found

}

18 © ISO/IEC 2012 — All rights reserved

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

//10. MODULATION
m=modulation (type, Hmax,
if((type=='B') && (rate=

mmin=modulation (type,

//11. DISPLAY

display(type, rate,

shootreader?2,

ISO/IEC 10373-6:2011/Amd.4:2012(E)

timesp->b) ;
=1700 || rate==3400 || rate==6800))
HmaxVHBR, timesp->bVHBR) ;

timesp, Hmax, m, mmin);

}
else if (pointfile==NULL ||
fprintf (stdout, "file (s)

fclose (pointfile);
fclose (input u2);

}

else
fprintf (stdout,

free (voutput);

free (toutput);

free (envelope);
free (vfilter);

free (tfilter);

free (timesp);

free (timesp2);

free (shootreader?);

return 0;

Page 80

Replace Annex F with the following:

"Memory could not be allocated");

input u2!=NULL)
could not be opened \n");

© ISO/IEC 2012 — All rights reserved

19

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

Annex F
(informative)

Program for the evaluation of the spectrum

The following program written in C language gives an example for the calculation of the magnitude of the

gpectrum from the PICC.
***/
*** This program calculates the Fourier coefficients xxx/
***% of load modulated voltage of a PICC according * k[
**% the ISO/IEC 10373-6 Test methods *xk/
*** The coefficients are calculated at the frequencies: *xx/
xokx Carrier: Fem (=13.5600 for 13.56 MHz) *xk/
*x Kk Upper sideband: Fcm + fs * % A
ol Lower sideband: Fcm - fs *XAA
*** fs is the subcarrier frequency and its value is: O /
*** Fcm/16 for bit rates up to fc/16, Fcm/8 for a bit rate, ***/
*** of fc/8, Fcm/4 for a bit rate of fc/4 or Fcm/2 for & xHxx/
**% bit rate of fc/2 *x Ak /
***/
* Kk K Input: ***/
**% File in CSV Format containing a table of two *xk/
% columns (time and test PCD output voltage-¥d, clause 7)*/
* kK ***/
**% data format of input-file: *x Ak /
KKK ***/
**% - one data-point per line: xR/
xokx (time[seconds], sense-coil-voltage[volts]) *xAk/
*** - contents in ASCII, no headers *xk/
*** - data-points shall be equidiftant in time *xx/
*** - modulation waveform centered *xx/
xokx (max. tolerance: half of“subcarrier cycle) *xk/
* kK ***/
* kK ***/
*** example for spreadsheét file (start in next line): *Hxx/
* ok (time) (voltage) *Hxx/
**% 3.00000e-06,1.Q0 xR/
**% 3.00200e-06,1(01 *xAx/
*kko L ***/
***/
*** RUN: ***/
**xx Vexefdlename” [filenamel[.csv] SubcarrierCode] *xk/
***/
**x TSQAKEC 10373-6 DFT CALCULATION *xx/
**% VewSion history: *xk/
**% JUL 2000, version 1.1: original published version *xk/
¥***APR 2008, version 2.0: add the Bartlett window *xAk/
S 28— e rstonr 2 —pubtished—~erstonr—withrevistonr—kx=
/*** SEP 2010, version 3.0: support higher subcarrier freq. ***/

/***/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

20 © ISO/IEC 2012 — All rights reserved

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

#define MAX_ SAMPLES 50000
#define MAX POINTS 500

#define MAX MOYENNE 200

double pi; /* pi=3.14.... */

/* Array for time and sense coil voltage vd */

double vtime[MAX SAMPLES]; /* time array */
double vd[MAX SAMPLES]; /* Array for different coil voltage */

/***/

Vaadd Read CSV File Function *x*/
/*** ***/
[FE* Description: *x %
[FE* This function reads the table of time and sense coil *Xx*Y/
[xH* voltage from a File in CSV Format P/
/*** ***/
[xx* Input: filename * Kk /
/*** ***/
[xH* Return: Number of samples (sample Count) *xK/
VA 0 if an error occurred *xK/
/*** ***/
[xx* Displays Statistics: * Kk /
/*** ***/
[FE* Filename, SampleCount, Sample rate, Max/Min Voltage ***/

/***/

int readcsv (char* fname)
{
double a,b;
double max vd,min vd;
int 1i;
FILE *sample file;

/************ Open File ***********************************/

if (!strchr (fname, .'A%)) strcat (fname, ".csv");

if ((sample file. ="fopen(fname, "r"))== NULL)
{
printf ("Cannot open input file %s.\n", fname);
return 0;

}

/**/

/* Réadl' CSV File */
/**/
max vd=-le-9F;

min vd=-max vd;

i=0;

while (!feof (sample file))

1
if (i>=MAX SAMPLES)
{

printf ("Warning: File truncated !!!\n");
printf ("To much samples in file %$s\b\n", fname) ;
break;

}
fscanf(sampleifile,"%Lf,%Lf\n", &a, &b);
vtime[i] = a;

© ISO/IEC 2012 - All rights reserved 21

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

vdl[i]

if (vd
d

if (v
i++;

}

>max_vd) max vd=vd[i];

b;
]
]<min vd) min vd=vd[i];

[i
[i

fclose (sample file);

printf
printf
printf
printf
printf
printf
return i;

—~ e~~~ o~ o~

double cl

double w0,
double Wb;

int i, k¢

doubte fc;

[rHrFHEFxXFALAL* Digplays Statistics
printf ("\n***\n") ;

"\nStatistics: \n");

Filename : %$s\n", fname) ;
Sample count: %d\n",1i);

************************/

Sample rate : %$1.0f MHz\n",le-6/(vtime[l]-vtime[0]));

Max (vd) : %4.0f mvAn",max vd*1000) ;
Min (vd) : %4.0f mvVAn",min vd*1000) ;

/**************** End Readcsv ***************/

yoid dft (int count, int CarnderDivider)

double cO0 real,cO0 imagy,cO0 abs,cO phase;

real,cl imag,cl abs,cl phase;

double CZ:real,cZ_imag,c2_abs,c2_phase;
int N_data,centlen,;start;

wu ,wiy
/* Bartlett window coefficient */

***/

* %k DET Discrete Fourier Transformation xHxAx/
************************‘k**************************************/
rxx Description: *x %/
kK This function calculate the Fourier coefficignt *xkx [
* % % ***/
kA k Input: Number of samples xA K/
* KK Carrier divider of the subcarrie=x * Kk [
* * % ***/
* Kk Global Variables: *xkx [
* % % ***/
* Kk x Displays Results: xA K/
* * % ***/
* kK Carrier coefficient *Ax/
*Ax Upper sideband coefficieng *Kkx/
* %k Lower sideband coefficignt xHxAx/
* * % ***/

***/

/* add variable for carrier frequency */

2 =
LC=10.00T0,

w0= (double) (fc*2.0) *pi; /* carrier 13.56 MHz */
wu= (double) (1.0+1.0/CarrierDivider) *w0; /* upper sideband 14.41 MHz */
wl=(double) (1.0-1.0/CarrierDivider) *w0; /* lower sideband 12.71 MHz */
/* real part of the carrier fourier coefficient */

/* imag part of the carrier fourier coefficient */

/* real part of the up. sideband fourier coefficient */

/* imag part of the up. sideband fourier coefficient */

c0 _real=0;
c0_imag=0;
cl real=0;
cl imag=0;

22

© ISO/IEC 2012 — All rights reserved

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

c2 real=0; /* real part of the lo. sideband fourier coefficient */
c2 imag=0; /* imag part of the lo. sideband fourier coefficient */

center=(count+1)/2; /* center address */

/********** Signal Selection ******************************/

/* Number of samples for six subcarrier periods */
N data=(int) (0.5+6.0F*CarrierDivider/ (vtime[2]-vtime[1l]) /fc)
/* Note: (vtime[2]-vtime[l]) is the scope sample rate */

start=center - (int) N data / 2;

/******************* DFET ********************************/

for(i=0;1i<=N_data-1;i++)
{
/* Bartlett window */
if ((N_data & 1) == 0)
{
/* N_data is even */
if (1 < (int) N data /2)
{
Wb=2.0F*i/(double)(N_data - 1);
}
else
{
Wb=2.0F* (N _data-i-1)/ (double) (N:data - 1);
}
}
else
{
/*N data is odd */
if (i < (int) N data /2)
{
Wb:2.0F*i/(double)(N_data - 1);
}
else
{
Wo=2.0F-2(.0F*i/ (double) (N data - 1);
}

}

k=isstart;

c0' real=cO0_real+vd[k]* (double)cos (wO*vtime [k]) *Wb;
c0_imag=c0_imag+vd[k]* (double)sin (wO*vtime [k]) *Wb;
cl real=cl real+vd[k]* (double)cos (wu*vtime [k]) *Wb;
cl imag=cl imag+vd[k]* (double) sin (wu*vtime [k]) *Wb;
T _J_cal—p eVt tdoob e rcostw l_J_uLcLJxJ) “THo
c2_imag=c2_1mag+vd[]1* (double)sin(wl*vtime[k]) *Wb;

}

/******************* DFT Scale 'k'k'k************************/
cO0 real=4.0F*cO real/(double) N data;

cO0 _imag=4.0F*cO imag/ (double) N data;
cl real=4.0F*cl real/(double) N _data;

© ISO/IEC 2012 — All rights reserved 23

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

	"PICC Type A for bit rates of fc/128, fc/64, fc/32 and fc/16"
	"PICC Type B for bit rates of fc/128, fc/64, fc/32 and fc/16"
	7.2.2.4 PICC Type A or Type B for bit rates of fc/8, fc/4 and fc/2
	E.2.1 Sampling for bit rates of fc/128, fc/64, fc/32 and fc/16
	E.2.2 Sampling for bit rates of fc/8, fc/4 and fc/2
	E.3.1 Filtering for bit rates of fc/128, fc/64, fc/32 and fc/16
	E.3.2 Filtering for bit rates of fc/8, fc/4 and fc/2
	E.5.1 Envelope smoothing for bit rates of fc/128, fc/64, fc/32 and fc/16
	E.5.2 Envelope smoothing for bit rates of fc/8, fc/4 and fc/2

