

Reference number
ISO/IEC 10373-6:2011/Amd.4:2012(E)

© ISO/IEC 2012

INTERNATIONAL
STANDARD

ISO/IEC
10373-6

Second edition
2011-01-15

AMENDMENT 4
2012-12-15

Identification cards — Test methods —

Part 6:
Proximity cards

AMENDMENT 4: Bit rates of fc/8, fc/4 and
fc/2 and frame size from 512 to 4096 bytes

Cartes d'identification — Méthodes d'essai —

Partie 6: Cartes de proximité

AMENDEMENT 4: Débits binaires de fc/8, fc/4 et fc/2 et tailles de trame
allant de 512 à 4096 octets

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

 COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56  CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2012 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

© ISO/IEC 2012 – All rights reserved iii

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 4 to ISO/IEC 10373-6:2011 was prepared by Joint Technical Committee ISO/IEC JTC 1,
Information technology, Subcommittee SC 17, Cards and personal identification.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

© ISO/IEC 2012 – All rights reserved 1

Identification cards — Test methods —

Part 6:
Proximity cards

AMENDMENT 4: Bit rates of fc/8, fc/4 and fc/2 and frame size from
512 to 4096 bytes

Page 10, Figure 5

Replace component "C3" in Figure 5 with the following:

C3

Page 11, 5.4.2

Add the following two paragraphs at the end of 5.4.2:

"Position 'a' of J2 shall be used for testing bit rates of fc/128, fc/64, fc/32 and fc/16.

Position 'b' of J2 shall be used for testing bit rates of fc/8, fc/4 and fc/2."

Page 16, 7.1.4.1

Replace paragraph with the following:

"This test is used to determine the index of modulation of the PCD field as well as the rise and fall times and
the overshoot values as defined in ISO/IEC 14443-2 for all supported PCD to PICC bit rates."

Page 17, 7.1.4.2

Replace step g) with the following:

g) Repeat steps c) to f) for various positions within the operating volume and all supported PCD to PICC bit
rates.

J2

a b

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

2 © ISO/IEC 2012 – All rights reserved

Page 17, 7.1.5.1

Replace paragraph with the following:

"This test is used to verify that a PCD correctly detects the load modulation of a PICC which conforms to
ISO/IEC 14443-2 for PICC to PCD bit rates of fc/128, fc/8, fc/4 and fc/2, if supported."

Page 17, 7.1.5.2

Replace step h) with the following:

h) Repeat steps b) to g) for various positions within the operating volume for PICC to PCD bit rates of fc/128,
fc/8, fc/4 and fc/2, if supported.

Page 18, 7.2.1.1

Delete NOTE and replace first sentence of paragraph with the following:

"The purpose of this test is to determine the load modulation amplitude VLMA of the PICC within the operating
field range [Hmin, Hmax] as specified in ISO/IEC 14443-2 for PICC to PCD bit rates of fc/128, fc/8, fc/4 and fc/2,
if supported."

Page 18, 7.2.1.2

Replace second paragraph of Step 2 with the following:

"A REQA or a REQB command sequence as defined in ISO/IEC 14443-3 shall be sent by the Test PCD to
obtain a signal or load modulation response from the PICC when testing PICC transmission at a bit rate of
fc/128. An S(PARAMETERS) sequence as defined in ISO/IEC 14443-4 and an I-block shall be sent by the
Test PCD to obtain a signal or load modulation response from the PICC when testing optional PICC
transmission bit rates of fc/8, fc/4 and fc/2."

Add Note 1 after second paragraph of Step 2 and renumber subsequent Notes:

"NOTE 1 No load modulation test is required for bit rates of fc/64, fc/32 and fc/16 because these bit rates use the same
subcarrier frequency of fc/128."

Page 19, 7.2.2.2

Replace 7.2.2.2 heading text with the following:

"PICC Type A for bit rates of fc/128, fc/64, fc/32 and fc/16"

Page 20, 7.2.2.3

Replace 7.2.2.3 heading text with the following:

"PICC Type B for bit rates of fc/128, fc/64, fc/32 and fc/16"

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

© ISO/IEC 2012 – All rights reserved 3

Page 20, 7.2.2.3.1

Replace first paragraph with the following:

"Three test conditions are defined with timings at the border of the PICC modulation waveform timing
parameters zone defined in ISO/IEC 14443-2, 9.1.2:"

Replace last dash text with the following:

 minimum and maximum modulation index m for the associated field strength applied (see
ISO/IEC 14443-2, 9.1.2).

Page 20, 7.2.2.3.2

Replace second, third and fourth paragraph with the following:

"For each optional PCD to PICC bit rate supported by the PICC, the PICC shall operate under the conditions
defined in 7.2.2.3.1 after selection of that optional bit rate. This PICC shall respond correctly to an I-block
transmitted at that optional bit rate."

Page 20

Renumber existing subclause 7.2.2.4 to 7.2.2.5 and add new subclause 7.2.2.4:

7.2.2.4 PICC Type A or Type B for bit rates of fc/8, fc/4 and fc/2

See 7.2.2.3.

Page 23, Annex A

Replace all occurrences of "for bit rates of fc/64, fc/32 and fc/16" with "for bit rates higher than fc/128".

Page 27, Table A.1

Replace "From fc/128 to fc/16" with "All bit rates".

Page 34

Add new subclause E.2.1 and move second sentence of E.2 and Figure E.2 to this subclause:

E.2.1 Sampling for bit rates of fc/128, fc/64, fc/32 and fc/16
STANDARDSISO.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 10

37
3-6

:20
11

/AMD4:2
01

2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

4 © ISO/IEC 2012 – All rights reserved

Page 35

Add new subclause E.2.2:

E.2.2 Sampling for bit rates of fc/8, fc/4 and fc/2

The time and voltage data of a PCD frame containing short and long modulation pulses (preferably a complete
S(DESELECT) command) as illustrated in Figure E.3, with at least 20 carrier periods before the first and after
the last modulation pulse, shall be transferred to a suitable computer.

Long modulation pulse
e.g. SOF low

Short modulation pulses
e.g. (10101010)b

Figure E.3 — Modulation pulses

Page 35

Add new subclause E.3.1 and move existing paragraph of E.3 and Figure E.3 to this subclause:

E.3.1 Filtering for bit rates of fc/128, fc/64, fc/32 and fc/16

Page 35

Add new subclause E.3.2:

E.3.2 Filtering for bit rates of fc/8, fc/4 and fc/2

A 4th order, Butterworth type band pass filter with center frequency of 13,56 MHz and 15 MHz 3-dB bandwidth
shall be used for filtering the DC and higher harmonic components.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

© ISO/IEC 2012 – All rights reserved 5

Page 36

Add new subclause E.5.1 and move existing paragraph of E.5 and Figure E.4 to this subclause:

E.5.1 Envelope smoothing for bit rates of fc/128, fc/64, fc/32 and fc/16

Page 36

Add new subclause E.5.2:

E.5.2 Envelope smoothing for bit rates of fc/8, fc/4 and fc/2

No smoothing of signal envelope shall be applied.

Page 36, E.6

Add the following paragraph and figure after the paragraph:

For bit rates of fc/8, fc/4 and fc/2 the minimum value of modulation index m shall be determined within the
complete PCD frame (see Figure E.5.). The PCD frame shall contain (10101010)b.

Minimum value of
modulation index m

Time

Amplitude

Figure E.5 — Minimum value of modulation index m

Page 36, E.7

Add at the end of paragraph:

For bit rates of fc/8, fc/4 and fc/2 the timings shall be determined at positions with long modulation pulse
positions e.g. tf at transition to SOF low and tr at transition to EOF high.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

6 © ISO/IEC 2012 – All rights reserved

Page 38

Add after line "double b; //Type B":

"double bVHBR; //Bit rates of fc/8, fc/4 and fc/2"

Page 53

Replace function "createtime" with:

"void createtime(TIMES *new, double tr, double tf, double b, double bVHBR, double
trstartind, double trendind, double tfstartind, double tfendind, double t1,
double t1startind, double t1start, double t1endind, double t2, double t2startind,
double t2start, double t3, double t3end, double t3endind, double t4, double
t4endind, double t5, double t5startind, double t6, double t6end, double t6endind,
double a, double tploone)"

Add after line "new->b=b;":

"new->bVHBR=bVHBR;"

Page 59

Add following function:

// Finds the value of m_min for bit rates of fc/8, fc/4 and fc/2

void Mminfinder(double *env, double Hmax, double Hmin, double *HmaxVHBR, TIMES
*timeres, int numsamples)
{
 int i=0;
 int j=0;
 double compare_hi=0.0;
 double compare_lo=0.0;
 double compare=0.0;
 double difference=0.0;
 int going_up=0;
 double ampl=0.0;
 double ampl_max=0.0; // represents the amplitude (Hmax-b), and indirectly
"m".
 double m_deviation=0.0; // countermeasure 1: m_min < 0.2*m is not considered
 double Hmax_cm=0.0; // countermeasure 2: m_min does not start or end on
borders
 double b_cm=0.0;
 double mmin=0.0;
 double mmin_cum=0.0;

 // Skip all zeros
 while (env[j]==0)
 j++;

 // where do we start?
 difference=env[j]-env[j+1];
 if (difference<0)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

© ISO/IEC 2012 – All rights reserved 7

 {
 going_up=1; // going up
 compare_lo=env[j];
 }
 else if (difference>0)
 {
 going_up=0; // going down
 compare_hi=env[j];
 }
 compare=env[j];

 ampl_max=(Hmax-Hmin);
 m_deviation=ampl_max*0.2;
 Hmax_cm=Hmax*0.95;
 b_cm=Hmin*1.05;
 timeres->bVHBR=0;

 for (i=j; i<=numsamples-j; i++)
 {
 if (going_up==0) // GOING DOWN
 {
 if (compare>=env[i])
 {
 compare=env[i];
 }
 else if (compare<env[i])
 {
 compare=env[i];
 compare_lo=env[i];
 going_up=1; // change direction
 ampl=(compare_hi-compare_lo);
 mmin=(ampl/(compare_hi+compare_lo))*100;
 if (ampl>m_deviation && ampl<ampl_max && (compare_hi<Hmax_cm ||
compare_lo>b_cm)) //Countermeasures
 {
 *HmaxVHBR=compare_hi;
 timeres->bVHBR=compare_lo;
 ampl_max=ampl;
 }
 }
 }
 if (going_up==1) // GOING UP
 {
 if (compare<=env[i])
 {
 compare=env[i];
 }
 else if (compare>env[i])
 {
 compare=env[i];
 compare_hi=env[i];
 going_up=0; // change direction
 ampl=(compare_hi-compare_lo);
 mmin=(ampl/(compare_hi+compare_lo))*100;
 if (ampl>m_deviation && ampl<ampl_max && (compare_hi<Hmax_cm ||
compare_lo>b_cm)) //Countermeasures
 {
 *HmaxVHBR=compare_hi;
 timeres->bVHBR=compare_lo;
 ampl_max=ampl;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

8 © ISO/IEC 2012 – All rights reserved

 mmin_cum=mmin;
 }
 }
 }
 }
 if (*HmaxVHBR==0 || timeres->bVHBR==0) // in case Waveform has only two
levels (typical 1M7) Mmin=M
 {
 *HmaxVHBR=Hmax;
 timeres->bVHBR=Hmin;
 }
}

Page 59

Replace function "envfilt" with the following:

int envfilt(int rate, double *output, double *toutput, int filterlength, double
tini, double tend, int lengthp, double *envelope)

Page 60

Replace line "LinearConvolution(cof, output, envelope, lengthf, lengthp);" with the
following:

 if (rate==106 || rate==212 || rate==424 || rate==848)
 {
 LinearConvolution(cof, output, envelope, lengthf, lengthp);
 }

 else if (rate==1700 || rate==3400 || rate==6800)
 {
 cof[0]=1;
 for (xx=1; xx<2000; xx++)
 cof[xx]=0;
 lengthf=1;
 LinearConvolution(cof, output, envelope, lengthf, lengthp);
 }

Page 62

Add in function "tfinder" after line " int i=0;" the following:

 double *toutput2=NULL;
 int counter=0;
 int rev_counter=0;
 int VHBR_step=0;
 double VHBR_tr=0.0;
 double VHBR_tf=0.0;
 double tr_accum=0.0;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

© ISO/IEC 2012 – All rights reserved 9

 double tf_accum=0.0;
 int tr_counter=0;
 int tf_counter=0;
 double t_one_sample=0.0;
 double tlo=0.0;
 double vlo=0.0;
 double thi=0.0;
 double vhi=0.0;

 toutput2=toutput;

Page 65

Replace line "createtime(timeres,0,0,0,0,0,0,0,t1,……,0,0,0,0);" with:

"createtime(timeres,0,0,0,0,0,0,0,0,t1,t1startind,t1start,t1endind,t2,t2startind,
t2start,t3,t3end,t3endind,t4,t4endind,0,0,0,0,0,0,0);"

Page 67

Replace line "createtime(timeres,0,0,0,0,0,0,0,……,a,tploone);" with:

"createtime(timeres,0,0,0,0,0,0,0,0,t1,t1startind,t1start,t1endind,0,0,0,0,0,0,0,
0,t5,t5startind,t6,t6end,t6endind,a,tploone);"

Page 67

Replace complete code for 'case B' with:

 {
 switch (rate)
 {
 case 106:
 case 212:
 case 424:
 case 848:
 {
 B_low=b+0.1*(Hmax-b); // Calculates target
 flag=localizador(envc,toutput,B_low,&crosses,env_length); //
Finds target
 if (flag>=2)
 {
 crosses_WORK=crosses;
 tploone=crosses_WORK->time; // Temporary values
are stored for future use
 while (x_improv<flag)
 {
 tplotwo=crosses_WORK->time; // Temporary values
are stored for future use
 vplotwo=crosses_WORK->volt;
 crosses_WORK=crosses_WORK->sig;
 x_improv++;
 }

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

10 © ISO/IEC 2012 – All rights reserved

 freelist(crosses);
 }
 else
 {
 fprintf(stdout,"Monotony not fulfilled\n");
 }

 B_hi=Hmax-0.1*(Hmax-b); // Calculates target
 flag=localizador(envc,toutput,B_hi,&crosses2,env_length); //
Finds target
 if (flag>=2)
 {
 x_improv=0;
 flag_improv=0;
 crosses_WORK=crosses2;
 while (x_improv<flag)
 {
 if (crosses_WORK->time<tploone)
 {
 tphione=crosses_WORK->time; // Temporary values
are stored for future use
 vphione=crosses_WORK->volt;
 }

 if (crosses_WORK->time>tplotwo && flag_improv==0)
 {
 tphitwo=crosses_WORK->time; // Temporary values
are stored for future use
 vphitwo=crosses_WORK->volt;
 flag_improv=1;
 }
 crosses_WORK=crosses_WORK->sig;
 x_improv++;
 }
 freelist(crosses2);
 }

 else
 {
 fprintf(stdout,"Monotony not fulfilled\n");
 }

 tf=tploone-tphione; // Definitive values are calculated and
stored for display
 tr=tphitwo-tplotwo;
 tfstartind=tphione; // Other important values for the coming
functions
 tfendind=tploone;
 trstartind=tplotwo;
 trendind=tphitwo;

 createtime(timeres,tr,tf,b,0,trstartind,trendind,tfstartind,tfendind,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
 }
 break;

 case 1700:
 case 3400:
 case 6800:
 {

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

© ISO/IEC 2012 – All rights reserved 11

 B_low=b+0.1*(Hmax-b); // Calculates target
 B_hi=Hmax-0.1*(Hmax-b); // Calculates target

 flag=localizador(envc,toutput,B_low,&crosses,env_length);
 flag2=localizador(envc,toutput,B_hi,&crosses2,env_length);

 tfstartind=crosses2->time; // Reused as start point for
overshoot
 tfendind=crosses->time; // and undershoot

 // LOCATE ADJACENT POINTS
 while (crosses->sig!=NULL && crosses2->sig!=NULL)
 {
 tlo=crosses->time;
 thi=crosses2->time;
 if (thi<tlo) // FALLING EDGE
 {
 if (crosses2->sig->time < tlo) // Discard Point
 crosses2=crosses2->sig;
 else if (crosses2->sig->time > tlo) // Analysis tf
 {
 vlo=crosses->volt;
 vhi=crosses2->volt;
 while (toutput2[counter]==0) // set counters
 {
 counter++;
 rev_counter++;
 }
 t_one_sample=toutput2[counter+2]-toutput2[counter+1];
 while (toutput2[counter]<=thi) // set counters
 {
 counter++;
 rev_counter++;
 }
 while (toutput2[rev_counter]<=tlo) // set counters
 rev_counter++;

 while (vlo<vhi)
 {
 vlo=envc2[rev_counter-VHBR_step];
 vhi=envc2[counter+VHBR_step];
 VHBR_step++;
 }
 if (vlo==vhi)
 VHBR_step=VHBR_step*2;
 else if (vlo>vhi)
 VHBR_step=VHBR_step*2-1;

 VHBR_tf=VHBR_step*t_one_sample;
 tf_counter++;
 tf_accum=tf_accum+VHBR_tf;

 VHBR_step=0.0; // Reset Counters
 VHBR_tf=0.0;
 counter=0;
 rev_counter=0;
 crosses2=crosses2->sig;
 }
 }

 else if (tlo<thi) // RISING EDGE

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

12 © ISO/IEC 2012 – All rights reserved

 {
 if (crosses->sig->time < thi) // Discard Point
 crosses=crosses->sig;
 else if (crosses->sig->time > thi) // Analysis tr
 {
 vlo=crosses->volt;
 vhi=crosses2->volt;
 while (toutput2[counter]==0) // set counters
 {
 counter++;
 rev_counter++;
 }
 t_one_sample=toutput2[counter+2]-toutput2[counter+1];
 while (toutput2[counter]<=tlo) // set counters
 {
 counter++;
 rev_counter++;
 }
 while (toutput2[rev_counter]<=thi) // set counters
 rev_counter++;

 while (vlo<vhi)
 {
 vhi=envc2[rev_counter-VHBR_step];
 vlo=envc2[counter+VHBR_step];
 VHBR_step++;
 }
 if (vlo==vhi)
 VHBR_step=VHBR_step*2;
 else if (vlo>vhi)
 VHBR_step=VHBR_step*2-1;

 VHBR_tr=VHBR_step*t_one_sample;
 tr_counter++;
 tr_accum=tr_accum+VHBR_tr;

 VHBR_step=0.0; // Reset Counters
 VHBR_tr=0.0;
 counter=0;
 rev_counter=0;
 crosses=crosses->sig;
 }
 }
 }
 // Calculate and Save Parameters
 tf=tf_accum/tf_counter; // Definitive values are calculated
and stored for display
 tr=tr_accum/tr_counter; // Reused as end point for overshoot
 trendind=crosses2->time;
 trstartind=crosses->time;

 createtime(timeres,tr,tf,b,0,trstartind,trendind,tfstartind,tfendind,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0);
 }
 break;
 }
 }
 break;
 }
}

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

© ISO/IEC 2012 – All rights reserved 13

Page 71

Replace:

"while (index_samples<=samples)
{
if (env2[index_samples]>above)"

with:

"while (env2[index_samples]!=0)
{
if (env2[index_samples]>above)"

Page 72

Replace:

"while (toutput[index_samples]<(timesp->trstartind))
{
if (env2[index_samples]<above_b && env2[index_samples]!=0)"

with:

"while (env2[index_samples]!=0)
{
if (env2[index_samples]<above_b)"

Page 72

Replace function declaration "display" with the following:

"void display(char type, int rate, SHOOTREADER *shootreader2, TIMES *timesp,
double Hmax, double m, double mmin)"

Page 73

Replace line "fprintf(stdout,”Type B – Bitrate %d\n", rate);" with the following:

"if (rate<=848)
 fprintf(stdout,"Type B – bit rate %d\n", rate);
else
 fprintf(stdout,"Type VHBR – bit rate %d\n", rate); "

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

14 © ISO/IEC 2012 – All rights reserved

Page 74

Add after line " fprintf(stdout,"m = %f %% \n",m);":

"if((rate==1700 || rate==3400 || rate==6800))
 fprintf(stdout,"m_min = %f %% \n", mmin); "

Page 74

Replace function "main" with the following:

 int main (int argc, char *argv[])

{
 char type;
 int rate;
 char voltstr[25]; // intermediate char array to modify the voltage
values
 char timestr[25]; // intermediate char array to modify the time
values
 double snum=0;
 double tnum=0;
 double t=0;
 int filterlength=0;
 double Hmax=0;
 double HmaxVHBR=0;
 double Hmin=0;
 double Hmax2=0;
 double Hmin2=0;
 FILE *pointfile=NULL;
 FILE *input_u2=NULL;
 FILE *poutput=NULL;
 double m=0.0;
 double mmin=0.0;
 int length=0;
 double val=0;
 int posval=0;
 int negval=0;
 double tini=0;
 double tfin=0;
 int samples=0;
 int out_i=0;
 int length_total=0;
 int sample_ini=0;
 int sample_end=0;
 int flag_cut=0;
 int samplesp=0;
 int fi=0; // Filter generic index
 double b1=0; // Filter parameters
 double b2=0;
 double b3=0;
 double b4=0;
 double b5=0;
 double a1=0;
 double a2=0;
 double a3=0;
 double a4=0;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

© ISO/IEC 2012 – All rights reserved 15

 double a5=0;
 double freq1=0;
 double freq2=0;
 double as[5]={0};
 double bs[5]={0};
 double t0=0;
 double tlast=0;
 int lineskip=0;
 double *voutput=malloc (sizeof(double)*MAX_SAMPLES);
 double *toutput=malloc (sizeof(double)*MAX_SAMPLES);
 double *envelope=malloc (sizeof(double)*MAX_SAMPLES);
 double *vfilter=malloc (sizeof(double)*MAX_SAMPLES);
 double *tfilter=malloc (sizeof(double)*MAX_SAMPLES);
 TIMES *timesp=(TIMES *)malloc(sizeof(TIMES));
 TIMES *timesp2=(TIMES *)malloc(sizeof(TIMES));
 SHOOTREADER *shootreader2=(SHOOTREADER *)malloc(sizeof(SHOOTREADER));

 if (voutput!=NULL && toutput!=NULL && envelope!=NULL && vfilter!=NULL &&
tfilter!=NULL && timesp!=NULL && timesp2!=NULL && shootreader2!=NULL)
 {
 memset(voutput, 0, MAX_SAMPLES);
 memset(toutput, 0, MAX_SAMPLES);
 memset(envelope, 0, MAX_SAMPLES);
 memset(vfilter, 0, MAX_SAMPLES);
 memset(tfilter, 0, MAX_SAMPLES);

 type=*argv[1];
 rate=atoi(argv[2]);
 if (type!='A' && type!='B' && type!='V')
 fprintf(stdout, "Wrong Type (A, B or VHBR))");
 else if ((type=='A' || type=='B') && (rate!=106 && rate!=212 && rate!=424
&& rate!=848))
 fprintf(stdout, "Wrong bit rate (106, 212, 424, 848)");
 else if ((type=='V') && (rate!=1700 && rate!=3400 && rate!=6800))
 fprintf(stdout, "Wrong bit rate (1700, 3400, 6800)");
 else
 {
 if (type=='V')
 type='B';

pointfile=fopen(argv[3],"r");
 input_u2=fopen("pre_Hilbert.txt","w"); // modified-
intermediate amplitude vector

 if(pointfile!=NULL && input_u2!=NULL)
 {
 //1. LOAD DATA + CHECKING DATA (WITHOUT FILTER)
 for (lineskip=0; lineskip<10; lineskip++) // Skips the first 10
lines which are the header of csv files
 {
 skip_line (pointfile);
 }
 read_line (pointfile,voltstr, timestr);
 t0=atof(timestr);
 while (!feof(pointfile)) // Reading the lines of
the voltage input file
 {
 if (voltstr[0]!='\0')
 {
 snum=atof(voltstr);
 tnum=atof(timestr);
 if(snum<0)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

16 © ISO/IEC 2012 – All rights reserved

 negval++;
 else
 posval++;
 vfilter[samplesp]=snum;
 tfilter[samplesp]=tnum;
 samplesp++;
 read_line (pointfile,voltstr, timestr);
 }
 tlast=tfilter[samplesp-1];
 }
 samplesp=samplesp+3;

 samplesp=datacheck(posval, negval, samplesp, tlast, pointfile);

 tlast=tfilter[samplesp];

 //2. DATA FILTER BANDWIDTH (10 MHz OR 20 MHz DEPENDING ON BIT RATE)
 if (rate==106 || rate==212 || rate==424 || rate==848)
 {
 freq1=8.56e6/(1/(2*((tlast-t0)/(samplesp-1))));
 freq2=18.56e6/(1/(2*((tlast-t0)/(samplesp-1))));
 }
 else if (rate==1700 || rate==3400 || rate==6800)
 {
 freq1=6.06e6/(1/(2*((tlast-t0)/(samplesp-1))));
 freq2=21.06e6/(1/(2*((tlast-t0)/(samplesp-1))));
 }

 butterworth_coeffs(freq1, freq2, as, bs);
 b1=bs[0];
 b2=bs[1];
 b3=bs[2];
 b4=bs[3];
 b5=bs[4];
 a1=as[0];
 a2=as[1];
 a3=as[2];
 a4=as[3];
 a5=as[4];

 for (fi=0; fi<samplesp; fi++)
 {
 if (fi<7 || fi>samplesp-7)
 voutput[fi]=0;
 else
 voutput[fi]=(b1*vfilter[fi]+b2*vfilter[fi-1]+b3*vfilter[fi-
2]+
 b4*vfilter[fi-3]+b5*vfilter[fi-4]-a2*voutput[fi-1]-
 a3*voutput[fi-2]-a4*voutput[fi-3]-a5*voutput[fi-
4])/a1;
 }

 rewind (pointfile);
 lineskip=0;
 for (lineskip=0; lineskip<10; lineskip++) // Skips the first 10
lines (header of csv files)
 {
 skip_line (pointfile);
 }
 for (fi=0; fi<(samplesp-7); fi++) // Reading the lines of
the voltage input file

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

© ISO/IEC 2012 – All rights reserved 17

 {
 val=voutput[fi];
 read_line (pointfile,voltstr,timestr);
 fprintf(input_u2,"%s,%f\n",timestr,val);
 length++;
 }

 //3. HILBERT TRANSFORM AND THE COMPLEX ENVELOPE
 rewind(input_u2);
 hilbert("pre_Hilbert.txt"); // performs Hilbert transform

 poutput=fopen("output.txt","r"); // Hilbert transform output
vector

 read_line (poutput,voltstr,timestr);
 tini=atof(timestr);
 rewind (poutput);

 if(poutput!=NULL)
 {
 while (!feof(poutput)) // Reading the lines of the voltage input
file */
 {
 read_line (poutput,voltstr,timestr);
 if (timestr[0]!='\0')
 {
 snum=atof(voltstr);
 voutput[samples]=snum;
 t=atof(timestr);
 toutput[samples]=t;
 samples++;//==>US // Same variable as the one in
Hmaxfinder
 tfin=t;
 }
 }
 }
 else
 fprintf(stdout,"Error in Hilbert transform\n");
 fclose(poutput);

 //4. USING A SMOOTHING FILTER (MOV. AVG) TO REDUCE THE NOISE
 filterlength=3;
 length_total=envfilt(rate, voutput, toutput, filterlength, tini,
tfin, samples, envelope);

 //5. 100% OF H_INITIAL
 Hmaxfinder(envelope, &Hmax, &Hmin, length_total);

 //6. COMPUTING THE ISO BASED TIMES

 tfinder(type,envelope,toutput,tini,Hmax,Hmin,rate,length_total,timesp);

 //7. M_min FOR BIT RATES OF fc/8, fc/4 AND fc/2
 if (rate==1700 || rate==3400 || rate==6800)
 Mminfinder(envelope, Hmax, Hmin, &HmaxVHBR, timesp,
length_total);

 //8. CHECKING FOR ISO DEFINED MONOTONY
 if (rate==106 || rate==212 || rate==424 || rate==848)
 monocheck(envelope, toutput, Hmax, timesp, rate, type);

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

18 © ISO/IEC 2012 – All rights reserved

 out_i=0;
 while (out_i<MAX_SAMPLES) // Finds how many zeros are at the
beginning of vector envelope
 {
 if (envelope[out_i]==0 && flag_cut==0)
 {
 sample_ini=out_i;
 tini=toutput[sample_ini+1];
 }

 if (envelope[out_i]!=0)
 {
 flag_cut=1;
 sample_end=out_i;
 tfin=toutput[sample_end];
 }
 out_i++;
 }

 samples=sample_end-sample_ini-1; //==>US

 for (out_i=0; out_i<samples; out_i++)
 {
 voutput[out_i]=envelope[out_i+sample_ini+1];
 toutput[out_i]=toutput[out_i+sample_ini+1];
 }
 for (out_i=samples+1; out_i<MAX_SAMPLES; out_i++)
 {
 voutput[out_i]=0.0;
 toutput[out_i]=0.0;
 }

 tini=toutput[0];
 tfin=toutput[samples];

 //9. OVERSHOOT OF THE READER
 fprintf (stdout,"\n"); // 2nd set of functions, "New Line" printed
for debug purposes
 if (rate==106 || rate==212 || rate==424 || rate==848)
 {
 filterlength=3;
 length_total=envfilt(rate, voutput, toutput, filterlength, tini,
tfin, samples, envelope); // 2nd Filtering to find the alternate envelope
 Hmaxfinder(envelope, &Hmax2, &Hmin2, length_total);

 tfinder(type,envelope,toutput,tini,Hmax2,Hmin2,rate,length_total, timesp2);
 monocheck(envelope, toutput, Hmax2, timesp2, rate, type);
 // The parameters of the alternate envelope are calculated
 overshoot(timesp2,Hmax2,envelope,toutput,rate,type,samples,
shootreader2); // This time the over- and undershoots are found
 }
 else if (rate==1700 || rate==3400 || rate==6800)
 {
 filterlength=3;
 length_total=envfilt(106, voutput, toutput, filterlength, tini,
tfin, samples, envelope); // 2nd Filtering to find the alternate envelope
 Hmaxfinder(envelope, &Hmax2, &Hmin2, length_total);
 overshoot(timesp,Hmax,envelope,toutput,rate,type,samples,
shootreader2); // This time the over- and undershoots are found
 }

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

© ISO/IEC 2012 – All rights reserved 19

 //10. MODULATION
 m=modulation(type, Hmax, timesp->b);
 if((type=='B') && (rate==1700 || rate==3400 || rate==6800))
 mmin=modulation(type,HmaxVHBR, timesp->bVHBR);

 //11. DISPLAY
 display(type, rate, shootreader2, timesp, Hmax, m, mmin);
 }
 else if (pointfile==NULL || input_u2!=NULL)
 fprintf(stdout,"file(s) could not be opened \n");

 fclose(pointfile);
 fclose(input_u2);
 }
 }

 else
 fprintf(stdout, "Memory could not be allocated");

 free (voutput);
 free (toutput);
 free (envelope);
 free (vfilter);
 free (tfilter);
 free (timesp);
 free (timesp2);
 free (shootreader2);

 return 0;
}

Page 80

Replace Annex F with the following:

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

20 © ISO/IEC 2012 – All rights reserved

Annex F
(informative)

Program for the evaluation of the spectrum

The following program written in C language gives an example for the calculation of the magnitude of the
spectrum from the PICC.

/***/
/*** This program calculates the Fourier coefficients ***/
/*** of load modulated voltage of a PICC according ***/
/*** the ISO/IEC 10373-6 Test methods ***/
/*** The coefficients are calculated at the frequencies: ***/
/*** Carrier: Fcm (=13.5600 for 13.56 MHz) ***/
/*** Upper sideband: Fcm + fs ***/
/*** Lower sideband: Fcm - fs ***/
/*** fs is the subcarrier frequency and its value is: ***/
/*** Fcm/16 for bit rates up to fc/16, Fcm/8 for a bit rate ***/
/*** of fc/8, Fcm/4 for a bit rate of fc/4 or Fcm/2 for a ***/
/*** bit rate of fc/2 ***/
/***/
/*** Input: ***/
/*** File in CSV Format containing a table of two ***/
/*** columns (time and test PCD output voltage vd, clause 7)***/
/*** ***/
/*** data format of input-file: ***/
/*** ------------------------- ***/
/*** - one data-point per line: ***/
/*** (time[seconds], sense-coil-voltage[volts]) ***/
/*** - contents in ASCII, no headers ***/
/*** - data-points shall be equidistant in time ***/
/*** - modulation waveform centered ***/
/*** (max. tolerance: half of subcarrier cycle) ***/
/*** ***/
/*** ***/
/*** example for spreadsheet file (start in next line): ***/
/*** (time) (voltage) ***/
/*** 3.00000e-06,1.00 ***/
/*** 3.00200e-06,1.01 ***/
/*** ***/
/***/
/*** RUN: ***/
/*** “exefilename” [filename1[.csv] SubcarrierCode] ***/
/***/
/*** ISO/IEC 10373-6 DFT CALCULATION ***/
/*** Version history: ***/
/*** JUL 2000, version 1.1: original published version ***/
/*** APR 2008, version 2.0: add the Bartlett window ***/
/*** NOV 2008, version 2.1: published version with revision ***/
/*** SEP 2010, version 3.0: support higher subcarrier freq. ***/
/***/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

© ISO/IEC 2012 – All rights reserved 21

#define MAX_SAMPLES 50000
#define MAX_POINTS 500
#define MAX_MOYENNE 200

double pi; /* pi=3.14.... */

/* Array for time and sense coil voltage vd */
double vtime[MAX_SAMPLES]; /* time array */
double vd[MAX_SAMPLES]; /* Array for different coil voltage */

/***/
/*** Read CSV File Function ***/
/*** ***/
/*** Description: ***/
/*** This function reads the table of time and sense coil ***/
/*** voltage from a File in CSV Format ***/
/*** ***/
/*** Input: filename ***/
/*** ***/
/*** Return: Number of samples (sample Count) ***/
/*** 0 if an error occurred ***/
/*** ***/
/*** Displays Statistics: ***/
/*** ***/
/*** Filename, SampleCount, Sample rate, Max/Min Voltage ***/
/***/

int readcsv(char* fname)
{
 double a,b;
 double max_vd,min_vd;
 int i;
 FILE *sample_file;

 /************ Open File ***********************************/
 if (!strchr(fname, '.')) strcat(fname, ".csv");

 if ((sample_file = fopen(fname, "r"))== NULL)
 {
 printf("Cannot open input file %s.\n",fname);
 return 0;
 }
 /**/
 /* Read CSV File */
 /**/
 max_vd=-1e-9F;
 min_vd=-max_vd;
 i=0;

 while (!feof(sample_file))
 {
 if (i>=MAX_SAMPLES)
 {
 printf("Warning: File truncated !!!\n");
 printf("To much samples in file %s\b\n",fname);
 break;
 }
 fscanf(sample_file,"%Lf,%Lf\n", &a, &b);
 vtime[i] = a;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

22 © ISO/IEC 2012 – All rights reserved

 vd[i] = b;
 if (vd[i]>max_vd) max_vd=vd[i];
 if (vd[i]<min_vd) min_vd=vd[i];
 i++;
 }
 fclose(sample_file);

 /************ Displays Statistics ************************/
 printf("\n***\n");

 printf("\nStatistics: \n");
 printf(" Filename : %s\n",fname);
 printf(" Sample count: %d\n",i);
 printf(" Sample rate : %1.0f MHz\n",1e-6/(vtime[1]-vtime[0]));
 printf(" Max(vd) : %4.0f mV\n",max_vd*1000);
 printf(" Min(vd) : %4.0f mV\n",min_vd*1000);
 return i;
}/**************** End ReadCsv ***************/

/***/
/*** DFT : Discrete Fourier Transformation ***/
/***/
/*** Description: ***/
/*** This function calculate the Fourier coefficient ***/
/*** ***/
/*** Input: Number of samples ***/
/*** Carrier divider of the subcarrier ***/
/*** ***/
/*** Global Variables: ***/
/*** ***/
/*** Displays Results: ***/
/*** ***/
/*** Carrier coefficient ***/
/*** Upper sideband coefficient ***/
/*** Lower sideband coefficient ***/
/*** ***/
/***/
void dft(int count, int CarrierDivider)
{
 double c0_real,c0_imag,c0_abs,c0_phase;
 double c1_real,c1_imag,c1_abs,c1_phase;
 double c2_real,c2_imag,c2_abs,c2_phase;
 int N_data,center,start;
 double w0,wu,wl;
 double Wb; /* Bartlett window coefficient */

 int i,k;

 double fc; /* add variable for carrier frequency */

 fc=13.56e6;

 w0=(double)(fc*2.0)*pi; /* carrier 13.56 MHz */
 wu=(double)(1.0+1.0/CarrierDivider)*w0; /* upper sideband 14.41 MHz */
 wl=(double)(1.0-1.0/CarrierDivider)*w0; /* lower sideband 12.71 MHz */
 c0_real=0; /* real part of the carrier fourier coefficient */
 c0_imag=0; /* imag part of the carrier fourier coefficient */
 c1_real=0; /* real part of the up. sideband fourier coefficient */
 c1_imag=0; /* imag part of the up. sideband fourier coefficient */

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

ISO/IEC 10373-6:2011/Amd.4:2012(E)

© ISO/IEC 2012 – All rights reserved 23

 c2_real=0; /* real part of the lo. sideband fourier coefficient */
 c2_imag=0; /* imag part of the lo. sideband fourier coefficient */

 center=(count+1)/2; /* center address */

 /********** signal selection ******************************/

 /* Number of samples for six subcarrier periods */

 N_data=(int)(0.5+6.0F*CarrierDivider/(vtime[2]-vtime[1])/fc);

 /* Note: (vtime[2]-vtime[1]) is the scope sample rate */

 start=center - (int) N_data / 2;

 /******************* DFT ********************************/

 for(i=0;i<=N_data-1;i++)
 {
 /* Bartlett window */
 if ((N_data & 1) == 0)
 {
 /* N_data is even */
 if (i < (int) N_data /2)
 {
 Wb=2.0F*i/(double)(N_data - 1);
 }
 else
 {
 Wb=2.0F*(N_data-i-1)/(double)(N_data - 1);
 }
 }
 else
 {
 /*N_data is odd */
 if (i < (int) N_data /2)
 {
 Wb=2.0F*i/(double)(N_data - 1);
 }
 else
 {
 Wb=2.0F-2.0F*i/(double)(N_data - 1);
 }

 }

 k=i+start;

 c0_real=c0_real+vd[k]*(double)cos(w0*vtime[k])*Wb;
 c0_imag=c0_imag+vd[k]*(double)sin(w0*vtime[k])*Wb;
 c1_real=c1_real+vd[k]*(double)cos(wu*vtime[k])*Wb;
 c1_imag=c1_imag+vd[k]*(double)sin(wu*vtime[k])*Wb;
 c2_real=c2_real+vd[k]*(double)cos(wl*vtime[k])*Wb;
 c2_imag=c2_imag+vd[k]*(double)sin(wl*vtime[k])*Wb;
 }

 /******************* DFT scale ***************************/

 c0_real=4.0F*c0_real/(double) N_data;
 c0_imag=4.0F*c0_imag/(double) N_data;
 c1_real=4.0F*c1_real/(double) N_data;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 10
37

3-6
:20

11
/AMD4:2

01
2

https://standardsiso.com/api/?name=c4174c7512f85b9ccc45193edc55b121

	"PICC Type A for bit rates of fc/128, fc/64, fc/32 and fc/16"
	"PICC Type B for bit rates of fc/128, fc/64, fc/32 and fc/16"
	7.2.2.4 PICC Type A or Type B for bit rates of fc/8, fc/4 and fc/2
	E.2.1 Sampling for bit rates of fc/128, fc/64, fc/32 and fc/16
	E.2.2 Sampling for bit rates of fc/8, fc/4 and fc/2
	E.3.1 Filtering for bit rates of fc/128, fc/64, fc/32 and fc/16
	E.3.2 Filtering for bit rates of fc/8, fc/4 and fc/2
	E.5.1 Envelope smoothing for bit rates of fc/128, fc/64, fc/32 and fc/16
	E.5.2 Envelope smoothing for bit rates of fc/8, fc/4 and fc/2

