

INTERNATIONAL
STANDARD

ISO
13457

Third edition
2021-10

**Agricultural irrigation equipment —
Water-driven chemical injector pumps**

*Matériel agricole d'irrigation — Pompes doseuses à moteur
hydraulique pour l'injection de produits chimiques*

STANDARDSISO.COM : Click to view the full PDF & ISO 13457:2021

Reference number
ISO 13457:2021(E)

© ISO 2021

STANDARDSISO.COM : Click to view the full PDF of ISO 13457:2021

COPYRIGHT PROTECTED DOCUMENT

© ISO 2021

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Classification	3
4.1 Classification according to installation type	3
4.2 Classification according to mixing ratio	5
5 Marking	5
6 Technical characteristics	6
6.1 General	6
6.2 Materials	6
6.3 Connection of a water-driven injector pump to an irrigation system	6
7 Mechanical and function tests	7
7.1 General	7
7.2 Test of resistance to pressure	7
7.3 Test of watertightness of check valves	7
7.4 Test of range of working pressure	7
7.5 Test of resistance to draining	8
7.6 Test of injection rate as a function of inlet pressure	8
7.7 Drive water ratio test	9
7.8 Test of injection rate for proportional water-driven injector pump	9
7.9 Test of head loss for in-line water-driven injector pump	9
8 Durability	10
9 Information to be supplied by the manufacturer	11
Bibliography	12

STANDARDSISO.COM : Click to view the full PDF of ISO 13457:2021

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 23, *Tractors and machinery for agriculture and forestry*, Subcommittee SC 18, *Irrigation and drainage equipment and systems*.

This third edition cancels and replaces the second edition (ISO 13457:2008), which has been technically revised.

The main changes compared to the previous edition are as follows:

- the definitions have been updated;
- in [6.2](#), a new requirement has been added: Waterways that are not opaque shall be UV resistant if uncovered;
- in [Clause 8](#), the test method has been modified: both irrigation and injection water are filtered with a 100 µm filter element (instead of a 120 µm filter element).

Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

Agricultural irrigation equipment — Water-driven chemical injector pumps

1 Scope

This document specifies the construction, operational requirements and test methods for water-driven chemical injector pumps (hereinafter, water-driven injector pumps). These water-driven injector pumps are used to inject chemicals into irrigation systems. The chemicals include liquid fertilizers and solutions of fertilizers and other soluble agricultural chemicals such as acids and pesticides.

This document is applicable to water-driven injector pumps intended to operate at water temperatures of up to 50 °C and with the types and concentrations of chemicals routinely applied in irrigation.

It does not cover the function of backflow prevention devices, nor is it applicable to water-driven devices for injecting chemicals into an irrigation system operating on the basis of the Venturi principle.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 7-1, *Pipe threads where pressure-tight joints are made on the threads — Part 1: Dimensions, tolerances and designation*

ISO 7005-1, *Pipe flanges — Part 1: Steel flanges for industrial and general service piping systems*

ISO 7005-2, *Metallic flanges — Part 2: Cast iron flanges*

3 Terms and definitions

For the purposes of this document, the following terms and definitions.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <https://www.electropedia.org/>

3.1

water-driven chemical injector pump

water-driven injector pump

hydraulic pump intended to inject *chemicals* (3.12) into an irrigation system, powered by a single source energy supplied by irrigation water through a hydraulic motor, such as a piston or turbine

3.2

nominal size

numerical designation used to define the nominal size of the connection of the *water-driven injector pump* (3.1) to the irrigation system, by means of threads, flanges or other connecting device

3.3

minimum working pressure

p_{\min}

lowest pressure immediately upstream from a *water-driven injector pump* (3.1), following the manufacturer information, to ensure continuous operation and functionality specific to the device

Note 1 to entry: See [Clause 9](#) b) 14) for manufacturer information.

3.4

maximum working pressure

p_{\max}

highest pressure immediately upstream from a *water-driven injector pump* (3.1), following the manufacturer information, to ensure continuous operation and functionality specific to the device

Note 1 to entry: See [Clause 9](#) b) 14) for manufacturer information.

3.5

range of working pressures

all of the pressures between the *minimum working pressure* (3.3) and the *maximum working pressure* (3.4)

3.6

drive water

irrigation water used to operate an *on-line water-driven injector pump* (3.19) which is either ejected or returned to the irrigation system after use in the operative function

3.7

drive water flow rate

rate of flow of drive water used to operate an *on-line water-driven injector pump* (3.19)

3.8

drive water ratio

ratio of one unit volume of injected chemical to the volume of drive water required to inject one unit volume of chemical

3.9

drive water flow range

range of flow between minimum and maximum flows stated by the manufacturer to be appropriate for operating the pump

3.10

irrigation water flow rate

flow rate of irrigation water through the body of an *in-line water-driven injector pump* (3.18) or through the irrigation system to which an *on-line water-driven injector pump* (3.19) is connected in parallel

3.11

injection rate

pumping rate

flow rate of a *chemical* (3.12) injected into an irrigation system during operation of a *water-driven injector pump* (3.1)

3.12

chemical

liquid fertilizers, solutions of fertilizers or other soluble substances, such as acids, pesticides and herbicides, used in agriculture in liquid, solution or water-soluble form, normally applied through or otherwise injected into an irrigation system

3.13

chemical solution

water in which one or more *chemicals* (3.12) have been dissolved or diluted

3.14**irrigation system water flow rate**

sum of the *irrigation water flow rate* (3.10) and the *injection rate* (3.11)

3.15**mixing ratio**

ratio of *injection rate* (3.11) of a *water-driven injector pump* (3.1) or a chemical injection tank unit to *irrigation system water flow rate* (3.14)

Note 1 to entry: For example, an injection rate of 1 l/h into an irrigation water flow rate of 199 l/h gives an irrigation system water flow rate of 200 l/h, and a mixing ratio of 1:200.

3.16**stroke volume****pulse volume**

volume of *chemical solution* (3.13) injected into an irrigation system in one *water-driven injector pump* cycle

3.17**proportional water-driven injector pump**

water-driven injector pump (3.1) intended to maintain a relatively constant *mixing ratio* (3.15) throughout the period of its operation at the *irrigation water flow rates* (3.10) declared by the manufacturer

3.18**in-line water-driven injector pump**

water-driven injector pump (3.1) installed in the main irrigation system piping or in bypass piping

Note 1 to entry: See [Figure 1](#).

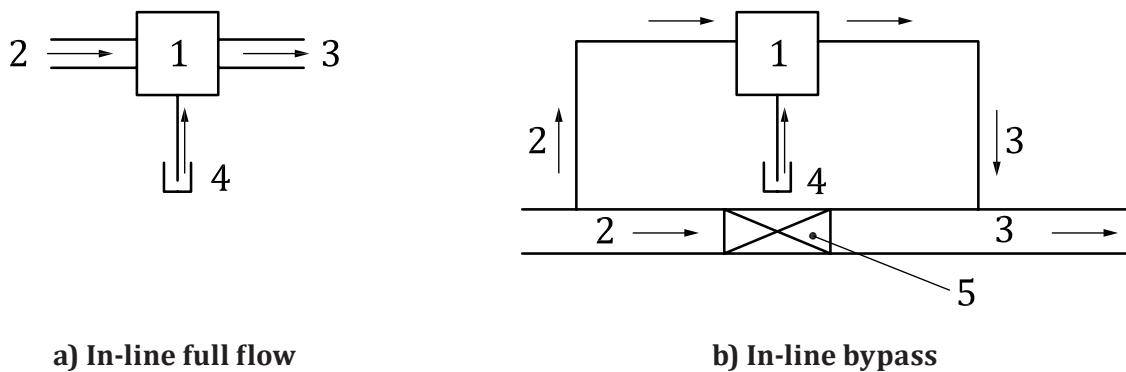
3.19**on-line water-driven injector pump**

water-driven injector pump (3.1) installed off the main irrigation system piping

Note 1 to entry: See [Figure 2](#).

3.20**chemical storage tank**

container for storing *chemicals* (3.12) and supplying them to a *water-driven injector pump* (3.1)


3.21**maximum suction head**

maximal distance between the centreline of the outlet of the *water-driven injector pump* (3.1) and the lowest level of the *chemical* (3.12) in the storage tank

4 Classification

4.1 Classification according to installation type

4.1.1 In-line water-driven injector pump (see [Figure 1](#))

Key

- 1 injector pump
- 2 inlet for irrigation water
- 3 outlet for irrigation water with injected chemicals
- 4 inlet for chemicals
- 5 valve

NOTE 1 The arrows denote the flow direction.

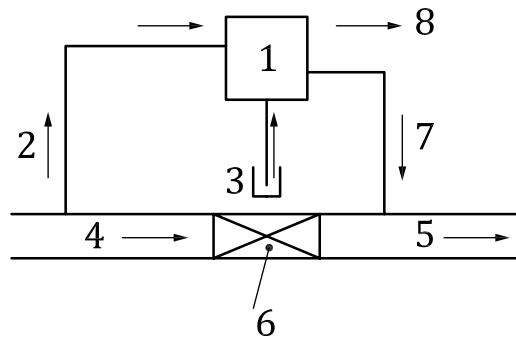

NOTE 2 The injection of a chemical occurs inside the water-driven injector pump.

Figure 1 — In-line water-driven injector pump

4.1.1.1 Full flow installation

4.1.1.2 Bypass flow installation

4.1.2 On-line water-driven injector pump (see [Figure 2](#))

Key

1	injector pump	5	irrigation water with injected chemicals
2	inlet for drive water	6	check valve
3	inlet for chemicals	7	outlet for chemicals
4	irrigation flow	8	outlet for drive water

NOTE 1 The arrows denote the flow direction.

NOTE 2 The injection of a chemical into the irrigation water occurs outside the water-driven injector pump. The outlet for the chemical is intended to be connected to the main irrigation system piping. The drive water from the drive water outlet cannot be returned to the main irrigation system piping.

NOTE 3 The drive water can be ejected from the water-driven injector pump as shown or returned to the irrigation system (see [Figure 1](#)).

Figure 2 — On-line water-driven injector pump

4.2 Classification according to mixing ratio

4.2.1 Proportional water-driven injector pump

4.2.1.1 Fixed mixing ratio

4.2.1.2 Adjustable mixing ratio

4.2.2 Non-proportional water-driven injector pump

5 Marking

The water-driven injector pump shall bear a clear, legible and durable marking giving the following information:

- name of the manufacturer or the manufacturer's trademark;
- nominal size;
- maximum working pressure (p_{\max});
- model number identical with that given in the manufacturer's catalogue;
- year of production or a mark identifying the production series;

- f) arrows indicating the direction of flow of water and chemicals into and out of the water-driven injector pump.

6 Technical characteristics

6.1 General

The water-driven injector pump shall employ means, such as a vacuum breaker valve, to prevent emptying of the chemical storage tank to the irrigation system through the water-driven injector pump in the event that the pressure in the water-driven injector pump falls below the pressure in the chemical storage tank.

The water-driven injector pump shall employ means, such as a check valve, to prevent irrigation water passing through the water-driven injector pump from entering the chemical storage tank.

It shall be possible to disassemble and clean those parts of the water-driven injector pump subject to clogging by the chemicals or by debris in the irrigation water. These parts may be fitted with a suitable filtration device accessible for the purpose of cleaning.

For on-line water-driven injector pumps (4.1.2), in which there is water loss due to the ejection of drive water out of the pump, the outlet through which the drive water is ejected shall be fitted with suitable means, such as a thread or a connector, to enable connection of a pipe for draining the outflow of drive water away from the pump.

NOTE For backflow prevention, refer to the specific requirements of each country.

6.2 Materials

Plastic parts of a water-driven injector pump that are exposed to ultraviolet (UV) radiation under normal field operating conditions shall include additives to improve their resistance to UV radiation.

Plastic parts that enclose waterways shall be opaque or shall be provided with an opaque cover designed to block all light from reaching clear waterway enclosures. Waterways that are not opaque shall be UV resistant if uncovered.

Plastic pipes conveying chemicals may be transparent and may be exposed to light.

All parts of a water-driven injector pump shall be resistant to, or protected from, those chemicals in concentrations approved or recommended for injection into irrigation systems, except as indicated in the manufacturer's literature.

6.3 Connection of a water-driven injector pump to an irrigation system

A water-driven injector pump shall be connected to an irrigation system by one of the following means:

- a) threads in accordance with ISO 7-1, except that other threads shall be allowed, provided that a suitable adapter is supplied with each threaded connection;
- b) cast-iron flanges in accordance with ISO 7005-2 or steel flanges in accordance with ISO 7005-1, with flanges made of other materials required to comply with the assembly dimensions (diameter of the distributing circle, number of holes) specified in ISO 7005-2;
- c) compression, grooved-end or other special fittings, such as plastic fittings.

7 Mechanical and function tests

7.1 General

Unless otherwise specified, perform all tests using water instead of a chemical solution as the injection liquid. Ensure that both irrigation and injection water are at a temperature between 15 °C and 35 °C and that they are filtered with a 100 µm filter element or a filter with equivalent filtration capacity or test with water containing less than a mass fraction of 0,002 % (20 ppm)¹⁾ of contaminant particles of 100 µm or bigger, or corresponding to the maximum limit specified by the manufacturer in the product's literature.

Ensure that measuring instruments used during the tests are accurate to within $\pm 2\%$ of the actual value.

Ensure that the chemical storage tank used for the test is equipped for measurement of volumetric changes in its contents, or is fitted with a sight tube (manometer), or is translucent so that water levels can be monitored. Markings on the side are helpful.

7.2 Test of resistance to pressure

With the water-driven injector pump not operating, apply a pressure equal to 1,6 times the maximum working pressure (p_{\max}) to all parts of the water-driven injector pump that would come under pressure during normal operation. Hold this pressure for 5 min.

The water-driven injector pump and all its parts shall withstand this test pressure without sustaining any damage and without the appearance of any permanent deformation.

7.3 Test of watertightness of check valves

7.3.1 Seal the water inlet of the water-driven injector pump and leave the chemical inlet orifice of the water-driven injector pump open to the atmosphere. Apply a series of pressures to the outlet of the water-driven injector pump equal to 25 %, 50 %, 75 % and 100 % of p_{\max} . Apply each pressure for 20 s.

There shall be no backflow leakage through the chemical pathway of the water-driven injector pump.

7.3.2 For water-driven injector pumps with an integral check valve intended to prevent the flow of water in the opposite direction to the intended direction of flow, repeat the test according to [7.3.1](#) with the inlet of the water-driven injector pump open to the atmosphere.

There shall be no backflow leakage through the water inlet of the water-driven injector pump.

7.4 Test of range of working pressure

7.4.1 Install the water-driven injector pump in the test bench according to the manufacturer's instructions so that the top level of the water in the chemical storage tank is 0,5 m lower than the centreline of the outlet of the water-driven injector pump.

Apply a pressure equal to the minimum working pressure (p_{\min}) at the inlet of the water-driven injector pump for 1 min. Ensure that the water flow rate is at the mid-range of irrigation water flow rates declared by the manufacturer and, for an on-line water-driven injector pump, ensure that the drive water flow rate is at the mid-range of the drive water flow rates declared by the manufacturer.

The water-driven injector pump shall inject chemicals as required for normal operation.

7.4.2 Repeat the test according to [7.4.1](#): once with the pressure at the inlet of an in-line water-driven injector pump or at the outlet of an on-line water-driven injector pump equal to p_{\max} , and once with the

1) Parts per million (ppm) is a unit deprecated by the SI system.

pressure at the inlet of an in-line water-driven injector pump or at the outlet of an on-line water-driven injector pump equal to the mid-point of the working pressure range.

The water-driven injector pump shall inject chemicals as required for normal operation in the field.

7.5 Test of resistance to draining

7.5.1 Install the water-driven injector pump in the test bench according to the manufacturer's instructions so that the upper level of the water in the chemical storage tank is 0,5 m lower than the centreline of the outlet of the water-driven injector pump.

Ensure that the chemical storage tank is situated so the water surface level can be observed and/or measured throughout the test.

Operate the water-driven injector pump for 2 min with the pressure at the inlet of the water-driven injector pump equal to the mid-point of the working pressure range.

Ensure that the water flow rate is equal to the flow rate at the mid-range of irrigation water flow rates declared by the manufacturer and, for an on-line water-driven injector pump, ensure that the drive water flow rate is at mid-range of the drive water flow rates declared by the manufacturer.

Discontinue the operation of the water-driven injector pump. Immediately afterwards, apply a vacuum equal to 10 kPa lower than the atmospheric pressure at the outlet of the water-driven injector pump.

Apply this vacuum for 1 min and, during this period, observe the level of the water in the chemical storage tank.

The level of the water in the chemical storage tank shall not vary during the time interval from the shut-off of the water-driven injector pump until the conclusion of the test.

7.5.2 For water-driven injector pumps intended to operate with the level of the chemical solution in the chemical storage tank higher than the centreline of the outlet of the water-driven injector pump, repeat the test according to [7.5.1](#) with the water-driven injector pump installed according to the manufacturer's instructions and the level of the water in the chemical storage tank at the maximum level above the centreline of the water-driven injector pump as declared by the manufacturer.

The level of the water in the chemical storage tank shall not vary during the time interval from the shut-off of the water-driven injector pump until the conclusion of the test.

7.6 Test of injection rate as a function of inlet pressure

Install the water-driven injector pump according to [7.4.1](#). For a proportional water-driven injector pump with adjustable mixing ratio [\(4.2.1.2\)](#), adjust the mixing ratio to the mid-point of the adjustable range declared by the manufacturer.

Set the drive water flow rate to the mid-range of flow rates declared by the manufacturer and maintain this flow rate throughout the test.

Apply five different pressures at the inlet of the water-driven injector pump at approximately equal intervals to cover the range of working pressures, including p_{\min} and p_{\max} .

At each test point, operate the water-driven injector pump for 2 min and measure the injection rate of the water-driven injector pump volumetrically.

The injection rate at any inlet pressure shall not deviate from that declared by the manufacturer by more than $\pm 10\%$.

7.7 Drive water ratio test

For a water-driven injector pump in which the drive water is ejected ([4.1.2](#)), measure the volume of drive water during performance of the test according to [7.6](#).

Calculate the drive water ratio.

The drive water ratio shall comply with the ratio declared by the manufacturer within an allowable deviation of $\pm 10\%$.

7.8 Test of injection rate for proportional water-driven injector pump

7.8.1 Install the proportional water-driven injector pump in accordance with [7.4.1](#) and as shown in [Figure 1](#).

7.8.2 For a proportional water-driven injector pump with fixed mixing ratio ([4.2.1.1](#)), perform the test according to [7.8.4](#) at the fixed mixing ratio for the proportional water-driven injector pump. Present the injection rate in tabular or graphical format as a function of the drive water flow rate.

In no case shall the measured mixing ratio deviate from the fixed mixing ratio declared by the manufacturer by more than $\pm 10\%$.

7.8.3 For a proportional water-driven injector pump with adjustable mixing ratio ([4.2.1.2](#)), perform the test according to [7.8.4](#) for

- the minimum mixing ratio declared by the manufacturer,
- the maximum mixing ratio declared by the manufacturer, and
- the mid-point of these mixing ratios.

7.8.4 Operate the in-line water-driven injector pump at the upper and the lower limits of the range of irrigation water flow rates, as specified by the manufacturer, and at four or more other irrigation water flow rates within this range. Select a test pressure near the mid-point of the range of working pressure. For each irrigation water flow rate measure the injection rate and calculate the actual mixing ratio achieved by the water-driven injector pump.

Operate the on-line water-driven injector pump at the upper and lower limits of the range of drive water flow rates, as specified by the manufacturer, and at four or more other drive water flow rates within this range, ensuring that the irrigation water flow rate is at the mid-point of the range of the irrigation water flow rate declared by the manufacturer. Select a test pressure near the mid-point of the range of working pressure. For each irrigation water flow rate, measure the injection rate and calculate the actual mixing ratio achieved by the water-driven injector pump.

7.9 Test of head loss for in-line water-driven injector pump

With the water-driven injector pump installed in the test bench according to [7.4.1](#), measure the head loss through the water-driven injector pump at the mid-range of working pressure. Measure the head loss for five different irrigation water flow rates equally spaced within the range of irrigation water flow rates declared by the manufacturer.

The head loss for any irrigation flow rate shall not exceed the head loss declared by the manufacturer by more than 10 %.

8 Durability

8.1 Connect the water-driven injector pump to the test bench according to the manufacturer's instructions so that the water surface in the chemical storage tank is about 0,5 m lower than the centre line of the outlet of water-driven injector pump. Perform all tests using water instead of a chemical solution as the injection fluid.

Ensure that both irrigation and injection water are at a temperature between 5 °C and 50 °C and that they are filtered with a 100 µm filter element, or a filter with an equivalent capacity or a capacity equal to the maximum limit specified by the manufacturer in product literature.

Ensure that the water flow rate is at the mid-range of irrigation water flow rates declared by the manufacturer and, for an on-line water-driven injector pump, ensure that the drive water flow rate is mid-range of the drive water flow rates declared by the manufacturer.

Operate the water-driven injector pump for four periods of 250 h each, followed by intervals of approximately 50 h of non-operation. The total operation time and non-operation time for all four periods shall be 1 150 h. Perform the test after the last operation period.

Ensure that the following operating conditions are satisfied.

- The operating pressure shall be at the mid-range of working pressure declared by the manufacturer.
- Drive water flow rate:
 - 1) for in-line water-driven injector pumps, the irrigation water flow rate at the mid-range of irrigation water flow rates shall be that declared by the manufacturer;
 - 2) for on-line water-driven injector pumps, the drive water flow rate shall be at the mid-range of drive water flow rates declared by the manufacturer.
- For water-driven injector pumps with an adjustable injection rate, the injection rate shall be at the mid-range of injection rates declared by the manufacturer.

8.2 After operating the water-driven injector pump for 1 150 h in total according to [8.1](#), repeat the following tests:

- resistance to pressure (see [7.2](#));
- watertightness of check valves (see [7.3](#));
- range of working pressure (see [7.4](#)) with the inlet pressure at the mid-range of working pressures;
- injection rate as a function of pressure at the inlet of a water-driven injector pump (see [7.6](#)); the injection rate shall not deviate from the injection rate declared by the manufacturer by more than $\pm 15\%$;
- drive water ratio (see [7.7](#)); the drive water ratio shall not deviate from the drive water ratio declared by the manufacturer by more than $\pm 20\%$;
- injection rate for proportional water-driven injector pump (see [7.8](#)).

Perform the tests with the mixing ratio set at the mid-range of mixing ratios declared by the manufacturer and with the drive water flow rate set at mid-range of the drive water flow rates declared by the manufacturer. The mixing ratio shall not vary from that declared by the manufacturer by more than $\pm 15\%$.