INTERNATIONAL STANDARD ISO/IEC 14496-3:2005/Amd.2:2006
TECHNICAL CORRIGENDUM 2

Published 2008-12-01

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION o MEXOYHAPOOHAA OPTAHU3ALIMA MO CTAHOAPTU3ALINMA e ORGANISATION INTERNATIONALE DE NORMALISATION
INTERNATIONAL ELECTROTECHNICAL COMMISSION . MEXOYHAPOOHAA SNEKTPOTEXHUYECKAA KOMUCCUA . COMMISSION ELECTROTECHNIQUE INTERNATIONALE

Information technology — Coding of audio-visual objects —
Part 3:
Audio

AMENDMENT 2: Audio Lossless Coding (ALS), new audio profiles and BSAC extensions
TECHNICAL CORRIGENDUM 2

Technologies de l'information — Codage des objets audiovisuels —
Partie 3: Codage audio
AMENDEMENT 2: Codage audio sans perte (ALS), nouveaux profils audio et extensions BSAC

RECTIFICATIF TECHNIQUE 2

Technical Corrigendum 2 to ISO/IEC 14496-3:2005/Amd.2:2006 was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information teechnology, Subcommittee SC 29, Coding of audio, picture, multimedia and
hypermedia information.

Throughout this Corrigendum, modifications or additions to existing text are highlighted in grey.

Page 4, after Table 1.11A, replace:

A HE AAC v2 Profile decoder of a certain level shall operate the HQ SBR tool for streams containing
Parametric Stereo data. For streams not containing Parametric Stereo data, the HE AAC v2 Profile decoder
may operate the HQ SBR tool, or the LP SBR tool.

ICS 35.040 Ref. No. ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

© ISO/IEC 2008 — All rights reserved

Published in Switzerland

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

with:

An HE AAC v2 Profile decoder shall operate the HQ SBR tool for bitstreams containing Parametric Stereo
data. For bitstreams not containing Parametric Stereo data, the HE AAC v2 Profile decoder may operate the
HQ SBR tool, or the LP SBR tool.

Onlv hitstraames consistina of exacth, ona AAC sinale-channal slement mav contain Paramaeatric Stareo-data
R —DHSHeaHR RSISHAG—O4 Yo Hg+ ASRRS—B1I8eRMaY Fa—+——afaetd tof Gata-

Bitstreams containing more than one channel in the AAC part shall not contain Parametric Stereo data.

Page 6, in Table 1.13 replace the rows:

case 36:
ALSSpecificConfig();
break;

with:
case 36:
fillBits; 5 bslbf
ALSSpecificConfig();
break;

In ISO/IEC 14496-3:2005, after 1.6.3.14 add:

1.6.3.15 FillBits

Fill bits for byte alignment of ALSSpecificConfig() relative to thestart of AudioSpecificConfig().

Page 8, replace the final sentence:

Similarly the HE AAC v2 decoder can handle all HE AAC Profile streams as well as all AAC Profile streams.
with:

Similarly an HE AAC v2 profile decoder of a certain level can handle all HE AAC Profile streams of the same
or lower level as well as all AAC Profile streams of the same or lower level.

In 11.2.1, replace:

(see subclause 11.6.7)

with:

(see subclause 11.6.5.2.1 and 11.6.7)

Page-18, at the end of 11.3.3 add:

X<y Fixed-point signed fractional representation, where x is the number of bits to the left of the binary point,

and y is the number of bits to the right of the binary point (two’s complement sign representation). 64-bit
signed integer (two's complement)

Page 18, replace Table 11.1 with the following table:

2 © ISO/IEC 2008 — All rights reserved

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

Table 11.1 — Syntax of ALSSpecificConfig

Syntax No. of bits Mnemonic
ALSSpecificConfig()
{
als id: 32 uimsbf
samp_freq; 32 uimsbf
samples; 32 uimsbf
channels; 16 uimsbf
file_type; 3 uimsbf
resolution; 3 uimspf
floating; 1 uimsbf
msb_first; 1 uimsbf
frame_length; 16 uimsbf
random_access; 8 uimsbf
ra_flag; 2 uimsbf
adapt_order; 1 uimsbf
coef_table; 2 uimsbf
long_term_prediction; 1 uimsbf
max_order; 10 uimsbf
block_switching; 2 uimsbf
bgmc_mode; 1 uimsbf
sb_part; 1 uimsbf
joint_stereo; 1 uimsbf
mc_coding; 1 uimsbf
chan_config; 1 uimsbf
chan_sort; 1 uimsbf
crc_enabled; 1 uimsbf
RLSLMS 1 uimsbf
(reserved) 5
aux_data_enabled; 1 uimsbf
if (chan_config) {
chan_config_info; 16 uimsbf
}
if (chan_sort) {
for (c = 0; ¢ < channels; c++)
chan_pos|c]; 1..16 uimsbf
}
byte_align; 0..7 bsibf
header_size; 32 uimsbf
trailer_size; 32 uimsbf
orig_header[]; header_size * 8 | bslbf
orig_trailer[]; trailer_size *8 | bslbf
ifs(Crc_enabled) {
crc; 32 uimsbf
}
if ((ra_flag == 2) && (random_access > 0)) {
for (f = 0; f < ((samples-1) / (frame_length+1)) + 1; f++) {
ra_unit_size[f] 32 uimsbf
}
}
T (aux_data_enabled) {
aux_size; 32 uimsbf
aux_data[]; aux_size * 8 bslbf
}
}

Note: “byte_align” denotes byte alignment of subsequent data relative to the start of ALSSpecificConfig().

© ISO/IEC 2008 — All rights reserved

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

Page 21, in Table 11.3, replace:

if (adapt_order == 1) {
opt_order; 1..10 uimsbf
1
for (p = 0; p < opt_order; p++) {
quant_cof[p]; varies Rice code
}
if (RLSLMS) {
RLSLMS_extension_data()
}
}
with:
if (adapt_order == 1) {
opt_order; 1,10 uimsbf
}
else {
opt_order = max_order;
}
for (p = 0; p < opt_order; p++) {
quant_cof[p]; varies Rice code
}
if (RLSLMS) {
RLSLMS_extension_data()
}
byte_align; 0.7 bslbf
}

© ISO/IEC 2008 — All rights reserved

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

Page 23, replace Table 11.5 with the following table:
Table 11.5 — Syntax of RLSLMS_extension_data

Syntax No. of bits | Mnemonic
RLSLMS_extension()

1

mono_block 1 uimsbf
ext_mode 1 uimsbf
if (ext_mode) {
extension_bits 3 uimsbf
if (extension_bits&0x01) {
RLS_order 4 uimsbf
LMS_stage 3 uimsbf
for(i=0; i<LMS_stage;i++){
LMS_orderf[i] 5 uimsbf
}
}

if (extension_bits&0x02) {
if (RLS_order) {

RLS_lambda 10 uimsbf
if (RA)
RLS _lambda_ra 10 uimsbf

}
}
if (extension_bits&04) {
for(i=0; i<LMS_stage;i++) {
LMS_muli] 5 uimsbf

}
LMS_stepsize 3 uimsbf

Page 25, replace Table 11.9 with the following table:
Table 11.9 — Elements of ALSSpecificConfig

Field #Bits Description / Values
als_id 32 ALS identifier
fixed value = 1095521024 = 0x414C5300 (Hex)

samp—freq 32 Sampling frequency in Hz

samples 32 Number of samples (per channel)

If samples = OXxFFFFFFFF (Hex), the number of
samples is not specified (see 11.6.1.3)

channels 16 Number of channels-1

(0 =mono, 1 = stereo, ...)

file_type 3 000 = unknown / raw file

001 = wave file
010 = aiff file
011 = bwf file

(other values are reserved)

© ISO/IEC 2008 — All rights reserved 5

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

resolution 3 000 = 8-bit

001 = 16-bit

010 = 24-bit

011 = 32-bit

(other values are reserved)
floating 1 1 = IEEE 32-bit floating-point, 0 = integer
msb_first 1 Original byte order of the input audio data:

0 = least significant byte first (little-endian)
1 = most significant byte first (big-endian)

If resolution = 0 (8-bit data), msb_first=0
indicates unsigned data (0...255), while
msb_first = 1 indicates signed data (-128...1427).

frame_length 16 Frame Length - 1 (e.g. frame_length«=\0x1FFF
signals a frame length of N = 8192)

random_access 8 Distance between RA frames (inframes, 0...255).
If no RA is used, the value is zero! If each frame is
an RA frame, the value is 1¢

ra_flag 2 Indicates where the sjzelof random access units
(ra_unit_size) is stored:

00: not stored
01: stored at’the’beginning of frame_data()
10: storegdat the end of ALSSpecificConfig()

adapt_order 1 Adaptive Order: 1 = on, 0 = off

coef_table 2 Table index (00, 01, or 10, see Table 11.20) of
Rice code parameters for entropy coding of
predictor coefficients, 11 = no entropy coding

long_term_prediction 1 Long term prediction (LTP): 1 = on, 0 = off
max_order 10 Maximum prediction order (0..1023)
block_switching 2 Number of block switching levels:

00 = no block switching

01 =up to 3 levels

10 = 4 levels
11 =5 levels
bgmc_made 1 BGMC Mode: 1 = on, 0 = off (Rice coding only)
sb_part 1 Sub-block partition for entropy coding of the
residual.

if bgmc_mode = 0:
0 = no partition, no ec_sub bit in block_data
1 = 1:4 partition, one ec_sub bit in block_data

if bgmc _mode = 1:

0 = 1:4 partition, one ec_sub bit in block_data

1 = 1:2:4:8 partition, two ec_sub bits in block_data

joint_stereo 1 Joint Stereo: 1 = on, 0 = off

If channels = 0 (mono), joint_stereo =0

6 © ISO/IEC 2008 — All rights reserved

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

mc_coding 1 Extended inter-channel coding: 1 = on, 0 = off
If channels = 0 (mono), mc_coding = 0
chan_config 1 Indicates that a chan_config_info field is present
chan_sort 1 Channel rearrangement: 1 = on, 0 = off
If channels = 0 (mono), chan_sort = 0
crc_enabled 1 Indicates that the crc field is present
RLSLMS 1 Use RLS-LMS predictor: 1 = on, 0 = off
(reserved) 5
aux_data_enabled 1 Indicates that auxiliary data is present ((fields
aux_size and aux_data)
chan_config_info 16 Mapping of channels to loudspeaker locations.
Each bit indicates whether a_channel for a
particular predefined location.V exists (see
11.6.1.5).
chan_pos]] (channels+1)*ChBit | If channel rearrangement.is’ on (chan_sort = 1),
S these are the original\channel positions. The
number of bits per channel is
ChBits = ceil[log2(channels+1)] = 1..16
where channels+1 is the number of channels.
header_size 32 Header size of original audio file in bytes
If r_size = OxFFFFFFFF (Hex), there is no
~headerf] field, but the original header may be
red elsewhere, e.g. in the meta data of an
MPEG-4 file.
trailer_size 32 Trailer size of original audio file in bytes

If trailer_size = OxFFFFFFFF (Hex), there is no
orig_trailer[] field, but the original trailer may be
stored elsewhere, e.g. in the meta data of an
MPEG-4 file.

orig_header([]

header_size*8

Header of original audio file

orig_trailer(]

trailer_size*8

Trailer of original audio file

crc

32

32-bit CCITT-32 CRC checksum of the original
audio data bytes (polynomial: X2+ 5+ xP 4 x4

1 1 8, 7 4.2
X+ x2+x" + x4+ x5 +x +x +x+1).

ra_unity'size(]

#frames*32

Distances (in bytes) between the random access
frames, i.e. the sizes of the random access units,
where the number of frames is

#frames = ((samples-1) / (frame_length+1)) +1

In ALSSpecificConfig(), this field appears only if
ra_flag = 2.

aux_size

32

Size of the aux_data field in bytes

If aux_size = OxFFFFFFFF (Hex), there is no
aux_data[] field, but the auxiliary data may be

stored elsewhere, e.g. in the meta data of an
MPEG-4 file.

aux_data[]

aux_size*8

Auxiliary data (not required for decoding)

© ISO/IEC 2008 — All rights reserved

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

Page 28, in Table 11.10 replace:

ra_flag=2
with:
ra_flag =1

Page 30, replace Table 11.13 with the following table:
Table 11.13 — Elements of RLSLMS_extension_data

Field #Bits Description / Values

mono_block 1 mono_frame == 0: CPE coded with joint-stereo RLS

mono_frame == 1: CPE coded with mono RLS

ext_mode 1 RLS-LMS predictor parameters are updated in
extension block.

1 == extension block

0 == non-extension block

extension_bits 3 Type of RLS-LMS parameters~Carried in extension
block

xtension&01 == RLS-LMS.predictors orders
extension&02 == RLS\lambda and RLS_lambda_ra
extension&04 ==LMS_mu and LMS_stepsize

RLS order 4 RLS predicter-order

LMS_stage 3 Number af'LMS predictors in cascade

LMS_order[] 5*LMS_stage | LMS predictor order

RLS lambda 10 RLS predictor parameter lambda.

RLS lambda_ra 10 RLS predictor parameter lambda for random access
frame

LMS_mul[] 5*LMS_stage | LMS predictor parameter — NLMS stepsize

LMS_stepsize 3 Linear combiner parameter — Sign-Sign LMS stepsize

Page 33, 11.6.1.2, add atthe top of the list of bullet items:

e ALS identifier: This field must contain the value 1095521024 = 0x414C5300 (Hex). Using byte-wise
readings-the first three bytes are equivalent to the ASCII codes for 'ALS".

8 © ISO/IEC 2008 — All rights reserved

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

Page 34, 11.6.1.3, replace the pseudo code with the following pseudo code:

N = frame_length + 1.
frames = samples / N;
remainder = samples % N;

- (ramaiacar)
T \TCTTTanTaucT)

{

frames++;

N_last = remainder;
}
else

N_last = N;
and add the following paragraphs at the end of the subclause:
If the value of samples is OXFFFFFFFF (Hex), the number of samples is not specified f the ALS payload is
stored using the MPEG-4 file format, the number of samples can be obtained from.the’meta data of the file. In
that case, the number of frames and the length of the last frame are determined.as-described above.
If the number of samples is not available, the number of frames is undefined; and all frames are assumed to
have the same length N. In that case, the sizes of random access units shall not be stored in

ALSSpecifcConfig (i.e. only ra_flag = 0 or ra_flag = 1 shall be used), since the number of random access units
is undefined as well.

Page 37, 11.6.2, immediately before Table 11.18, add:

levels

The frame length N must be divisible by 2 without remainder, in order to obtain integer block lengths Ng.

Page 43, 11.6.3.2.1, replace:

The following algorithm describes the calculation of the residual d for an input signal x, a predictor order K and
LPC coefficients cof:

with:

The following algorithm describes the calculation of the residual d for an input signal x, a block length N, a
predictor order K and LPC\coefficients cof:

Page 44, 11.6.3.2.1,.second pseudo-code listing and Page 45, 11.6.3.2.2, second pseudo-code listing, replace
in both cases the fouirth line:

for (n =.0; n < K; n++)
with:

for (n = 0; n < min(K, N); n++)

Page 48, replace 11.6.5 entirely, with the following text:

11.6.5 RLS-LMS Predictor

This subclause describes the backward-adaptive prediction scheme that uses adaptive RLS-LMS predictor.
Block diagram of the corresponding encoder and decoder are shown in Figure 11.8 and Figure 11.9,
respectively.

© ISO/IEC 2008 — All rights reserved 9

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

Input audio_ #() ;@ﬂ, Entropy | . ALS
'_ Residual Encoder Bitstream
Round

[Rsims |20
Predictor Estimate

Figure 11.8 — Encoder of the RLS-LMS backward-adaptive prediction scheme

In the encoder, the RLS-LMS predictor generates an estimate of the current input audio sample by using the
past samples. This estimate is subtracted from the current sample to generate the residual, which is
subsequently coded by the entropy encoder (11.6.6) to form the ALS bit-stream.

Lossless reconstruction z(n) ~ ¢(n) Entropy ALS
N +\+/‘Residual Decoder Bitstream
I Round l

X A
RLS-LMS &(n)
Predictor Estimate

Figure 11.9 — Decoder of the RLS-LMS backward-adaptive prediction scheme

In the decoder, a reverse process is performed< The entropy decoder decodes the ALS bit-stream to the
residual, which is then added to the estimate “af the RLS-LMS predictor to re-generate the original audio
sample.

As shown in Figure 11.10, the RLS-LMS_ prédictor consists of a cascade of predictors in the order of a
Differential Pulse Code Modulation (DREM) predictor (11.6.5.1), a Recursive Least Square (RLS) predictor
(11.6.5.2), and a series of Least Mean~Square (LMS) predictors (11.6.5.3). The input samples sequentially
pass through the cascade of predictors. The residual of one predictor serves as the input to the next predictor.
The estimates from the predicters in the cascade are weighted and added together by a linear combiner
(11.6.5.4) to generate the final €stimate of the current input sample.

z(n) Input audio

EK—1 (TL)
-®
Predictor 1] Y1} Predictor K| Y& (%)
(DPCM) (LMS

L E])
Cl <>i<> ’ %
(n)\ Estimate
M <
S) (D

%
<
-

Figure 11.1 — Block diagram of the RLS-LMS predictor

The RLS-LMS predictor can be turned on/off by setting RLSLMS in ALSSpecificConfig() to 1/0, respectively.

10 © ISO/IEC 2008 — All rights reserved

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

11.6.5.1 DPCM Predictor

Input: x(n) original audio sample
Residual: e{(n) as input to the RLS predictor
Estimate: y;(n) as input to the linear combiner

T DRC M -oradi RILO MS radicotar caocoo a Hic o o

k. . ator o th firat oradiotar o | P | firat rdar-oradictor
LA 4 B Y40 4] PIUUIULUI O UTe TITot VI\;UIULUI mrure TNV TLIvVIiD PIUUIULUI VUOLVAUL. TUTo A OIIIIVI\/ nmrovvuruect PI\;UI\IlVI
with coefficient set to unity, i.e., the previous input sample is used as the estimate of the current input sample;
This is illustrated as follows:

»(n)=x(n-1)
where y,(n) is the estimate by the DPCM predictor, and x(n — 1) is the previous input sample.

11.6.5.2 RLS Predictor

Input: e4(n) residual of DPCM predictor
Residual: e,(n) as input to the LMS predictor
Estimate: y,(n) as input to the linear combiner
The RLS predictor is the second predictor in the RLS-LMS predictor cascade. The RLS algorithm is used to
adapt the predictor weights. The algorithm is initialized by setting the M x M.inverse auto-correlation matrix P
to a predetermined value as follows:

P(0) =01

where § is a small positive number, I is an M x M identity matrix,.and"M is the RLS predictor order.
The weight vector of the RLS predictor, defined as

Wes(n)= [WRLS,I (n), Wres2 (1)ees Wer s (n)]T
is initialized by
Wy s(0)=0

For each time index n,n =1, 2, ... , the following.calculations are made
v(n)=P(n—-1e,(n)

where e(n) is the RLS predictor input vector defined as
e (n)=[e (n—1),efn=2),....e,(n—M)|"

and
m= W if e/ (m)v(n) #0
1 else
K(m)=mv(n)
¥, (n)=wys(n—1)e,(n)

e,(n)=¢ ()~ y,(n)

Wi () =Wy s (n—1) + k(n)e, (n)

P(n) =Tri{ A" (P(n—1) - k(n)v' (n)}

where k(n) is the M x 1 gain vector, X is the forgetting factor that is a positive value slightly smaller than 1, T is
the transpose symbol, and Tri{*} denotes the operation to compute the lower triangular part of P(n) and fill the
upper triangular part of the matrix with the same values as in the lower triangular part. In other words, the
value of P(n) at the i-th row and j-th column (i > j) is copied to the value of P(n) at the j-th row and i-th column.

© ISO/IEC 2008 — All rights reserved 1

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

11.6.5.2.1 Joint-Stereo RLS Predictor

For a channel pair element (CPE), if joint_stereo in ALSSpecificConfig() is set to 1, the RLS predictor will work
in the joint-stereo mode. In the joint-stereo mode, the RLS predictor employs both intra-channel prediction and
inter-channel prediction. Figure 11.11 shows the joint-stereo RLS predictor for the left audio channel.

€r,1 (n) > :+ €L,2(71)

S
+ | Intra-channel

Predictor a. }
e - =)
—_— yr,1(n)
eR,_l(ﬁ)_> Inter-channel J

Predictor b.
-

Figure 11.11 — Joint-stereo RLS predictor for L channel

As shown in the figure, the input signals to the predictor are L channel DPCM predictor residual e_4(n) and R
channel DPCM predictor residual eg(n). The joint-stereo predictor consists of @n-intra-channel predictor a,
and an inter-channel predictor b,. The intra-channel predictor a_ generates’’an estimate of the L channel
current input sample e 4(n) from past samples e 4(n-1), e_1(n-2), ..., e_4(n<M/2), where M is the order of the
joint-stereo RLS predictor. At the same time, the inter-channel predictor b, generates another estimate of
e_1(n) from R channel past input samples eg 1(n-1), er1(n-2), ..., er1(n:M/2). These two estimates are added
together. The result y_4(n) is the estimate of the L channel joint-stereo RLS predictor. This process is

represented as
M/2 M/2

Yia(n)= Z a, ,e;,(n—m)+ Z b, ez, (n—m)
m=1

m=1

Where a_, are coefficients of the intra-channel predictoria,, b, , are coefficients of the inter-channel predictor
b.. In the equation, the first summation term is{the intra-channel predictor estimate, and the second
summation term the inter-channel predictor estimate. The residual e _,n) is generated by subtracting estimate
y.1(n) from e 4(n) as

€ (n)= €1 (n)— Y (n)
The L channel joint-stereo RLS predictor is,updated by the RLS algorithm given in 11.6.5.2, where the weight
vector, input vector, and residual in the'RLS algorithm are redefined as follows:

Wes(m) =[b,,,a,, ’bL,Z’al_,Z’“"bL,M/Z’aL,M/Z]T

e (n)= [eR,l (n— 1)’3L,1 (n= 1)’eR,l (n— 2)aeL,1 (n— 2)5'“’6R,1 (n— M/2)’€L,1 (n—M/ 2)]T
e,(n)= € (n)

The joint-stereo predictorfor the right audio channel is shown in Figure 11.12.

€r,1 (71) -
) Inter _channel
predictor br
——

!
- | Intra-channel
predictor ar

eR,l(n) > +: €R’2(n)

Figure 11.12 — Joint-stereo RLS predictor for R channel

12 © ISO/IEC 2008 — All rights reserved

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

As shown in the figure, the input signals to the predictor are L channel DPCM predictor residual e, 4(n) and R
channel DPCM predictor residual eg 1(n). The joint-stereo RLS predictor consists of an intra-channel predictor
ar and an inter-channel predictor bg. The intra-channel ar predictor generates an estimate of the R channel
current input sample eg ;(n) from past samples eg 1(n-1), er1(N-2), ..., er1(N-M/2), where M is the order of the
joint-stereo RLS predictor. At the same time, the inter-channel predictor bg generates another estimate of

amdn) fram | channal inniit camnlac o (Nn) (n-1) a (- M2+1)\ Thaoce two ostimatas ara addad
HOM—1t=——6cHaRRE—RpPUt—Sapes Srrth-vr=+1)—reS6—+twWo—B8SHRates—are—aaa&ea

ORI A ALY £} er-<,|\" LV ERNEE]
together. The result yg1(n) is the estimate of the R-channel joint-stereo RLS predictor. This process s
represented as

M2 M/2-1
Yea(n)= Z ag pCr (n—m)+ Z bg e (n—m)
m=1 m=0

where ar, are coefficients of the intra-channel predictor ag, br, are coefficients of the inter-channel predictor
br. In the equation, the first summation term is the intra-channel predictor estimate, -and the second
summation term the inter-channel predictor estimate. The residual er>(n) is generated by subtracting estimate
yr.1(n) from eg 1(n), that is

€ro (n)= €r1 (n)— YR (n)
The R channel joint-stereo RLS predictor is updated by the RLS algorithm given'in-11.6.5.2, where the weight
vector, input vector, and residual in the RLS algorithm are redefined as followss

T
Wes(n)= [bL,oa a, ’bL,l sdr o ’“"bL,M/Z—l o

e (n)= le,, (”)aeR,l (n— 1)’eL,l (n— l)aeR,l (n— 2)"“’6L,1 (n-M/2+ 1),613,1 (n— M/2)]T

e,(n)= €r2 (n)
The decoder processes a CPE in the order of LRLRLR.... The"Current L channel sample is always decoded
before the current R channel sample.

11.6.5.2.2 Mono RLS Predictor

For a single channel element (SCE), the RLS predictor operates in the mono mode. In the mono mode, the
RLS predictor is updated by the RLS algorithm given in 11.6.5.2.

For a CPE, if joint_stereo in ALSSpecificConfig() is set to 0, mono RLS is used for each individual channel in
the CPE. For a CPE, if mono_block in RESLMS_extension() is set to 1, the CPE will be coded as two individual
channels L and L-R. The L channel. is.treated as a SCE, whereas the difference channel L-R goes directly to
the entropy encoder. For a SCE, if an input frame contains only constant values, the RLS-LMS predictor is
bypassed for that frame. For a CRE, if both channels contain only constant values, the RLS-LMS predictor is
bypassed for the frame.

11.6.5.2.3 Filtering Operation in RLS predictor

The following pseudo-code illustrates how an order-M RLS predictor generates the estimate signal. The order
of the RLS predictor is defined in 11.6.5.6.1.

© ISO/IEC 2008 — All rights reserved 13

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

Pseudo code Comments
INT32 *w, *buf; w is RLS predictor weight vector (.16 format)
INT64 temp = 0; buf is RLS predictor input vector (.0 format)
for (i=0; i<M; i++)

temp += (INT64) w[i] * buffi]; temp = w * buf
temp >=12; temp is .4 format

if (temp>0x40000000) temp = 0x40000000; | Limit the range of temp to
if (temp<-0x40000000) temp =-0x40000000; | [-0x40000000, 0x40000000]

INT32y; y is RLS predictor estimate (.4 format)

y = (INT32) (temp);

11.6.5.2.4 Weight Adaptation in RLS predictor

The following pseudo code illustrates how the weight vector of an order-M\RLS predictor is updated.

Pseudo code Comments

INT32 x, v, €; X is RLS predictor current input sample
X is .4 format

e=x-y; y is RLS predictor esitimate (.4 format)

e is RLS predictor residual (.4 format)
P is RLS algorithm matrix P (.60 format)

INT64 **P; buf is RLS predictor input vector (.0 format)
INT32 *buf, *v; v is RLS algorithm vector v
INT16 vs; vs is a scale factor

[v, vs] = MulMtxVec(P, buf);

v = P*buf
v is .(28-vs) format

INT64 temp;
INT16 ds;

[temp, ds] = MulVecVec(buf, v);

ds is a scale factor

temp = buf * v
temp is .(60-vs-ds) format

i=0;

whilg(temp>0x20000000 && temp!=0)

temp >>=1; i++;

I+=vs + ds; temp is .(60-i) format
if (i<=60) If (i<=60)

temp += (((INT64) 1) << (60-i)); temp = temp + 1
else else

reinit_P(P); Re-initialize matrix P

© ISO/IEC 2008 — All rights reserved

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

INT64 mm;
INT32 m; m is the RLS algorithm variable m
if (temp==0) If (temp==0)
mmT=13Z30; =13
else if (i<=28) else
shift = 28-i; m = 1/temp;

mm = (((INT64)1)<<62) / temp;
if (shift>32)
mm = 1L<<30;
else
mm <<= shift;
else
mm = (((INT64)1)<<(90-i)) / temp;

m = (INT32)mm;

m is .30 format

INT32 *k;

for (i=0; i<M; i++)
temp = (INT64) v[i] * m;

if (vs>=12)
k[i] = temp<<(vs-12);
else

k[i] = temp>>(11-vs);
k[i] = ROUND2(K[i]);

k is the RES-algorithm gain vector k

ke=m*v

Scale k

k is .46 format

temp = 0;
for (i=0; i<M; i++)

temp I= (k[i]>0 ? K[i]:-k[i]);
ds = fast_bitcount(temp);

Obtain MSB in k
Get position of MSB bit

if (ds>30)
ds -= 30; Scale k
for (i=0; i<M; i++) K[i]>>= ds;
else
ds =0; k is .(46-ds) format
INT32 *w; w is RLS predictor weight vector

for (05 i<M; i++)
temp = (((INT64) k[i] * (e>>3))>>(30-ds));
temp = w[i] + ROUND2(temp);
w[i] = (long) temp;

Vs += ds;

Update RLS weight vector
w=w+k*e
w is .16 format

© ISO/IEC 2008 — All rights reserved

15

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

INT16 lambda;

for (i=0; i<M; i++)
for (j=0; j<=i; j++)

lambda is defined in 11.6.5.6.6

Update matrix P (lower triangular)

temp=<{NT 82 ki viji/>ssttd-vs);

P[i][j] -= temp;

if (P[i][j]>=0x4000000000000000

[l P[i][j]<=-0x4000000000000000)
reinit_P(P); break;

temp = Pi][j] / lambda;

P[illj] += temp;

P=P—k*v
P =P * (1+1/lambda)
P is .60 format

for (i=1; i<M; i++)
for (j=0; j<i; j++)

PLIl] = PG

Update matrix P (upper triangular)

for (i=M-1; i>0; i--)
buf[i] = buf[i-1];
buf[0] = x>>4;

Update RLS predictoer input vector

buf is .0 format

Pseudo code

Comments

[INT32 *v, INT16 vs] = MulMtxVec(INT64 **P, INT32 *buf)

Multiply matrix P by buf,
Return the result in v
P is .60 format, buf is .0 format

INT64 temp=0;
INT16 ps;

for(i=0; i<M; i++)
for(j=0; j<=i; j++)
temp |= (PIi][j]>0 ? P[i][j] : -P{illjl);

ps = 63 - fast_bitcount(temp);

ps is a scale factor

Obtain MSB in matrix P

Calculate the shift needed
to maximize P

INT64 *u;

for (i=0; i<M; i++)

u[i]=0;

for (j=05.<M; j++) u[i] +=
(INT64)(((Plil[j]<<ps)+(INT64)0x80000000)>>32) * buf[j];

u =P * buf
u is .(28+ps) format.

INT16 ns;

ns is a scale factor

temp =0;
for (i=0; i<M; i++)
temp I= (u[i]>0 ? u[i] : -u[i]);

ns = fast_bitcount(temp);

Obtain MSB

Get the position of MSB bit

16

© ISO/IEC 2008 — All rights reserved

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

if (ns>28)
ns -= 28;
for(i=0; i<M; i++)
v[i] = (INT32) (u[i]>>ns);

Scale v

VS =T11S - S,
else
for(i=0;i<M;i++)
V[i] = (INT32) uli];
VS = -ps;

Vv is .(28-vs) format

Pseudo code

Comments

[INT64 z, INT16 ds] = MulVecVec(INT32 *buf, INT32 *v)

Compute inner product@f buf and v,
return the result in z
buf is .0 format, v.is(28-vs) format

INT 64 z = 0;

for (i=0; i<M; i++)
z += (INT64) buf[i] * vIil;

Zz = buf*™v

INT64 temp;

temp=(z>07?z:-2);
ds = fast_bitcount(temp);

Get the position of MSB bit

if (ds>28)
ds -=28;
z = (z<<(32-(ds-1)));
z = ROUND2(z2);

else
ds =0;
z = (z<<32);

Scale z

z is .(60-vs-ds) format

Pseudo code

Comments

reinit_R(INT64 **P)

Re-initialize matrix P

for (i=0; i<M; i++)
for (j=0; j<M; j++)
P[illj]= 0;

for (i=0; i<M; i++)

Clear P to zero

Pli][i] = (INT64) JS_INIT_P;

Initialize the diagonal components

© ISO/IEC 2008 — All rights reserved

17

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

Pseudo code Comments

[INT16 count] = fast_bitcount (INT64 temp) Return the MSB bit position

=56.]=0;

while((temp>>i)==0 && i>0) i -= 8;
temp>>=i;

while(temp>0) temp>>=1; j++;
count =i+ j;

The RLS predictor can be turned off by setting RLS_order to zero. In this case, the RLS predictorestimate
y2(n) is set to zero.

11.6.5.3 LMS Predictors

Input: e,.1(n) residual of the previous predictor (could be RLS predictor or LMS predictor)

Residual: e(n) as input to the next LMS predictor

Estimate: y,(n) as input to the linear combiner

The RLS-LMS predictor contains a series of LMS predictors. The Normalized'EMS (NLMS) algorithm is used
to adapt the predictor weights. For an order-M LMS predictor, its weight vectar

Wiys (1) = [Wins.i (n), Winms,2 (1),-es Wims,m (n)]T
is initialized by

Woyus(n)=0
For each time indexn,n =1, 2, ..., the estimate is calculated as

yi(n)= W{MS (n)e,_,(n)

where ey_4(n) is the input vector defined as
e, (n)=[e,_ (n-1,e_ (n52),..,e,_ (n-M)]"

The LMS predictor weight vector is updated according to
e (n)=e,_, (M= y,(n)
e, (n)e, (n)
2" + el (n)e, (n)

Wos (1) =Wy (n—1) +

where Ly is the NLMS stepsize (Clause 0).

11.6.5.3.1 _Filtering operation in LMS Predictor

The following pseudo code illustrates how an order-M LMS predictor generates the estimate signal. The order
of the.MS predictor is defined in Clause 0.

18 © ISO/IEC 2008 - All rights reserved

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

Pseudo code

Comments

INT32 *w, *buf;
INT64 temp = 0;

w is LMS predictor weight vector (.24 format)
buf is LMS predictor input vector (.0 format)

for (i=0; i<M; i++)
temp += (INT64) wli] * buffi];

temp = w * buf

temp >>= 20;

if (temp>0x7ffffff) temp = Ox7ffffff;
if (temp<-0x7ffffff) temp = -Ox7ffffff;

temp is .4 format

Limit the range of temp to
[-Ox7ffffff, Ox7fffff]

INT32 y;

y = (INT32) (temp);

y is LMS predictor estimate (.4 format)

11.6.5.3.2 Weight adaptation in LMS Predictor

The following pseudo code illustrates how the weight vector of an erder-M LMS predictor is updated.

Pseudo code

Comments

INT32 x, y, €; X is LMS predictor current input sample (.4 format)
y is LMS predictor esitimate (.4 format)

e=x-y; e is LMS predictior residual (.4 format)

INT32 *buf; buf is LMS predictor input vector (.0 format)

INT64 pow = 0;

for (i=0; i<M; i++)
pow += (INT64) buffi] *buf[i;

if (pow>0x4000000000000000)
pow = 0x4000000000000000;

Compute total signal power in buf
pow = buf * buf

pow is .0 format

INT16 my;
INT64temp, temp1;

temp = (INT64) mu * (pow>>7);
temp1 = temp;

mu is NLMS algorithm stepsize (.0 format)
mu is defined in xxx.yyy

temp = mu * pow
temp is .(-7) format

i=0;

\Alhiln(fnmpsn\(?fffffff) ’rnmpss—1; it

Compute the number of shifts needed
to_shift temp into the lower 32 bit

temp = ((INT64) e<<(29-i)) / (INT64)((temp1+1)>>i);

temp = e/ (128 + mu*buf*buf)
temp is .40 format

ISO/IEC 2008 — All rights reserved

19

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

INT32 *w; w is LMS predictor weight vector (.24 format)

for (i=0; i<M;i++) w[i] += Update weight vector
(INT32) (((INT64) buf[i] * temp + 0x8000)>>16); | w =w + (buf*e) / (128 + mu*buf*buf)

for (i=M-1; i>0; i--) Update the input vector
buf[i] = buf[i-1];
buf[0] = x>>4; buf is .0 format

11.6.5.4 Linear Combiner

Input: y4(n), y2(n), ...,yk(n) estimates from DPCM, RLS, and LMS predictors
Output: x(n) final estimate of the RLS-LMS predictor

The linear combiner multiplies the estimates from the DPCM, RLS, and LMS predictors>by a set of weights.
The results are summed together to provide the final estimate of the RLS-LMS predi¢tor. The Sign-Sign LMS
algorithm is used to update the linear combiner weights. If there are in total K ptedictors in the RLS-LMS
predictor cascade, the linear combiner weight vector is given by

e(n) =[c,(n), ¢, (n),..rc (W]
The linear combiner input vector is given by
Y1) =y, (1), y, (1), y (W]
The final estimate of the RLS-LMS predictor is given by
(n)=c" (n)y(n)
The linear combiner weight vector is updated by the Sign-Sign LMS algorithm
c(n) =c(n—1)+asgn{y(n){sgn{x(n) - X(n)}

where x(n) is the RLS-LMS predictorccurrent input sample, o is the Sign-Sign LMS stepsize (11.6.5.6.5). The
sgn{*} function is defined as

I«(r>0
sgn{r}z 0" r=0
-1 r<0

The following pseudo code illustrates how an order-K linear combiner generates the final estimate of the RLS-
LMS predictor. The order of linear combiner is given by (LMS_stage+2). The code also shows how the linear
combiner weight vector is updated. It shall be noted that the first two linear combiner weights are not updated.

20 © ISO/IEC 2008 - All rights reserved

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

Pseudo code Comments
INT32 *c, *y; c is linear combiner weight vector (.24 format)
INT64 xhat = 0; y is linear combiner input vector (.4 format)
xhat is linear combiner output, i.e., final estimate

for (i=0; i<K; i++) of RLS-LMS predictor.

xhat += (INT64) c[i] * y[i];
xhat >>=24 ; xhat is .4 format
INT32 x; x is RLS-LMS predictor current input sample
INT64 r; x is .0 format
r = (x<<4) — xhat; Compute the difference between x andxhat

ris .4 format

INT32 LMS_stepsize; Sign-Sign LMS algorithm stepsize (.24 format)
INT64 temp; LMS_stepsize is defined in 14,6.5.6.5
for (i=2; i<K; i++) Sign-Sign LMS algorithm

temp = (INT64) r * y[i];

if (temp>0 && c[i]<0x40000000) | Only update lineat'combiner weights

cli] += LMS_stepsize; for the LMS predictors
if (temp<0 && c[i]>-0x40000000)
cli] -= LMS_stepsize;

INT32 ¢; €-9 RLS-LMS predictor residual (.0 format)
e = x - ROUND1(xhat)

11.6.5.5 RLS-LMS Predictor Initialization

The RLS-LMS predictor is initialized at the following moments: start of encoding, start of decoding, start of
each random access (RA) frame, and whenever filter order changes. The RLS-LMS predictor is initialized by
zero-filling the following buffers: DPCM predictor previous input sample, RLS predictor input vector and weight
vector, all LMS predictor input vectors and weight vectors, and linear combiner input vector. The RLS predictor
P matrix is initialized“by calling function reinit_P(P). The linear combiner weight vector is set to constant
FRACTION, which-represents 1.0 in 8.24 format.

Table 11.27 lists the constants and macros used by the RLS-LMS predictor.

Table 11.27 — Constants and Macros

Constants & | Value Comments

Macros

JS_INIT_P 115292150460684 0.0001 in 4.60
format

FRACTION (1L<<24) 1.0 in 8.24 format

ROUND1(x) ((INT32) ((x+8)>>4)) Rounding function

ROUND2(x) ((INT64) ((INT64) x + (INT64) 1)>>1) | Rounding function

© ISO/IEC 2008 — All rights reserved 21

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

11.6.5.6 RLS-LMS Predictor Parameters

The parameters of the RLS-LMS predictor can be changed every frame. This is signalled in
RLSLMS_extension() when ext mode = 1. Sub-sections 11.6.5.6.1 to 11.6.5.6.6 describe the RLS-LMS

predictor parameters that can be changed.

11.6.5.6.1 RLS_order

This parameter specifies the order of the RLS predictor. Valid values and the corresponding 4-bit indices are

listed in Table 11.28.
Table 11.28 — RLS_order

index RLS_order index RLS_order
0 0 8 16
1 2 9 18
2 4 10 20
3 6 11 22
4 8 12 24
5 10 13 26
6 12 14 28
7 14 15 30

11.6.5.6.2 LMS_stage

This parameter specifies the number of LMS predictors-in the RLS-LMS predictor cascade. Valid values and

the corresponding 3-bit indices are listed in Table 11¢29.
Table 41.29 — LMS_stage

index LMS_stage

0 1

N|j[ojloa || N
O |IN|[O|lOa|M~M|]W|DN

22

© ISO/IEC 2008 — All rights reserved

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

11.6.5.6.3 LMS_order

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

This parameter specifies the order of the LMS predictor. Valid values and the corresponding 5-bit indices are

listed in Table 11.30.

Table 11.30 — LMS _order

index LMS_order index LMS_order
0 2 16 32

1 3 17 36

2 4 18 48

3 5 19 64

4 6 20 80

5 7 21 96

6 8 22 128

7 9 23 256

8 10 24 884

9 12 25 448

10 14 26 512

11 16 27 640

12 18 28 768

13 20 29 896

14 24 30 1024

15 28 31 reserved

11.6.5.6.4 LMS_mu

This parameter specifies the stepsize of NLMS algorithm that is used to update the LMS predictor. Valid
values and the corresponding 5=bit indices are listed in Table 11.31.

Table 11.31 — LMS_mu

index LMS_mu index LMS_mu
0 1 16 18
1 2 17 20
2 3 18 22
3 4 19 24
4 5 20 26
5 6 21 28
6 7 22 30
7 8 23 35
8 9 24 40
9 10 25 45
10 11 26 50
11 12 27 55

© ISO/IEC 2008 — All rights reserved

23

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

