INTERNATIONAL STANDARD INTERNATIONAL ORGANIZATION FOR STANDARDIZATION•МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ•ORGANISATION INTERNATIONALE DE NORMALISATION andr. Click to view the full part of STANDARDS 150. COM. Click to view the full part of STANDARDS 150. O Textile machinery and accessories — Cylindrical sliver cans — Part II: Spring bottoms Matériel pour l'industrie textile - Pots cylindriques pour rubans -Partie II : Fonds à ressort First edition - 1978-11-15 UDC 677.051: 621.869.88 Ref. No. ISO 93/II-1978 (E) #### **FOREWORD** ISO (the International Organization for Standardization) is a worldwide federation of national standards institutes (ISO member bodies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been set up has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. PDF 0115093-2:1918 International Standard ISO 93/II was developed by Technical Committee ISO/TC 72, Textile machinery and accessories, and was circulated to the member bodies in June 1977. It has been approved by the member bodies of the following countries (South Africa, Rep. of Belgium Italy Czechoslovakia Japan Spain Egypt, Arab Rep. of Korea, Rep. of Switzerland France Mexico Turkey Germany, F. R. Netherlands U.S.S.R. India Poland Yugoslavia Ireland Romania The member body of the following country expressed disapproval of the document CANTIA United Kingdom on technical grounds: ## Textile machinery and accessories — Cylindrical sliver cans — Part II: Spring bottoms 1 SCOPE AND FIELD OF APPLICATION This International Standard specifies the principal features of spring bottoms, with and without pre-tension, used in cylindrical sliver cans specified in ISO 93/1. al feature. Click to STANDARDSISO. COM. Click to cylindrical sliver cans specified in ISO 93/1. #### 2 SYMBOLS AND PRINCIPAL FEATURES #### 2.1 Spring bottoms for cylindrical cans without castors #### 2.1.1 Symbols d = inside diameter of sliver can d_4 = outside diameter of spring plate h = height of sliver can h_2 = distance from top rim of can to surface of spring plate $h_3 =$ depth of spring plate $F_n =$ force of spring $F_{\rm v}$ = force of spring in top working position $L_o =$ length of unloaded spring L_{v} = length of spring in top working position (i.e. when constrained) FIGURE 1 - Spring bottom without pre-tension, type A FIGURE 2 - Spring bottom with pre-tension, type B #### 2.1.2 Principal features TABLE 1 — Principal features of spring bottoms — Types A and B | | Types A and B | | | | | | | | | | | |---|---|-------|---|---|--|--|---|---|--|--|--| | | Size of can
(see ISO 93/I) | | Characteris
without
pre-tension
Type A | | tics of springs
with
pre-tension
Type B | | Spring plate | | | | | | | d ¹⁾ | h | L _o ± 30 | F _n 2) | L _o ± 30 | F _n ²⁾ | d ₄ | h ₃ | | | | | | mm | mm | mm | daN | mm | daN | mm | mm | | | | | × | 250
300
350
400 | 800 | 740 | 2,5
3,5
5
8 | 840 | 2,5
3,5
5 | 236
285
335
385 | 50 | | | | | | 225
250
300
350
400
500
600
700
800
900
1 000 | 900 | 840 | 2,5
3
4
6
8
13
7
22
28
35
43 | 940 | 2.5
3
4
6
9
14
18
22
28
35
43 | 215
236
285
335
385
485
585
682
780
880
980 | 50
50
50
50
50
55
60
70
85
100 | | | | | | 300
350
400
(450)
500
(550)
600
700
800
900 | 1 000 | 940 | 5
7
9
12
14
16
18
24
31
38
46 | 1 040 | 5
7
11
14
16
18
20
25
31
38
46 | 285
335
385
435
485
535
585
682
780
880
980 | 50
50
50
55
55
60
70
85
100 | | | | | | 400
500
600
700
800 | 1 100 | 1 040 | 11
16
20
25
34 | 1 140 | 13
19
22
27
34 | 385
485
585
682
780 | 50
55
60
70
85 | | | | | | 500
600
700
800
900
1 000 | 1 200 | 1 140 | 19
22
27
34
45
54 | 1 240 | 21
24
30
37
45
54 | 485
585
682
780
880
980 | 55
60
70
85
100
100 | | | | | | 800
900
1 000 | 1 300 | 1 240 | 37
45
54 | 1 340 | 39
47
56 | 780
880
980 | 85
100
100 | | | | ¹⁾ The values shown in parentheses are considered to be ²⁾ The values of F_n are a guide based on the mass (in kilograms) of average cotton sliver and slivers of similar density which the can will contain. For slivers of lower densities, reductions in the values of F_n will be necessary. ### 2.2 Spring bottoms for cylindrical cans with castors #### 2.2.1 Symbols d = inside diameter of sliver can d_4 = outside diameter of spring plate h = height of sliver can h_2 = distance from top rim of can to surface of spring plate $h_3 = \text{depth of spring plate}$ $F_n =$ force of spring $F_{\rm v}$ = force of spring in top working position L_o= length of unloaded spring $L_{v} =$ length of spring in top working position (i.e. when constrained) FIGURE 3 - Spring bottom without pre-tension, type C FIGURE 4 — Spring bottom with pre-tension, type D #### 2.2.2 Principal features TABLE 2 — Principal features of spring bottoms — | 1 | 1 ypes C and D | | | | | | | | | | | |------|---|-------|--|--|--|--|---|------------------------------------|--|--|--| | | Size of can
(see ISO 93/I) | | Characterist
without
pre-tension
Type C | | tics of springs
with
pre-tension
Type D | | Spring plate | | | | | | | d ¹⁾ | h | L _o ±30 | F _n 2) | L _o ±30 | F _n 2) | d ₄ | h ₃ | | | | | | mm | mm | mm | daN | mm | daN | mm | mm | | | | | | (400)
600 | 900 | 770 | 8
16 | 870 | 8
16 | 385
585 | 50
60 | | | | | | (400)
(450)
500 | 1 000 | 870 | 8
11
13 | 970 | 9
0j2
14 | 385
435
485 | 50
50
55 | | | | | | 600
700
800 | | | 17
22
28 | | 18
22
28 | 585
682
780 | 60
70
85 | | | | | | 900 | | | 36 | | 35 | 880 | 100 | | | | | | (450)
500
600
700
800
900 | 1 100 | 5 970 | 14
16
18
22
28
35
46 | 1 070 | 14
16
20
25
31
38
46 | 435
485
585
682
780
880
980 | 50
55
60
70
85
100 | | | | | 77.5 | 500
600
700
800
900
1 000
1 200 | 1 200 | 1 070 | 16
20
25
31
38
46
68 | 1 170 | 19
22
27
34
42
50
68 | 485
585
682
780
880
980
1 180 | 55
60
70
85
100
100 | | | | | | 800
900
1 000
1 200 | 1 300 | 1 170 | 34
42
50
68 | 1 270 | 37
45
54
73 | 780
880
980
1 180 | 85
100
100
100 | | | | - 1) The values shown in parentheses are considered to be non-preferred sizes. - 2) The values of F_n are a guide based on the mass (in kilograms) of average cotton sliver and slivers of similar density which the can will contain. For slivers of lower densities, reductions in the values of F_n will be necessary. #### **3 ORDER SPECIFICATION** The designation used for ordering a spring bottom for a cylindrical sliver can shall include the following particulars: - a) type; - b) characteristics of the spring, i.e. L_0 and F_n ; - c) dimensions of the spring plate, i.e. d_4 and h_3 . #### Example: Spring bottom for cylindrical sliver can, type D, length of unloaded spring $L_{\rm o}=1\,170\,{\rm mm}$, force of spring $F_{\rm o}=34\,{\rm daN}$, outside diameter of spring plate $d_4=780\,{\rm mm}$, depth of spring plate $h_3=85\,{\rm mm}$: Spring bottom D 1 170 \times 34 - 780/85 ISO 93/II STANDARDS ISO COM. Cick to view the full PDF of ISO 93-2: 1978