

INTERNATIONAL
STANDARD

ISO
12402-8

First edition
2006-02-01

**Personal flotation devices —
Part 8:
Accessories — Safety requirements
and test methods**

Équipements individuels de flottabilité —

Partie 8: Accessoires — Exigences de sécurité et méthodes d'essai

STANDARDSISO.COM : Click to view the full PDF of ISO 12402-8:2006

Reference number
ISO 12402-8:2006(E)

© ISO 2006

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

STANDARDSISO.COM : Click to view the full PDF of ISO 12402-8:2006

© ISO 2006

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions.	2
4 Classification of personal flotation devices	3
5 Specifications and test methods	3
5.1 General	3
5.2 Whistles	4
5.3 Deck safety harness and safety lines	4
5.4 Buddy lines	4
5.5 Sprayhood	5
5.6 Protective covers	6
5.7 Multi-chamber buoyancy systems	7
Annex A (informative) Classification of personal flotation devices	8
Bibliography	10

STANDARDSISO.COM : Click to view the full PDF of ISO 12402-8:2006

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights.

ISO 12402-8 was prepared by the European Committee for Standardization (CEN) Technical Committee CEN/TC 162, *Protective clothing including hand and arm protection and lifejackets*, in collaboration with Technical Committee ISO/TC 188, *Small craft*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

ISO 12402 consists of the following parts, under the general title *Personal flotation devices*:

- *Part 1: Lifejackets for seagoing ships — Safety requirements*
- *Part 2: Lifejackets, performance level 275 — Safety requirements*
- *Part 3: Lifejackets, performance level 150 — Safety requirements*
- *Part 4: Lifejackets, performance level 100 — Safety requirements*
- *Part 5: Buoyancy aids (level 50) — Safety requirements*
- *Part 6: Special purpose lifejackets and buoyancy aids — Safety requirements and additional test methods*
- *Part 7: Materials and components — Safety requirements and test methods*
- *Part 8: Accessories — Safety requirements and test methods*
- *Part 9: Test methods*
- *Part 10: Selection and application of personal flotation devices and other relevant devices*

Introduction

ISO 12402 has been prepared to give guidance on the design and application of personal flotation devices (hereafter referred to as PFDs) for persons engaged in activities, whether in relation to their work or their leisure, in or near water. PFDs manufactured, selected, and maintained to this standard should give a reasonable assurance of safety from drowning to a person who is immersed in water.

Requirements for lifejackets on large, commercial seagoing ships are regulated by the International Maritime Organisation (IMO) under the International Convention for the Safety of Life at Sea (SOLAS). ISO 12402-1 addresses lifejackets for seagoing ships.

ISO 12402 allows for the buoyancy of a PFD to be provided by a wide variety of materials or designs, some of which may require preparation before entering the water (e.g. inflation of chambers by gas from a cylinder or blown in orally). However, PFDs can be divided into the following two main classes:

- those which provide face up in-water support to the user regardless of physical conditions (lifejackets), and
- those which require the user to make swimming and other postural movements to position the user with the face out of the water (buoyancy aids).

Within these main two classes there are a number of levels of support, types of buoyancy, activation methods for inflatable devices, and auxiliary items (such as location aids), all of which will affect the user's probability of survival. Within the different types of buoyancy allowed, inflatable PFDs either provide full buoyancy without any user intervention other than arming (i.e. PFDs inflated by a fully automatic method) or require the user to initiate the inflation. Hybrid PFDs always provide some buoyancy but rely on these same methods as inflatable PFDs to achieve full buoyancy. With inherently buoyant PFDs, the user only needs to put the PFD on to achieve the performance of its class.

PFDs that do not require intervention (automatically operating PFDs) are suited to activities where persons are likely to enter the water unexpectedly; whereas PFDs requiring intervention (e.g. manually inflated PFDs) are only suitable for use if the user believes there will be sufficient time to produce full buoyancy, or help is close at hand. In every circumstance, the user should ensure that the operation of the PFD is suited to the specific application. The conformity of a PFD to this part of ISO 12402 does not imply that it is suitable for all circumstances. The relative amount of required inspection and maintenance is another factor of paramount importance in the choice and application of specific PFDs.

ISO 12402 is intended to serve as a guide to manufacturers, purchasers, and users of such safety equipment in ensuring that the equipment provides an effective standard of performance in use. Equally essential is the need for the designer to encourage the wearing of the equipment by making it comfortable and attractive for continuous wear on or near water, rather than for it to be stored in a locker for emergency use. Throwable devices and flotation cushions are not covered by this part of ISO 12402. The primary function of a PFD is to support the user in reasonable safety in the water. Within the two classes, alternative attributes make some PFDs better suited to some circumstances than others or make them easier to use and care for than others. Important alternatives allowed by ISO 12402 are the following:

- to provide higher levels of support (levels 100, 150, or 275) that generally float the user with greater water clearance, enabling the user's efforts to be expended in recovery rather than avoiding waves; or to provide lighter or less bulky PFDs (levels 50 to 100);
- to provide the kinds of flotation (inherently buoyant foam, hybrid, and inflatable) that will accommodate the sometimes conflicting needs of reliability and durability, in-water performance, and continuous wear;

- to provide automatically operating (inherently buoyant or automatically inflated) PFDs that float users without any intervention on their part, except in initially donning the PFD (and regular inspection and rearming of inflatable types), or to provide user control of the inflatable PFDs buoyancy by manual and oral operation; and
- to assist in detection (location aids) and recovery of the user.

PFDs provide various degrees of buoyancy in garments that are light in weight and only as bulky and restrictive as needed for their intended use. They will need to be secure when worn, in order to provide positive support in the water and to allow the user to swim or actively assist herself/himself or others. The PFD selected shall ensure that the user is supported with the mouth and nose clear of the water under the expected conditions of use and the user's ability to assist.

Under certain conditions (such as rough water and waves), the use of watertight and multilayer clothing, which provide (intentionally or otherwise) additional buoyancy, or the use of equipment with additional weight (such as tool belts) will likely alter the performance of the PFD. Users, owners and employers need to ensure that this is taken into account when selecting a PFD. Similarly, PFDs may not perform as well in extremes of temperature, although fully approved under this part of ISO 12402. PFDs may also be affected by other conditions of use, such as chemical exposure and welding, and may require additional protection to meet the specific requirements of use. If the user intends taking a PFD into such conditions, she/he has to be assumed that the PFD will not be adversely affected. This part of ISO 12402 also allows a PFD to be an integral part of a safety harness designed to conform to ISO 12401, or an integral part of a garment with other uses, for example to provide thermal protection during immersion, in which case the complete assembly as used is required to conform to this part of ISO 12402.

In compiling the attributes required of a PFD, consideration has also been given to the potential length of service that the user might expect. Whilst a PFD which needs to be of substantial construction and material, its potential length of service often depends on the conditions of use and storage which are the responsibility of the owner, user and/or employer. Furthermore, whilst the performance tests included are believed to assess relevant aspects of performance in real life use, they do not accurately simulate all conditions of this. For example, the fact that a device passes the self-righting tests in swimming attire, as described herein, does not guarantee that it will self-right an unconscious user wearing waterproof clothing, neither can it be expected to completely protect the airway of an unconscious person in rough water. Waterproof clothing can trap air and further impede the self-righting action of a lifejacket.

It is essential that owners, users and employers choose those PFDs that meet the correct standards for the circumstances in which they will be used. Manufacturers and those selling PFDs have to make clear to prospective purchasers the product properties and alternative choices and the limitations to normal use, prior to the purchase.

Similarly, those framing legislation regarding the use of these garments should consider carefully which class and performance levels are most appropriate for the foreseeable conditions of use, allowing for the more higher risk circumstances. These higher risk circumstances should account for the highest probabilities of occurrence of accidental immersion and the expected consequences in such emergencies. More information for the selection and application is given in ISO 12402-10.

Personal flotation devices —

Part 8: Accessories — Safety requirements and test methods

1 Scope

This part of ISO 12402 specifies the safety requirements and test methods for accessories used for personal flotation devices (PFDs).

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 3303, *Rubber- or plastics-coated fabrics — Determination of bursting strength*

ISO 9150, *Protective clothing — Determination of behaviour of materials on impact of small splashes of molten metal*

ISO 12401, *Small craft — Deck safety harness and safety line for use on recreational craft — Safety requirements and test methods*

ISO 12402-1, *Personal flotation devices — Part 1: Lifejackets for seagoing ships — Safety requirements*

ISO 12402-2, *Personal flotation devices — Part 2: Lifejackets, performance level 275 — Safety requirements¹⁾*

ISO 12402-3, *Personal flotation devices — Part 3: Lifejackets, performance level 150 — Safety requirements¹⁾*

ISO 12402-4, *Personal flotation devices — Part 4: Lifejackets, performance level 100 — Safety requirements¹⁾*

ISO 12402-5, *Personal flotation devices — Part 5: Buoyancy aids (level 50) — Safety requirements¹⁾*

ISO 12402-6, *Personal flotation devices — Part 6: Special purpose lifejackets and buoyancy aids — Safety requirements and additional test methods¹⁾*

ISO 12402-7, *Personal flotation devices — Part 7: Materials and components — Safety requirements and test methods¹⁾*

ISO 12402-9, *Personal flotation devices — Part 9: Test methods¹⁾*

ISO 13938-1, *Textiles — Bursting properties of fabrics — Part 1: Hydraulic method for determination of bursting strength and bursting distension*

1) To be published.

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

personal flotation device

PFD

garment or device which, when correctly worn and used in water, will provide the user with a specific amount of buoyancy which will increase the likelihood of survival

3.2

inherently buoyant material

material which is permanently less dense than water

3.3

automatically operating PFD

PFD in which buoyancy is provided by permanent means (inherently buoyant material) or by suitable means (gas inflation) effected by a system which automatically activates upon immersion and which, except for the inspection and rearming of inflatable types, when correctly donned requires no further action by the user

3.4

automatically inflated PFD

PFD in which inflation is effected as a result of immersion without the user carrying out any action at the time of immersion

3.5

manually inflated PFD

PFD in which inflation is effected as a result of the user operating a mechanism

3.6

orally inflated PFD

PFD inflated by mouth to produce buoyancy

3.7

PFD with secondary donning

PFD for which additional donning or adjustment is needed to place the PFD in its functioning position from the position it is normally worn

NOTE Pouch-type devices are examples of the type of PFDs which usually require such additional positioning.

3.8

vest-type PFD

PFD covering the upper trunk of the user like a vest

3.9

yoke-type PFD

PFD worn around the back of the neck and secured by a waist strap

3.10

emergency light

device which emits light so as to increase the chances of a wearer being located

3.11

multi-chamber buoyancy system

system that divides the buoyancy provided by an inflatable lifejacket into two or more separate compartments, such that if mechanical damage occurs to one, others can still operate and provide buoyancy so as to aid the user when immersed

3.12**deck safety harness and safety line**

device that allows a user to be securely attached to a strong point on a vessel or on shore, so as to prevent the user from falling into the water, or, if he does fall into the water, to prevent him from being separated from the vessel or shore

3.13**buddy line**

length of cord which can be tied or otherwise fixed to another person or to that person's PFD or other objects, so as to keep a user in the vicinity of that person or object with a view to making location and thus rescue easier

3.14**lifting loop**

device which facilitates manual recovery of a person from water

3.15**sprayhood**

cover brought or placed in front of the airways of a user in order to reduce or eliminate the splashing of water from waves or the like onto the airways and thereby to promote the survival of the user in rough water conditions

3.16**protective cover**

cover that is normally in place over the functional elements of a PFD in order to protect them from physical damage, or snagging on external objects

NOTE 1 The protective cover may be designed to provide additional properties, i.e. to make the PFDs suitable for use when the subject is exposed to additional hazards, e.g. significant abrasion, molten metal splash, flame and fire.

NOTE 2 The inflatable chamber of an inflatable PFD is an example of a functional element.

3.17**overpressure relief valve**

valve which may be used in an inflatable system to avoid the likelihood of destruction caused by overpressure

3.18**whistle**

device which, when blown by mouth, produces an audible sound which can aid in the location of the user

3.19**hybrid type PFD**

PFD of combined buoyancy types, i.e. inherent and inflatable

4 Classification of personal flotation devices

An overview of this classification is given in Annex A for information.

5 Specifications and test methods

5.1 General

5.1.1 When accessories complying with this part of ISO 12402 are attached to or included with PFDs conforming to ISO 12402-1 to ISO 12402-6, both the accessory and the PFD shall remain in conformity with the relevant standards.

5.1.2 Accessories complying with this part of ISO 12402 or accessories designated to be used with PFDs shall be attached to the PFD before testing the PFD according to ISO 12402-9.

5.1.3 Neither component claimed to be usable in conjunction with the other shall have any attachment which impairs the operation or performance of the other, or that is likely to cause damage to the other.

5.1.4 Any integral combination or claimed permissible or usable combination shall conform to the requisite standards on each individual item, and in each permissible combination. Only then can the combination be stated and marked as complying with the relevant part of ISO 12402. Whilst it is not required that the combination be donned or doffed in a single operation, each component shall satisfy its required tests when in combination and when separated, unless it is of permanently integral construction. Fail-safe criteria shall be as specified in the relevant standard.

NOTE Suits and the combination of a lifejacket and a safety harness are examples of combinations.

5.2 Whistles

Whistles shall be non-metallic and robust in construction, free from all burrs, and shall not rely on any moving part for the production of sound. They shall comply with the relevant material requirements as specified in ISO 12402-7.

The attachment and the cord of the whistle shall withstand a static load of (200 ± 50) N when tested in accordance with 5.4.

Three specimens shall be tested by being blown as hard as possible by a subject of between 20 years and 30 years of age and free from all known impairments to pulmonary function, in an outside and open area during calm clear weather. The sound generated shall be shown at least at an instant to have exceeded 100 dB(A) measured at a distance of $(5 \pm 0,1)$ m directly in front of the whistle. The predominant frequency shall be (2 ± 1) kHz and shall be multi-tone.

The whistle shall also be shown to be capable of producing sound in air immediately following immersion in fresh water. The whistle shall be attached to cord or line of a length sufficient to permit its use, which shall in turn be attached securely to the lifejacket or buoyancy aid. It shall be stowed on the device in such a way that the performance of the lifejacket is not affected, but so that it can be removed for use with either hand of the wearer, and can be stowed by the wearer. Whistles complying with this part of ISO 12402 shall be marked with an exclusive permanent identifying marking that can be traced to conformance with this part of ISO 12402.

5.3 Deck safety harness and safety lines

Deck safety harnesses and safety lines to be used for lifejackets shall comply with ISO 12401.

5.4 Buddy lines

Buddy lines shall be made from synthetic cord. The buddy line shall be fitted to a test rig and withstand (750 ± 50) N for at least 3 min without any damage when tested in accordance with ISO 12402-9:—²⁾, 5.5.1.5. The line to be tested shall be at least 1 500 mm in length or of the length indicated by the manufacturer and shall have attached securely to the free end a wooden or plastic toggle. The other end of the line shall be attached securely to the retention system of the PFD. The force required to accomplish separation of the buddy line shall be greater than 750 N and less than 1 500 N. The toggle and line shall be stowed in such a way that they do not create a hazard or affect the normal operation of the PFD. The buddy line shall be readily accessible to at least one of the wearer's hands. The line and toggle shall float in both fresh and sea water. PFDs with buddy lines conforming to this part of ISO 12402 shall be marked with "ISO 12402-8", suffixed with the words "buddy line".

2) To be published.

5.5 Sprayhood

5.5.1 General

If any form of hood or sprayhood is fitted to cover the face in whole or in part to protect mouth and nose from water splash, the carbon dioxide level within the hood shall not exceed 5 % at any place at any time and shall not average more than 2,5 % in any 1 min, when tested in accordance with ISO 12402-9.

The sprayhood shall be stowed in a position which keeps it clear of the user's face. It shall not interfere with the operation of the lifejacket or create a hazard, for example through snagging.

The sprayhood shall be able to be unstowed and deployed to protect the airway whilst the user is in the water, with the lifejacket fully deployed and inflated, if inflatable. When deployed, it shall not impair the performance of the lifejacket in such a way as to render it no longer in conformity with the relevant requirements.

In particular, the sprayhood shall be fitted with a clear material compliant with ISO 12402-7 to enable the user to see sufficient of the surroundings in order to aid rescue operations. If, when deployed, the sprayhood reduces the effectiveness of any retroreflective material on the lifejacket itself, the sprayhood shall itself provide an additional retroreflective area at least equal to that obscured. The sprayhood shall be easily removable from its protective position, and shall be capable of being restored so that it does not fall back to its deployed position. Lifejackets including sprayhood conforming to this part of ISO 12402 shall be marked with "ISO 12402-8", suffixed with the word "sprayhood".

5.5.2 Gas exchange test

5.5.2.1 General

Gas exchange can be measured as oxygen decrease or carbon dioxide increase.

The values shall be measured under the sprayhood either on the right or left side of the face between nose and mouth and at a distance from the face centre line of (10 $\frac{0}{3}$) cm.

Two test persons selected according to 5.2 shall be equipped with the lifejacket and activated sprayhood. They shall be positioned relaxed in quiet water.

The CO₂ and O₂ values are related as follows:

$$\% \text{ CO}_2 = 21 \% - \% \text{ O}_2$$

5.5.2.2 Procedure

5.5.2.2.1 Measurement of the absolute values with continuously working electronic equipment

The measurement shall be started 1 min after adjusting the sprayhood. Measurement duration shall be 5 min. The sprayhood fails if 5 % CO₂ is exceeded or O₂ falls below 16 % once.

5.5.2.2.2 Measurement of the average values with chemical reaction tubes or equivalent devices

The reaction tube shall be fixed directly at the measuring point without dead volume. The measurement shall be started 1 min. after adjusting the sprayhood. The duration of the measurement depends on the tube type. The sprayhood fails if the measured CO₂ average value of 2,5 % is exceeded or the measured O₂ average value is below 18,5 %.

5.6 Protective covers

5.6.1 General

Protective covers shall improve service life and performance of the device. They shall be made of a material which is robust and resistant to the abrasion of wear in rough use. For requirements and testing of abrasion resistance, see ISO 12402-7:³⁾, Table 14 and Annex B. Protective covers shall not impede the conformity of the entire device with ISO 12402-1 to ISO 12402-6, and themselves shall not prevent the device components from meeting the requirements specified in ISO 12402-7. PFDs with protective covers conforming to this part of ISO 12402 shall be marked with "ISO 12402-8", suffixed with the words "protective cover" and the hazard protected against.

To conform with requirements caused by additional hazards, there might be certain requirements for the cover specified in standards for such applications, such as chemical resistance, etc. If so claimed, the cover shall be tested to the requirements of that standard and shall also be marked with the standard with which it complies. By covering those requirements, the PFD and its cover shall still maintain its function as a PFD according to the relevant part of ISO 12402.

For industrial application, the cover shall at least conform with the relevant requirements such as specified in 5.6.2.

After testing according to 5.6.2 and 5.6.3, the PFD shall still comply with the requirements as specified in the relevant parts of ISO 12402.

5.6.2 Additional hazards

5.6.2.1 Puncture resistance

5.6.2.1.1 Protective covers shall withstand, without puncture, the puncture resistance test according to 5.6.2.1.2.

5.6.2.1.2 The PFD, in its packed configuration, shall be placed front up on a rigid, smooth, flat plywood surface. The test point (see Figure 1) is to be pressed against the exterior protective cover at three different locations (such as each front side and the collar), perpendicular to the wall, and with a uniform speed of 2,5 mm/s to 5,0 mm/s until a force of 62 N is attained.

Dimensions in millimetres

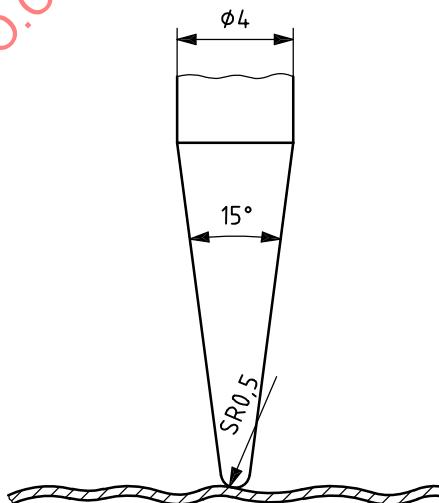


Figure 1 — Test point for puncture resistance

3) To be published.

5.6.2.2 Molten metal splash resistance

Protective covers shall not be perforated by the test of resistance to splashes of small molten metal particles in accordance with ISO 9150. Three test specimens are each to be subjected to 25 drops of mass $(0,5 \pm 0,03)$ g sprayed at a frequency of 1 drop every 3 s.

5.6.2.3 Burst strength

When tested for burst strength in accordance with ISO 13938-1 (for textiles, diameter 30 mm) or ISO 3303 (for coated fabrics), the burst resistance of materials when dry and when wet shall be not less than 19 N for the cover material tested under dry and wet conditions, and not less than 13 N for buoyancy chambers of inflatable PFDs. Twelve test specimens shall be used, six for dry tests held at $(20 \pm 1)^\circ\text{C}$ and $(65 \pm 5)\%$ relative humidity and six for wet tests immersed for $(24 \pm 0,1)$ h in a solution of distilled water with 1 % ethanol.

5.6.3 Marking

PFDs with additional resistance conforming to this part of ISO 12402 shall be marked with "ISO 12402-8", suffixed with the words "cover with enhanced protection against ...".

5.7 Multi-chamber buoyancy systems

Multi-chamber buoyancy systems shall have at least two independent chambers. They may be of different design. The following types are the most common.

- a) A buoyancy system consisting of two or more independently acting chambers which can be separated from each other. In this case, each operating chamber shall, when tested separately, conform to ISO 12402-4.
- b) A buoyancy system consisting of two or more independently operating chambers which cannot be separated from each other. In case of an inflatable device, each of these chambers is capable of filling the entire PFD. In this case, each operating chamber shall be tested with the others deactivated. Each chamber shall be capable of providing 100 % of the buoyancy required under the relevant part of ISO 12402 but it shall conform at least to ISO 12402-4. Each operating head shall then be fired in turn, allowing a (30 ± 5) min period between each, until all the chambers have been fully inflated. No rupture or visible damage shall result.

Most inflatable PFDs employ a "diaphragm" technique between the chambers to achieve an identical inflated shape of the PFD regardless of which chamber is filled.

- c) A buoyancy system consisting of two or more independently operating chambers which cannot be separated from each other, and each of which provides a different and individual buoyancy. If inflatable all of which shall be capable of simultaneous inflation. In this case, each operating chamber shall conform at least to ISO 12402-4. This might lead to a total buoyancy which is higher than required under the relevant part of ISO 12402, such as is typical in case of a hybrid device.

Annex A (informative)

Classification of personal flotation devices

A.1 Classes

A.1.1 Lifejackets

These devices provide face-up flotation with levels of support sufficient for various open and rough water uses. Lifejackets have a buoyancy distribution sufficient to turn users, when tested on users wearing swimming costumes according to ISO 12402, to a position where the mouth has a defined freeboard above the water's surface, even when the user is unconscious.

A.1.2 Buoyancy aids

These devices should be comfortable for continuous wear and provide lift without significant face-up turning ability, to float the conscious user with the level of support marked on the device. Buoyancy aids shall at least be suitable for sheltered waters, but at higher performance levels may be suitable for some users in other waters.

A.1.3 Special purpose lifejackets and buoyancy aids

These devices perform as in A.1.1 and A.1.2 with different levels of support, but have modifications related to special applications for use. These applications shall not relate to essential requirements such as in-water performance, stability and safety in use. The specific conditions for use shall be stated on their label to maintain essential requirements.

A.2 Performance levels

A.2.1 Level 275

This level is intended primarily for offshore use under extreme conditions. It is also of value to those who are wearing clothing which traps air and which may adversely affect the self-righting capacity of the lifejacket. It is designed to ensure that the user is floating in the correct position with his mouth and nose clear of the surface.

See ISO 12402-2.

A.2.2 Level 150

This level is intended for general application or for use with foul weather clothing. It will turn an unconscious person into a safe position and requires no subsequent action by the user to maintain this position.

See ISO 12402-3.

A.2.3 Level 100

This level is intended for those who may have to wait for rescue, but are likely to do so in sheltered water. The device should not be used in rough conditions.

See ISO 12402-4.