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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC]TC 1.

The procecJures used to develop this document and those intended for its further maintenarce
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Introduction

Some applications of biometrics require a level of technical performance that is difficult to obtain with
a single biometric measure. Such applications include prevention of multiple applications for national
identity cards and security checks for air travel. In addition, provision is needed for people who are
unable to give a reliable biometric sample for some biometric characteristic types.

Use of multiple biometric measurements from substantially independent biometric sensors, algorithms,
or characteristic types typically gives improved technical performance and reduces risk. This
includes an 1mproved level of performance where not all blometrlc measurements are avallable such

i 11 policy on

stems, each
1974.[22][45]

16 rel typicaﬁy
reqyires knowledge of both genuine and impostor distributions. All of‘these measures| are highly
appliication dependent and generally unknown in any real system.

Resgarch on the methods not requiring previous knowledge of thescere distributions is corftinuing and
reseprch on fusion at both the image and feature levels is still progressing.

Given the current state of research into those questions-and the highly application-dependent and
gengrally unavailable data required for proper fusion, at’ the score level, work on multibiometric
fusign can, in the meantime, be considered mature, By intention, this Technical Report i§ not issued
as ah International Standard, in order not to force industrial solutions to conform to the njethodology
desdribed herein. However, this Technical Reportrevision provides a mature technical degcription for
devglopments of multibiometric systems. It will‘also provide a reference on multibiometric fusion for
devglopers of other biometric standards anddmplementers.

© ISO/IEC 2015 - All rights reserved v
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Information technology — Biometrics — Multimodal and
other multibiometric fusion

1 Scope

This Technical Report contains descriptions of and analyses of current practices on multimodal and
othdr multibiometric fusion, including (as appropriate) references to more detailed descriplions.

Thiq Technical Report contains descriptions and explanations of high-level multibiemetijic concepts
to alid in the explanation of multibiometric fusion approaches including multi~chdaractéristic-type,
multiinstance, multisensorial, multialgorithmic, decision-level and score-level lggic!

2 [lerms and definitions
The [following two categories of terms are defined here:
— ferms that are specific to multimodal and multibiometric systems;

— ferms that are not specific to multimodal and multibiometric systems, but are required to define the
terms in the first category and not defined in the latest¥evision of ISO/IEC 2382-37.

For |definitions of other terms in the subject field/pf/biometrics, refer to ISO/IEC 2382137. For the
purposes of this document, the terms and definitians'given in ISO/IEC 2382-37 and the follqwing apply.

2.1
biometric data source
information channel (e.g. sensors, charagteristic types, algorithms, instances or presentations) that
is tHe origin of data (e.g. captured biometric sample, extracted features, comparison scdre, rank or
decipion) treated in fusion algorithms

2.2
biometric process
autgmated process using one or more biometric characteristics of a single individual for th¢ purpose of
enrdlment, verifications.or identification

2.3
biometric fusion
compination~of information from multiple sources, i.e., sensors, characteristic types, |algorithms,
instances or.presentations

2.4
cascaded-system
system where pass/fail thresholds of biometric samples are used to determine if additional biometric
samples are required to reach an overall system decision

2.5

layered system

system where individual biometric scores are used to determine the pass/fail thresholds of other
biometric data processing

2.6
multialgorithmic
using multiple algorithms for processing the same biometric sample

© ISO/IEC 2015 - All rights reserved 1
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2.7

multibiometric

uses multip

le biometrics that can be combined at image, feature, score and/or decision level

Note 1 to entry: Multibiometric has five distinct subcategories: multi-characteristic-type (2.10), multiinstance
(2.11), multisensorial (2.13), multialgorithmic (2.6) and multipresentation (2.12).

2.8

multibiometric process
biometric process (2.2) involving the use of biometric fusion (2.3)

29

multibiom
automated
involving tk

2.10
multi-chan
multi-type

using information from multiple types of biometric characteristics

EXAMPLE
signature/si

2.11
multiinsta
using multi

EXAMPLE

2.12
multiprese
using eithe
presentatio

EXAMPLE

consecutive)}

Note 1 to en
are employe
multiple pre

2.13
multisensc
using multi

EXAMPLE
electrostatid

ptrics
recognition of individuals based on their biological or behavioral characteristics
e use of biometric fusion (2.3)

acteristic-type

Biometric characteristics types include: face, voice, finger,Sifis, retina, hand geom
bn, keystroke, lip movement, gait, vein, DNA, ear, foot, scent, etc.

nce
ple biometric instances within one biometric characteristic type

Iris (left) + Iris (right), Fingerprint (left index) + Fingerprint (right index).

ntation
I multiple presentation samples of ohe instance of a biometric characteristic or a si
n that results in the capture of multiple samples

Several frames from video i¢aimera capture of a face image (possibly but not necess

[ry: Multipresentation bidmetrics is considered a form of multibiometrics (2.9), if fusion techn
1. Many fusion and normnialisation techniques are appropriate to the integration of information
bentations of the sante-biometric instance.

rial
ple sensprs.for capturing samples of one biometric instance

For face: infrared spectrum, visible spectrum, 2-D image, and 3-D image; for fingerprint: op
and acoustic sensors.

and

etry,

ngle

arily

ques
from

tical,

2.14
sequential

presentation

capturing biometric samples in separate capture events to be used for biometric fusion (2.3)

2.15

simultaneous presentation
capturing biometrics samples in a single capture event to be used for biometric fusion (2.3)

© ISO/IEC 2015 - All rights reserved
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3 Overview of multimodal and other multibiometric systems

3.1 General

In general, the use of the terms multimodal or multibiometric indicates the presence and use of more
than one characteristic type, sensor, instance, and/or algorithm in some form of combined use for
making a specific biometric identification or verification decision. The methods of combining multiple
samples, comparison scores or comparison decisions can be very simple or mathematically complex.
For the purpose of this Technical Report, any method of combination will be considered a form of

“fusion”. Combination techniques will be covered in Clause 4.

Mult
was
com
oru
prad

The
scal
mult
else

of th

The
and

Mos
reje
usal

tical applications.

use of fusion and related methods has been a key tool in the successful'implementati
e automated fingerprint identification systems (AFISs), starting™in' the 1980s. Un
iple characteristic types have not been used in AFIS; however, most methods of fusio
where in this Technical Report have been successfully implemerited using fingerprints
e ways that fusion has been implemented in AFISs include the)following:

image (also known as sample) fusion in creating a single “rolled” image from a ser
jmpressions on a livescan device;

template fusion in the use of multiple feature exfraction algorithms on each fingerprint
multiinstance fusion in the use of fingerprints'from all ten fingers;
multipresentation fusion in the use of r¢lled and slap (plain) fingerprints;

hlgorithm fusion for the purpose of efficiency (cost, computational complexity, and

nlgorithm fusion for the\purpose of accuracy (decreasing false accept rate and/or
rate, lessening sensitivity to poor-quality data); comparators are used in parallel, wi
resulting scores.

use of fusion llas'made AFIS possible because of fusion’s potential in improving bof
efficiency.

I work fo)date on multibiometrics has focused only on improving false acceptanc

ility,-security or accuracy.[64] Further, multibiometrics also aims at decreasing the ove

to-e

imodal biometrics were first proposed, implemented and tested in the 1970s. Combjniflg measures
seen as a necessary future requirement for biometric systems. It was widely"thought that
bining multiple measures could increase either security by decreasing the false-acceptance rate
ser convenience by decreasing the false rejection rate. These systems did notiseem to advance into

on of large-
il recently,
h discussed
hlone. Some

ies of plain

image;

throughput

rate); generally, comparators are-used as a series of filters in order of increasing computational
complexity. These are generally-implemented as a mix of decision and score-level fusion;

)

false reject
th fusion of

h accuracy

e and false

‘tion.error rates. Some research work considers the use of multibiometrics to flexihly improve

rall failure-

hrol'rate (FTE) especially in biometric systems where user cooperation is not expecte

1 (e.g. video

surveillance systems). Multibiometrics is an effort to produce a biometric decision even if only a subset
of the expected biometric characteristics were captured.[66]

To further the understanding of the distinction among the multibiometric categories, Table 1 illustrates
the basic distinctions among categories of multibiometric implementation. The key aspect of the
category that makes it multi-“something” is shown in boldface.

© ISO/IEC 2015 - All rights reserved
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Table 1 — Multibiometric categories illustrated by the simplest case of using 2 of something

Category Chari\}c’g;rlstlc Algorithm Instance Sensor
Multi-characteris- 2 2 2 2
tic-type (always) (always) (always) (usually)b
. . . 1 2 1 1
Multialgorithmic (always) (always) (always) (always)

s 1 1 2 1
Multiinstance (always) (always) (always) (usually)c
Multisehsorial L L L ¢

(always) (usually)a (always, and same instance) | (always)

Multipregentation 1 1 1 1
a  [tis possjble that two samples from separate sensors could be processed by separate “feature extraction” algorithms,
and then thrqugh a common comparison algorithm, making this “1.5 algorithms”, or two completely different algorithns.
b Exceptioh: a multi-characteristic-type system with a single sensor used to capture two different.characteristic types.
For example, p high-resolution image used to extract face and iris or face and skin texture.
¢ Exceptioh may be the use of two individual sensors to each capture one instance, for@xample, possibly a two-finger
fingerprint s¢nsor.

Multi-char
two or mo
face and irij
system reg

same device.

example, a
type” even
characteris

Multialgor’
sample wit]
Maximum
different aj
(e.g. finger
comparing

Multiinsta
or more di
images fror
However, sy

[fferent instances.of the same biometric characteristic. For example, systems capty

acteristic-type biometric systems take input from single-ormultiple sensors that ca
s information for biometric recognition would be conSidered a “multi-characteristic-t

It is not required that the various measures be mathematically combined in anyway
system with fingerprint and voice recognitioh.would be considered “multi-characteri
if the “OR” rule was being applied, allowing users to be verified using either of
fic types.

ithmic biometric systems receive asingle sample from a single sensor and process
h two or more algorithms. This téchnique could be applied to any characteristic t

id independent principles such-as either features they extract from the biometric sai
minutiae versus finger pdttern) or approaches to comparison (e.g. different algorif]
minutiae).

hce biometric systenis use one (or possibly multiple) sensor(s) to capture samples of]

h multiple fingers are considered to be multiinstance rather than multi-characteristic-t
stems capturing, for example, sequential frames of facial or iris images are considered {

multiprese

Multisens
more disti

Oor some combpindation or multip

tation pather than multiinstance.

rial biometric systems sample the same instance of a biometric characteristic with tw
ctlydifferent sensors. Processing of the multiple samples can be done with one algori

ture
e different types of biometric characteristics. For example, a single system combri1ning

hrdless of whether face and iris images were captured by different imaging devices or

ype”
the
For
stic-

the

that
ype.

benefit (theoretically) would be derived from algorithms that are based on distinctly

mple
hms

avisible light camera and an infrared camera coupled w1th a specific frequency (or several frequencies)

of infrared

illumination.

For a specific application in an operational environment, there are numerous system design
considerations, and trade-offs that should be made, among factors such as improved performance
(e.g. identification or verification accuracy, system speed and throughput, robustness, and resource
requirements), acceptability, circumvention, ease of use, operational cost, environmental flexibility,
and population flexibility.[40]

Especially for a large-scale human identification system, there are additional system design
considerations such as operation and maintenance, reliability, system acquisition cost, life cycle cost,
and planned system response to identified susceptible means of attack, all of which will affect the
overall deployability of the system.[40]

4
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3.2 Simultaneous and sequential presentation

3.2.1 General multibiometric system model

A general multibiometric system model is shown in Figure 1. For explanatory purposes, this model
uses three biometric samples (P1, P2, P3) from three unique biometric characteristic types, except for
where specified differently. At the topmost level, a subject presents their biometric characteristic(s) to
the system. Dependent upon the system design, there are two methods of presenting characteristics for
acquisition by the system: simultaneous and sequential.

__('-—__—_—-__-__-“__-3

= T =S '\@

W

_______ [t s

\I?r I fusion | | Feature level fusion !

6 e e T e e o e O e e o - |

EiEry [ T

@ I_,C)Score level fusion I Score level fusion |

R ——— - l —————————

O |1 Future undefined | " “Future undefined |

Q~®. | _fusionmethod(s) | fusionmethod(s) |
NOTE e presentation (simultaneous or sequential) method induce or general different fugion process.
The se of including this information is to illustrate considerations that can influence mlilltibiometric

Systtm pcign

Figure 1 — Multibiometric system model

3.2.2 Simultaneous presentation

Simultaneous presentation (with successful capture) provides biometric sample(s) from multiple
characteristic types in a single event (e.g. a face and iris taken from the same camera). System designs
that utilize simultaneous acquisition would tend toward high throughput applications at the expense
of possible added complexity (to synchronize sample collection) or difficulty of use (dual sensor
interaction, user multi-tasking).

© ISO/IEC 2015 - All rights reserved 5


https://iecnorm.com/api/?name=025a29c6d66653e9e1ac4a469a850edc

ISO/IEC TR 24722:2015(E)

3.2.3 Sequential presentation

Sequential capture acquires biometric sample(s) from one or multiple characteristic types in separate

events. Sequential capture may be utilized in three concepts discussed in the literature. The fir

st is

multiinstance, which is the use of two or more instances within one characteristic type for a subject,
i.e. Fingerprint (left index) + Fingerprint (right index). In this example, one single digit fingerprint
reader is used twice in sequence. The second concept is multi-characteristic-type, which is the use of
multiple different biometric characteristic types captured from one or more sensors for a subject, i.e.
Hand + Face in sequence. The third concept is multisensorial, which is the use of two or more distinct

sensors for capturing the same biometric feature(s) for a subject, but not at the same time. To a

void

confusion with multi-characteristic-type, which may also capture biometric feature(s) from two or

more distifct sensors, multisensorial can be clarified as “uni-characteristic-type multisenso
Examples for face recognition are infrared spectrum, visible spectrum, 2-D image, and 3-D image
fingerprintfrecognition: optical, electrostatic and acoustic sensors.

3.3 Correlation

In multimofal biometric systems, the information being fused may be correlatéd.at several diffe
levels[26] ad illustrated in the following examples.

— Correlgtion between characteristic types: This refers to biometric’samples that are physi
related) such as the speech and lip movement of a user.

— Correlgtion due to identical biometric samples: This is the case:in multialgorithmic systems w|
the sane biometric sample (e.g. a fingerprint image) or sub-sets of the biometric sample (e.g. vj
where gn entire sample may be used by one algorithm and/part of the sample by another) is subje
to different feature extraction and comparison algorithims’(e.g. a minutiae-based comparator 3
texturg-based comparator).

— Correlgtion between feature values: A subset of’feature values constituting the feature veq

rial”.
; for

rent

cally

here
pice,
cted
nda

tors

of different characteristic types may be correlated. For example, the area of a user’s palm (hand

geomefry) may be correlated with the width-of the face.

— Correlgtion among instances due to cemmon operating procedures (e.g. common capture de
and opé¢rator training).

— Correldtion among instances due to subject behaviour (e.g. coloured contact lenses on both eye

order to determine\the extent of correlation, it is necessary to examine the compar
scores (or the ACCEPT/RE]JECT decision) pertaining to the comparators involved in the fusion sch
In the multiple classifier system literature, it has been demonstrated that fusing uncorrelated classi
leads to a significant improvement in comparison performance.[56]

For two clapsifiers.efreasonable accuracy involved in a fusion scheme, score outputs from inputs
come from|thessame subject may, but need not, be correlated. Therefore it is more appropriaf

vice

s).

ison
bme.
fiers

that
e to

iven

consider the Caprelation of classifier errors as described by Reference [20]. The correlation p, is g

by Formula (1):

f
nNC

p =
" N-N.-NSynnS

where

n is the number of classifiers under test;

N isthe total number of sequences;

M

6 © ISO/IEC 2015 - All rights reserved
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4 Levels of combination

4.1

As 3
the

Figulre 2 shows the block diagram of a single-biometric process.

A bi
Extr
into
mult
as i
the
with

Gen

The;
leve

invoked, whilé'levels (c), and (d) occur before the comparator. Although integration is poss

diffq

Overview

basis for the definition of levels of combination in multibiometric systems,.we firg
single-biometric process and its building blocks, using the example of an authenticat

Reference

o
]
]
=
]
=
]

Feature S(ZUREL

™

MATCH
NON MATCH

Decision

Sample Comparison

Extraction

Figure 2 — Single biometric process (generic)

bmetric sample captured by a biometri€ 'sensor (e.g. a fingerprint image) is fed into
action module. Using signal processing methods, the feature extraction module conver
Features (e.g. fingerprint minutia€), which form a representation apt for comparis
iple features are collected into.a feature vector. The Comparison module takes the fe3
put and compares it to a Biometric Reference. The result is a comparison Score, whicl
Decision module to decidec(e.g. by applying a threshold) whether the presented samj
the stored template. The outcome of this decision is a binary match or non-match.

h

e include censolidating information at the (a) decision level, (b) comparison score leve
, and (d).Sample level. Note that fusion at levels (a) and (b) occur after the compariso

the

Systc1u.L

a)

b)

d)

rent levels, fusion at the feature set level, the comparison score level and the decisi
ostcommonly used. Figure 3 illustrates the different levels of fusion for the case of a

t introduce
ion system.

the Feature
ts a sample
pn. Usually,
ture vector
h is used by
ble matches

eralizing the abovesprocess to multiple biometrics, there are several levels at which fusion can take
placg.

, (c) feature
n module is
ble at these
bn level are
multimodal

[Z11411]
IT==]

Decision level: each individual biometric process outputs its own Boolean result.

The fusion

process fuses them together by a combination algorithm such as AND and OR, possibly taking

further parameters such as sample quality scores as input.

Score level: Each individual biometric process typically outputs a single comparison score but
possibly multiple scores. The fusion process fuses these into a single score or decision, which is

then compared to the system acceptance threshold.

Feature level: Each individual biometric process outputs a collection of features.
process fuses these collections of features into a single feature set or vector.

The fusion

Sample level: Each individual biometric process outputs a collection of samples. The fusion process

fuses these collections of samples into a single sample.

© ISO/IEC 2015 - All rights reserved
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rcatul A3 CU“IPG] ;JU I 5 =
Sample 2 . » — % Decision 2
\—p Extraction 2 2 v
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a) Decision-level fusion

1 Daualajay
JLawonyg

.

Y Feature .| Comparison
Sample 1 Extraction 1 1

SCORE . MATCH
Decision NoN MATCH ™
Feature Comparison
Sample 2 . >
II[\ Extraction 2 2
xO
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=R
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b) Score-level fusion
oo
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1 Feature E %
Sample 1 Extraction 1 ST
===
- SCORE_ L MATCH
Comparison » Decision HON MATCH
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Syl Extraction 2

c) Feature-level fusion
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Feature

SCORE_
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Y

Sample Fusion

)

Comparison

d) Sample-level fusion

2:2015(E)

NOT

For
com
depée

are
at th

4.2

4.2,

Deci
It is

comEared against the template. P1, P2, and P3 from Figure 1 refer to the’eomparison sco

arison against the reference template. How the comparison scores are determine
bndent and outside the scope of this Technical Report. The comparison scores of P1,

e decision or score level.
Decision-level fusion

| Simple decision-level fusion

sion-level fusion occurs after a comparison ‘decision has been made for each biometric

Figure 3 a), Decision-level fusion).

For

hen sent to the fusion module for a final result. In multibiometsric systems, the fusior]

F Sample 1 and Sample 2 for c) may be the same sample.
Figure 3 — Different levels of fusion for the case of a multimodalsystem
simultaneous or sequential biometric sample acquisition, features)are extracted and are

re from the
1 is system
P2, and P3
may occur

component.

based on the binary result values match and non-match output by the decision modules (see

biometric systems composed of a\small number of components, it is convenient to agsign logical

values to comparison outcomes ,s0)that fusion rules can be formulated as logical functions. The

beh4
deci

’

cion-level outputs.

able 2 — AND and 'OR fusion of decisions for a case of two biometric characterist

DéeciSion Decision AND-fused OR-fused
Biemetrics 1 Biometrics 2 decision decision
X X X X
X ° X .
o X X .

jviour of the two most widely used functions, AND and OR, are listed in Table 2, assum|ng a pair of

c types

L]

X Non-match

Match

For biometric systems using many components, voting schemes have been established as fusion rules, the
most common of which is majority voting rule. The AND and OR are specific examples of voting schemes.

4.2.2 Advanced decision-level fusion

4.2.2.1 General model

Decision-level fusion is based upon individual accept/reject decisions for each sample. The two sub
groups of advanced decision-level fusion are layered and cascaded. A layered system features with
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adjustable thresholds computed by using individual biometric scores to determine the pass/fail
thresholds for other biometric data processing. A cascaded system features with fixed thresholds
is pass/fail thresholds of characteristic type-specific biometric samples to determine if additional
biometric samples from other characteristic types are required to reach an overall system decision.
Decision-level fusion for the two subgroups is shown in Figure 4.

Simultaneous Sequential

Py

Y
I
Layered Cascaded
storg Pt D
Threshaold ah'S
PIYMN
¥ fes
i [T TRdus{ hiesheliof P, :Ii P |
||=| 1l ||ﬁ
il

Threshold
PYN

W
{ ); g L
uchustihreshald of 00

AN
C\ : '
i - T

Figure 4 — Advanced decision-level fusion

A

EQ i
T Do2s score Pass
"\H‘—
Ng M
AN
Ho e

4.2.2.2 IIyered system

Independent of whether the presentation was simultaneous or sequential, the comparison score qf P1
enters thelgyerédsystem. The system processes the score against the system defined threshold. Ifit pgsses
the criteriajfthfeshold for characteristic type P1, the output would adjust (raise or lower) the threghold
needed to pass for characteristic type P2 if PTfailsto meetthe criterta/threshold for characteristictype
P1, then the output most likely would increase the threshold required for characteristic type P2. Upon
completion of processing P1 and resetting the thresholds requirements for characteristic type P2, the
comparison score of P2 enters the system. The process iterates as discussed above for P2 and P3. Once
the characteristic type P3 process is completed, a final accept/reject decision is made.

4.2.2.3 Cascaded system

Independent of simultaneous or sequential presentation, cascaded systems rely on at least one
biometric sample.

If the first sample does not meet the requirements, additional samples are compared. Using Figure 4
as the model for this discussion, comparison score P1 enters the system and is compared against the
threshold for sample P1. If the score exceeds the criteria/threshold required for P1, a subsequent

10 © ISO/IEC 2015 - All rights reserved
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decision is made on the strength of the result (which could also include sample quality measures). If
this strength is sufficient, the subject is accepted. If the score of P1 fails the initial threshold test or
passes the initial threshold test but fails the strength decision, cascaded systems require the use of
the score of P2. This process is repeated for scores P2 and P3. Note that cascaded systems might not
require P2 or P3 to be captured if P1 passes the threshold and strength test.

4.3 Score-level fusion

4.3.1 Overview

Ins = TOTT, i i fTdicati I the feature
vectpr with the Biometric Reference vector. These scores can then be combined to“improve the
comparison performance.

Fromh a theoretical point of view, biometric processes can be combined reliablyto’give a [guaranteed
improvement in comparison performance. Any number of suitably characterized biometric processes
can |[have their comparison scores combined in such a way that the multibiometric cor:fbination is
guaranteed (on average) to be no worse than the best of the individual biemetric devices. The key is to
ify correctly the method which will combine these comparison scores reliably and mpximize the

The|mechanism (for this sort of good combination of scores. within a multibiometric system) shall
at least two guidelines. Firstly, each biometric process.shall produce a score, rather than a hard
t/reject decision, and make it available to the multibiometric combiner. Secondly,|in advance
of operational use, each biometric process shall makelavailable to the multibiometric cpmbiner, its
techhhical performance (such as score distributions) in the appropriate form (and with sufficient
accyracy of characterisation).

Both verification (1:1) and identification (1:)) systems can support fusion at the comparison score
leve]. However, identification systems can al§o integrate information available at the rank level (which
is a [form of score level with multiple scextes or indices based on scores). In identification| systems, a
template from a biometric sample is coinpared against templates from a subset of identifies present
in tHe database and, therefore, a sequence of ordered comparison scores pertaining to thege identities
is available. Reference [23] describes three methods to combine the ranks assigned by the different
comparators. In the highest rankimethod, each possible match is assigned the highest (minjmum) rank
as computed by different comparators. Ties are broken randomly to arrive at a strict ranking order and
the final decision is made based on the combined ranks. The Borda count method uses thg sum of the
ranks assigned by the individual comparators to calculate the combined ranks. The logistic regression
method is a generalization of the Borda count method where the weighted sum of the individual ranks
is calculated and the-weights are determined by logistic regression.

4.3. Scoremnormalization

Score mormalisation methods attempt to map the scores of each biometric process to|a common
domjaitivSome approaches are based on the Neyman-Pearson lemma, with simplifying agsumptions.
For example, mapping scores to likelihood ratios allows them to be combined by multiplying under an
independence assumption. Other approaches may be based on modifying other statistical measures of
the comparison score distributions.

The parameters used for normalisation can be determined using a fixed training set or adaptively
based on the current feature vector. The computed characteristic may represent only “estimates” of
the underlying population characteristics. Score normalisation is closely related to score-level fusion
since it affects how scores are combined and interpreted in terms of biometric performance. As in
Reference [32]:

a) The comparison scores at the output of the individual comparators may not be homogeneous. For
example, one comparator may output a distance (dissimilarity) measure while another may output
a similarity measure.
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b) Further, the outputs of the individual comparators need not be on the same numerical scale (range).

c) Finally, the comparison scores at the output of the comparators may follow different statistical

distributions.

Due to these reasons, scores are generally normalized prior to fusion into a common domain. Figure 5
depicts a score-level fusion framework for processing two biometric samples, taking normalisation

into account.

Biomgtric

Referehee 1

Charactprisation
Dafta 1

[ Sample 1

Feature
Extraction 1

—3 Comparison 1

—

Normalisation 1

[ Sample 2

Feature
Extraction 2

—» Comparison 2

Normalisation 2

)
‘O
E

o

E
=
&

Figure 5 — Framework forscore-level fusion

Reference 2

Characterisation

Data 2

Score

l
e

Fusion

Decision &b
NON MATCH

= |

Table 4 listf, under the framework of Figure 5, several commonly used score normalisation metHods.
Note that spme fusion methods use probability density functions (PDFs) directly and do not require
normalisation methods.

Table 3 defines the symbols used in Table 4. In some cases, PDFs are used to convert raw/native sqores
directly into Probability of False Aceept and thus to a decision without need to have native sdores
brought to § common reference range using normalization.

12
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Table 3 — Symbols used for score normalisation formulas

Characterisation data
Statistical measures Genuine Impostor Both genuine and
distribution distribution impostor distributions
Minimum score SGMin SIMin SBMin
Maximum score SGMax SIMax SBMax
Mean score SGMean SIMean SBMean
Median score SGMed SIMed SBMed
Score standard
G [ B
deviation S8sp S'sp Ssp
Constant C C C
Propability density fusion PDFG PDFI
Centre of PDF
crossover Scenter N.A
W1dth of PDF crossover Swidth
bimilarity score.
G fienuine.
[ mpostor.
B Both.
Table 4 — Examples of score normalisation methods
Data
Method Formula Comment
elements
— Uses empirichl data (or
B B B SBy; theoretical limitfor vendor
; r— (g — _ mn rovided
Mip-max (MM) S'= (S S min )/(S Max — Min) 58, p )
ax — No accountinlg for nonlin-
earity
— Assumes noral distri-
bution
7-score S — (S . SI )/SI SIMean — Symmetric about mean
) - Mean SD
Slsp — Assumes stabpility of both
distributions actoss popula-
tions
Median absoltite ) SB — Assumes stabpility of both
S = (S — SBMed )/[C -median |S — SBMed ] Med distributions acfoss popula-
deviation (MAD) C tions
Mean-and-watiance of
Hvperbolic tan- transformed data distribu-
P ' G G SGMean tion
gent ' =05|tanh|C[S —S% ... | /S | +1
(Tanh) SGgp — Assumes stability of both
distributions across popula-
tions
NOTE This table lists two types of normalisation schemes: (a) schemes that modify the location and scale parameters of

the score distribution and (b) schemes that consider only the overlap region of the genuine and impostor scores. Thus, the
min-max, z-score, MAD and tanh techniques fall under category (a), while QQ and QLQ fall under category (b). Typically,

category (b) techniques are used after having applied one of the category (a) schemes.

a  Refer to Reference [62].
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Table 4 (continued)
Data
Method Formula Comment
elements
1 — Assumes non-linearity
i 2
Adaptive (AD)? I Z My nym <€ — Three modelling methods
a) TW(E(—Qqél)adI‘ICS AD 1 th . — Assumes stability of both
c+ ( B C) (nMM o C)’ otherwise c distributions across popula-
tions
w
1 — nap = adaptive normali-
b) Logistit Myp = B a4 sation score; nym = min-fnax
1+A-e MM normalized score; c 7 Center
A= l 4 |of overlap of genuinie and
( - A impostor score distributions;
1, w w = width of the overlap;|A =
T Myme My S|€— ; B— InA |3 small valtie (0,01 in Refpr-
¢ o ence [62])
¢) Quadric-line- ) v < w
quadric (QIQ) Tap = ] "am ¢ 2 M = (€T 2
c+—1+ —c——||n — ¢ — — |, otherwise
2 2)| ™ 2

— Assumes stability of Hoth

G
Biometric Gpin p p PSI‘G = Value of PDF™ at score Sl PDFG distributions across popt la-
against Impjos- . / e tions
tors (BGI sift / “sif PSi‘I = Value of PDF! at score S, PDF!
S — FAR — Assumes stability of ijn-
BioAPI = (threshold:score) PDF! poster distribution
N - Rank (S) — Applicable only to 1:N
Borda coupt where N is the number of alternatives. Rank comparison

NOTE Thid table lists two types of normalisation schemes: (a) schemes that modify the location and scale parametdqrs of
the score disfribution and (b) schemes that consider, only the overlap region of the genuine and impostor scores. Thug, the
min-max, z-sfore, MAD and tanh techniques fall'under category (a), while QQ and QLQ fall under category (b). Typigally,
category (b) fechniques are used after having applied one of the category (a) schemes.

a  Refer to Reference [62].

4.3.3 Score fusion methods

When indivfidual biometric.comparators output a set of possible matches along with the quality of pach
match (conlparison seore), integration can be done at the comparison score level. This is also known
as fusion aff the measyrement level or confidence level. The comparison score output by a comparator
contains thle richiest information about the input biometric sample in the absence of feature-levgl or
sensor-leve| information. Furthermore, it is relatively easy to access and combine the scores generjated
by several diffefent comparators. Consequently, integration of information at the comparison score |level
is the most common approach in multimodal biometric systems. Table 5 provides an outline of several
score fusion methods and their associated needs for data that characterise the comparator performance.

NOTE This is valid only in the case where a rank and/or a comparison score is/are available for all references
present in the set of possible matches given by each algorithm.

In the context of verification, there are two distinct approaches to score-level fusion. One approach
is to formulate it as a classification problem, while the other approach is to treat it as a combination
problem.[32][35] In the classification approach, a feature vector is constructed using the comparison
scores output by the individual comparators; this feature vector is then classified into one of two
classes: “Accept” (genuine user) or “Reject” (impostor). Generally, the classifier used for this purpose
(e.g. decision tree, neural network, support vector machine, K-nearest neighbour, random forest, etc.)
is capable of learning the decision boundary irrespective of how the feature vector is generated.[6][64]
[65] Hence, the output scores of the different characteristic types can be non-homogeneous (distance
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or similarity metric, different numerical ranges, etc.) and no processing is required prior to presenting
them to the classifier. In the combination approach, the individual comparison scores are combined to
generate a single scalar score, which is then used to make the final decision.[38] To ensure a meaningful
combination of the scores from the different characteristic types, if necessary, the scores may be first
transformed to a common domain prior to combining them. This is known as score normalisation (as
discussed in 4.3.2).[27]

As part of a pattern classification problem, in the classification approach, the fusion module design
aims at finding an optimal two-class classifier for genuine and impostor classes. The classifier uses the
vector of comparison scores provided by the comparators and assigns one of the two classes to it. For
this purpose, the classifier defines two decision regions in the feature vector space: one for genuine
clas$ and one for impostor class. These regions are separated by decision boundaries, which need to
be dptimized during the design of the fusion module. These decision boundaries cah, have various
forms depending upon the complexity and the nature of the distributions of thewo clpsses. They

can

nety

the

deci

Co

be as simple as a line as in linear discriminant functions or more complex as'in-multil
orks and support vector machines. The boundaries can also be determined, from statis
Neyman-Pearson likelihood ratio. Regardless of the chosen technique, the*ultimate go
cion boundaries that improve classification performance to fit the apptication.

bination approaches are some of the simplest and most effective methods for biome

ayer neural
tics such as
al is to find

tric fusion,

proyided scores are homogeneous or can be normalised to make thém'So. Because of this sitnplicity and
effe¢tiveness, they are some of the most common methods for use .in multibiometric systems. Kittler’s
thedretical framework for combining classifiers[38] describeS-some of the most popular [techniques,
these being the product, sum, max, min and median rules* Each of these techniques yises simple
arithmetic or rule operations to combine scores from multiple sources. These techniques wele extended
by Reference [1] to allow weighting of the comparison scores based on performance. If more jnformation
on the distribution of comparison scores is availablejthén one may use Bayesian statistics i}:Lcombining
the §cores of different biometric comparators as demonstrated by Reference [3]. Their technique takes
intolaccount the estimated accuracy of the individual classifiers during the fusion process| In general,
fusipn can be accomplished using a Bayesian‘€lassifier when sufficient training data is available. Let
P,'(STG) and P;(S|I) denote the probability densities of score S (corresponding to the ith characteristic
typd) under the genuine and impostor hypothesis, respectively. A simple Bayesian classifier (SBC) would
makie a MATCH/NO-MATCH decision-based on the posterior densities P(G|S1, S2, ...SN) and P(1|S1, S2,
...SN). In the absence of sufficient tfaining data (i.e. genuine and impostor comparison scorjes), it is not
posqible to reliably estimate thejeint density involving multiple characteristic types. Thus, the posterior
prohability could be estimated by the product of individual densities, i.e., P(G|S1, S2, ...SN)| = ITP;(S;|G)
and P(I|S1, S2, ...SN) = I1P;(Si).

Table 5 — Examples of score fusion methods

Mothod Score fusion Characterisation data required
etho .
equation None | PDFg | PDF; | EER | Vg,V |Personal
Simple sum Z(l =1to N)Si’ 0
Minimum score min <i =1to N) Sl.’ 0
Maximum score max (i =1to N) Si’ 0
Comparator weighting Z (i =1to N) W, .S/’ 0
Comparator weighting with PDF fusion for P Qo
decisiona Z <l lto N) Wi Si 0 0
User weighting Z (i =1to N) Wi* S 0
© ISO/IEC 2015 - All rights reserved 15
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Table 5 (continued)

Score fusion

Characterisation data required

Method ;
equation None | PDFg | PDF; | EER | Vg,Vi | Personal
Weighted product Im{i=1to N>Wi -S,! 0
Sum of probabilities Genuine Z (i =1to N) P(;‘S,- 0
Sum of prohahilities Impostor Z (i =1to N) P:}s.' 0
Productf of probabilities Genuine i <i =1to N) PG‘Si 0
Product]of probabilities Impostor ! (i =1to N) PI‘Si 0
BGIb I (i = 1to N) BGI, 0 6
Likelihood ratioc PDFG/PDFI 0 0

Klnearest neighbour

Decision trees

Support vector machines

Discriminant analysis

Neural network

ol |OC|O|O

i

The following

i-th piometric score

symbols and abbreviations are used in the tablg;

N nunjber of fusion inputs
Si’ i-th pormalized match score
Wi i-th matcher weight factor
W;* i-th puser weight factor
w;' i-th patcher weight factor in ¢ase of PDF fusion
BGI biorpetric gain againstimpostors
PDF;  prolability density functions of scores from genuine users for each dimension
PDF probability denSity-functions of scores from impostors for each dimension
EER equl erroxrate
Vg N-djmensional genuine score vector, N is the number of modalities
Vi N_dthcinnn] impostor score vector N is the number of modalities
PG‘Si value of PDFg at score Sy
PI‘Si value of PDFj at score S;
a Refer to Reference [64].
b Refer to References [60] and [61].
c Refer to Reference [51].
16 © ISO/IEC 2015 - All rights reserved
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4.4 Feature-level fusion

In feature-level combination, biometric information is fused after feature extraction but before
comparison [see Figure 3 c]]. There are several ways features can be combined. The simplest form is to
integrate the feature vectors (or sets if there is no implicit correspondence) of component biometrics and
to apply feature classification methods to the combined feature vector. Where features from contributing
multibiometrics are not independent, good feature-level combination should, in some circumstances,
allow dependencies to be more fully exploited than by solely using score-level combination. Feature
normalization is normally used before combining the real valued features (especially in case of feature
concatenation). However, in case of binary features fusion, feature normalization is not used. This
should give better overall performance. However, fusion at this level is difficult to achieve in practice
becduse the feature vectors of multiple characteristic types might be incompatible (e.g;-thinutiae set
of fipgerprints and Eigen-coefficients of face), the relationship between the feature spaces|of different
biometric systems might not be known, concatenating two feature vectors might regsult |n a feature
vectpr with very large dimensionality leading to the “curse of dimensionality” and a significantly more
complex comparator might be required in order to operate on the concatenatedfedture vector.[55]

Notyvithstanding these challenges, fusion at the feature level has been attempted in severpl contexts.
Refdrence [5] demonstrates feature-level fusion of face and ear “characteristic typ¢s showing
signjficant improvements in performance. Reference [41] integrates the palm-print and hand geometry
featfires of an individual in order to enhance comparison perforiance. In their experimgnts, fusion
at the comparison score level was observed to be superior tg~fusion at the feature levgl. However,
Refgrence [55] combines the hand and face characteristic types of a user (multibiometrics), as well as
the R, G, B channels of the face image of a user (multisensorial) at the feature level and demonstrate
that|a feature selection scheme may be necessary to improve comparison performance gt this level.
Thugs, it is imperative that an appropriate feature seleetiopn scheme is used when combining {information
at the feature level.
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ures can also be combined in a more compléx-way on an algorithmic level through co-1
I feature extraction algorithms require'the localization of landmarks in order to

mon coordinate frame between samples for feature extraction. In multibiometr
Fidual components can exchange lapdmarks or mutually support their extraction. Thi
d co-registration, is considered a-form of feature-level combination. For example, a face
Fithm may provide eye locatioris)for an iris recognition algorithm or depth landmarks

gnition system may be used\to correct the pose of faces in texture images.

Characterisation data for multibiometric systems

Overview

of the mest important aspects of normalisation and combination for multibiomet
e origin-of parameters for such normalisation and/or combination. In the case of
bination using statistical pattern recognition theory, the PDFs of genuine and imp
[ibutions are required. In other score-level combination and in feature-level and de
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be derived

from characterisation data. Thus, this issue is all pervading and conditions the relevance of theoretical
analysis of the optimal fusion rule.

This Clause is allocated to analysis and discussion of characterisation data, its expected origin(s),
extent of its validity (e.g. through small sample sizes or other limitations on characterisation sample
populations) and how such data would be disseminated or otherwise made available for use.

5.2 Use of characterisation data in normalisation and fusion

Score-level fusion combines the similarity scores from one or more comparators. In the multi-
characteristic-type and multialgorithmic case, there will generally be two or more such comparison
systems. In the multisensor, multiinstance, and multipresentation cases, only one comparator will
usually be in use, but in any case, multiple scores will be available to a fusion module. The distribution
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of comparison scores will depend on the comparison system and the statistics of these variables
not usually be on any common range. Thus, the normalisation process of 4.3.2 is a necessary precu
of the fusion process.

will
rsor

The characterisation data, discussed in this subclause, is needed to support normalisation and fusion.
At its most simple, this might be just the location and shape parameters of each score’s “natural”
distribution. For example, a face and fingerprint fusion scheme would use some prior estimates of
the median and median absolute deviation (see Table 5) to effect normalisation of two scores. More
usefully, a full specification (approximated) of the distribution of the scores would be used and such a
description would be provided for both the genuine and impostor distributions.

ktics

tion
(see

core
d to

flexibly support any of the popular transformations. By establishing a standdrdized means of data

exchange, [SO/IEC 29159-1 supports a modular approach to biometric systems integration in w

hich

both the cpmparison and fusion algorithms remain protected as piecés-of intellectual propprty.

Thus, ISO/IEC 29159-1 envisages an application in which two (or more)stuinderlying acquisition

and

comparisor] technologies (hand geometry and fingerprint, for example)-each generate a score whirh is

fed to a fusipn module which has been initialized with an appropriate instance of the Fusion Informsa
Format defined in ISO/IEC 29159-1.

tion
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