
ICS 35.040 Ref. No. ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

© ISO/IEC 2008 – All rights reserved

Published in Switzerland

INTERNATIONAL STANDARD ISO/IEC 14496-3:2005/Amd.2:2006
TECHNICAL CORRIGENDUM 2
Published 2008-12-01

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION • МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ • ORGANISATION INTERNATIONALE DE NORMALISATION
INTERNATIONAL ELECTROTECHNICAL COMMISSION • МЕЖДУНАРОДНАЯ ЭЛЕКТРОТЕХНИЧЕСКАЯ КОМИССИЯ • COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

Information technology — Coding of audio-visual objects —
Part 3:
Audio
AMENDMENT 2: Audio Lossless Coding (ALS), new audio profiles and BSAC extensions

TECHNICAL CORRIGENDUM 2

Technologies de l'information — Codage des objets audiovisuels —

Partie 3: Codage audio

AMENDEMENT 2: Codage audio sans perte (ALS), nouveaux profils audio et extensions BSAC

RECTIFICATIF TECHNIQUE 2

Technical Corrigendum 2 to ISO/IEC 14496-3:2005/Amd.2:2006 was prepared by Joint Technical Committee
ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and
hypermedia information.

Throughout this Corrigendum, modifications or additions to existing text are highlighted in grey.

Page 4, after Table 1.11A, replace:

A HE AAC v2 Profile decoder of a certain level shall operate the HQ SBR tool for streams containing
Parametric Stereo data. For streams not containing Parametric Stereo data, the HE AAC v2 Profile decoder
may operate the HQ SBR tool, or the LP SBR tool.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

2 © ISO/IEC 2008 – All rights reserved

with:

An HE AAC v2 Profile decoder shall operate the HQ SBR tool for bitstreams containing Parametric Stereo
data. For bitstreams not containing Parametric Stereo data, the HE AAC v2 Profile decoder may operate the
HQ SBR tool, or the LP SBR tool.
Only bitstreams consisting of exactly one AAC single channel element may contain Parametric Stereo data.
Bitstreams containing more than one channel in the AAC part shall not contain Parametric Stereo data.

Page 6, in Table 1.13 replace the rows:

 case 36:
 ALSSpecificConfig();
 break;

with:

 case 36:
 fillBits; 5 bslbf
 ALSSpecificConfig();
 break;

In ISO/IEC 14496-3:2005, after 1.6.3.14 add:

1.6.3.15 FillBits

Fill bits for byte alignment of ALSSpecificConfig() relative to the start of AudioSpecificConfig().

Page 8, replace the final sentence:

Similarly the HE AAC v2 decoder can handle all HE AAC Profile streams as well as all AAC Profile streams.

with:

Similarly an HE AAC v2 profile decoder of a certain level can handle all HE AAC Profile streams of the same
or lower level as well as all AAC Profile streams of the same or lower level.

In 11.2.1, replace:

(see subclause 11.6.7)

with:

(see subclause 11.6.5.2.1 and 11.6.7)

Page 18, at the end of 11.3.3 add:

x.y Fixed-point signed fractional representation, where x is the number of bits to the left of the binary point,

and y is the number of bits to the right of the binary point (two’s complement sign representation). 64-bit
signed integer (two's complement)

Page 18, replace Table 11.1 with the following table:

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

© ISO/IEC 2008 – All rights reserved 3

Table 11.1 — Syntax of ALSSpecificConfig

Syntax No. of bits Mnemonic
ALSSpecificConfig()
{
 als_id; 32 uimsbf
 samp_freq; 32 uimsbf
 samples; 32 uimsbf
 channels; 16 uimsbf
 file_type; 3 uimsbf
 resolution; 3 uimsbf
 floating; 1 uimsbf
 msb_first; 1 uimsbf
 frame_length; 16 uimsbf
 random_access; 8 uimsbf
 ra_flag; 2 uimsbf
 adapt_order; 1 uimsbf
 coef_table; 2 uimsbf
 long_term_prediction; 1 uimsbf
 max_order; 10 uimsbf
 block_switching; 2 uimsbf
 bgmc_mode; 1 uimsbf
 sb_part; 1 uimsbf
 joint_stereo; 1 uimsbf
 mc_coding; 1 uimsbf
 chan_config; 1 uimsbf
 chan_sort; 1 uimsbf
 crc_enabled; 1 uimsbf
 RLSLMS 1 uimsbf
 (reserved) 5
 aux_data_enabled; 1 uimsbf
 if (chan_config) {
 chan_config_info; 16 uimsbf
 }
 if (chan_sort) {
 for (c = 0; c < channels; c++)
 chan_pos[c]; 1..16 uimsbf
 }
 byte_align; 0..7 bslbf
 header_size; 32 uimsbf
 trailer_size; 32 uimsbf
 orig_header[]; header_size * 8 bslbf
 orig_trailer[]; trailer_size * 8 bslbf
 if (crc_enabled) {
 crc; 32 uimsbf
 }
 if ((ra_flag == 2) && (random_access > 0)) {
 for (f = 0; f < ((samples-1) / (frame_length+1)) + 1; f++) {
 ra_unit_size[f] 32 uimsbf
 }
 }
 if (aux_data_enabled) {
 aux_size; 32 uimsbf
 aux_data[]; aux_size * 8 bslbf
 }
}

Note: “byte_align” denotes byte alignment of subsequent data relative to the start of ALSSpecificConfig().

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

4 © ISO/IEC 2008 – All rights reserved

Page 21, in Table 11.3, replace:

 if (adapt_order == 1) {
 opt_order; 1..10 uimsbf
 }
 for (p = 0; p < opt_order; p++) {
 quant_cof[p]; varies Rice code
 }

 if (RLSLMS) {
 RLSLMS_extension_data()
 }
}

with:

 if (adapt_order == 1) {
 opt_order; 1..10 uimsbf
 }
 else {
 opt_order = max_order;
 }
 for (p = 0; p < opt_order; p++) {
 quant_cof[p]; varies Rice code
 }

 if (RLSLMS) {
 RLSLMS_extension_data()
 }
 byte_align; 0..7 bslbf
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

© ISO/IEC 2008 – All rights reserved 5

Page 23, replace Table 11.5 with the following table:

Table 11.5 – Syntax of RLSLMS_extension_data

Syntax No. of bits Mnemonic
RLSLMS_extension()
{
 mono_block 1 uimsbf
 ext_mode 1 uimsbf
 if (ext_mode) {
 extension_bits 3 uimsbf
 if (extension_bits&0x01) {
 RLS_order 4 uimsbf
 LMS_stage 3 uimsbf
 for(i=0; i<LMS_stage;i++){
 LMS_order[i] 5 uimsbf
 }
 }
 if (extension_bits&0x02) {
 if (RLS_order) {
 RLS_lambda 10 uimsbf
 if (RA)
 RLS_lambda_ra 10 uimsbf
 }
 }
 if (extension_bits&04) {
 for(i=0; i<LMS_stage;i++) {
 LMS_mu[i] 5 uimsbf
 }
 LMS_stepsize 3 uimsbf
 }
 }
}

Page 25, replace Table 11.9 with the following table:

Table 11.9 — Elements of ALSSpecificConfig

Field #Bits Description / Values

als_id 32 ALS identifier

fixed value = 1095521024 = 0x414C5300 (Hex)

samp_freq 32 Sampling frequency in Hz

samples 32 Number of samples (per channel)

If samples = 0xFFFFFFFF (Hex), the number of
samples is not specified (see 11.6.1.3)

channels 16 Number of channels-1

(0 = mono, 1 = stereo, …)

file_type 3 000 = unknown / raw file

001 = wave file

010 = aiff file

011 = bwf file

(other values are reserved)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

6 © ISO/IEC 2008 – All rights reserved

resolution 3 000 = 8-bit

001 = 16-bit

010 = 24-bit

011 = 32-bit

(other values are reserved)

floating 1 1 = IEEE 32-bit floating-point, 0 = integer

msb_first 1 Original byte order of the input audio data:

0 = least significant byte first (little-endian)

1 = most significant byte first (big-endian)

If resolution = 0 (8-bit data), msb_first = 0
indicates unsigned data (0…255), while
msb_first = 1 indicates signed data (-128…127).

frame_length 16 Frame Length - 1 (e.g. frame_length = 0x1FFF
signals a frame length of N = 8192)

random_access 8 Distance between RA frames (in frames, 0…255).
If no RA is used, the value is zero. If each frame is
an RA frame, the value is 1.

ra_flag 2 Indicates where the size of random access units
(ra_unit_size) is stored:

00: not stored

01: stored at the beginning of frame_data()

10: stored at the end of ALSSpecificConfig()

adapt_order 1 Adaptive Order: 1 = on, 0 = off

coef_table 2 Table index (00, 01, or 10, see Table 11.20) of
Rice code parameters for entropy coding of
predictor coefficients, 11 = no entropy coding

long_term_prediction 1 Long term prediction (LTP): 1 = on, 0 = off

max_order 10 Maximum prediction order (0..1023)

block_switching 2 Number of block switching levels:

00 = no block switching

01 = up to 3 levels

10 = 4 levels

11 = 5 levels

bgmc_mode 1 BGMC Mode: 1 = on, 0 = off (Rice coding only)

sb_part 1 Sub-block partition for entropy coding of the
residual.

if bgmc_mode = 0:

0 = no partition, no ec_sub bit in block_data

1 = 1:4 partition, one ec_sub bit in block_data

if bgmc_mode = 1:

0 = 1:4 partition, one ec_sub bit in block_data

1 = 1:2:4:8 partition, two ec_sub bits in block_data

joint_stereo 1 Joint Stereo: 1 = on, 0 = off

If channels = 0 (mono), joint_stereo = 0

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

© ISO/IEC 2008 – All rights reserved 7

mc_coding 1 Extended inter-channel coding: 1 = on, 0 = off

If channels = 0 (mono), mc_coding = 0

chan_config 1 Indicates that a chan_config_info field is present

chan_sort 1 Channel rearrangement: 1 = on, 0 = off

If channels = 0 (mono), chan_sort = 0

crc_enabled 1 Indicates that the crc field is present

RLSLMS 1 Use RLS-LMS predictor: 1 = on, 0 = off

(reserved) 5

aux_data_enabled 1 Indicates that auxiliary data is present (fields
aux_size and aux_data)

chan_config_info 16 Mapping of channels to loudspeaker locations.
Each bit indicates whether a channel for a
particular predefined location exists (see
11.6.1.5).

chan_pos[] (channels+1)*ChBit
s

If channel rearrangement is on (chan_sort = 1),
these are the original channel positions. The
number of bits per channel is

ChBits = ceil[log2(channels+1)] = 1..16

where channels+1 is the number of channels.

header_size 32 Header size of original audio file in bytes

If header_size = 0xFFFFFFFF (Hex), there is no
orig_header[] field, but the original header may be
stored elsewhere, e.g. in the meta data of an
MPEG-4 file.

trailer_size 32 Trailer size of original audio file in bytes

If trailer_size = 0xFFFFFFFF (Hex), there is no
orig_trailer[] field, but the original trailer may be
stored elsewhere, e.g. in the meta data of an
MPEG-4 file.

orig_header[] header_size*8 Header of original audio file

orig_trailer[] trailer_size*8 Trailer of original audio file

crc 32 32-bit CCITT-32 CRC checksum of the original
audio data bytes (polynomial: x32 + x26 + x23 + x22 +
x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1).

ra_unit_size[] #frames*32 Distances (in bytes) between the random access
frames, i.e. the sizes of the random access units,
where the number of frames is

#frames = ((samples-1) / (frame_length+1)) +1

In ALSSpecificConfig(), this field appears only if
ra_flag = 2.

aux_size 32 Size of the aux_data field in bytes

If aux_size = 0xFFFFFFFF (Hex), there is no
aux_data[] field, but the auxiliary data may be
stored elsewhere, e.g. in the meta data of an
MPEG-4 file.

aux_data[] aux_size*8 Auxiliary data (not required for decoding)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

8 © ISO/IEC 2008 – All rights reserved

Page 28, in Table 11.10 replace:

ra_flag = 2

with:

ra_flag = 1

Page 30, replace Table 11.13 with the following table:

Table 11.13 — Elements of RLSLMS_extension_data

Field #Bits Description / Values

mono_block 1 mono_frame == 0: CPE coded with joint-stereo RLS

mono_frame == 1: CPE coded with mono RLS

ext_mode 1 RLS-LMS predictor parameters are updated in
extension block.

1 == extension block

0 == non-extension block

extension_bits 3 Type of RLS-LMS parameters carried in extension
block

xtension&01 == RLS-LMS predictors orders

extension&02 == RLS_lambda and RLS_lambda_ra

extension&04 == LMS_mu and LMS_stepsize

RLS_order 4 RLS predictor order

LMS_stage 3 Number of LMS predictors in cascade

LMS_order[] 5*LMS_stage LMS predictor order

RLS_lambda 10 RLS predictor parameter lambda.

RLS_lambda_ra 10 RLS predictor parameter lambda for random access
frame

LMS_mu[] 5*LMS_stage LMS predictor parameter – NLMS stepsize

LMS_stepsize 3 Linear combiner parameter – Sign-Sign LMS stepsize

Page 33, 11.6.1.2, add at the top of the list of bullet items:

• ALS identifier: This field must contain the value 1095521024 = 0x414C5300 (Hex). Using byte-wise
reading, the first three bytes are equivalent to the ASCII codes for 'ALS'.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

© ISO/IEC 2008 – All rights reserved 9

Page 34, 11.6.1.3, replace the pseudo code with the following pseudo code:

 N = frame_length + 1.
 frames = samples / N;
 remainder = samples % N;
 if (remainder)
 {
 frames++;
 N_last = remainder;
 }
 else
 N_last = N;

and add the following paragraphs at the end of the subclause:

If the value of samples is 0xFFFFFFFF (Hex), the number of samples is not specified. If the ALS payload is
stored using the MPEG-4 file format, the number of samples can be obtained from the meta data of the file. In
that case, the number of frames and the length of the last frame are determined as described above.

If the number of samples is not available, the number of frames is undefined, and all frames are assumed to
have the same length N. In that case, the sizes of random access units shall not be stored in
ALSSpecifcConfig (i.e. only ra_flag = 0 or ra_flag = 1 shall be used), since the number of random access units
is undefined as well.

Page 37, 11.6.2, immediately before Table 11.18, add:

The frame length N must be divisible by 2levels without remainder, in order to obtain integer block lengths NB.

Page 43, 11.6.3.2.1, replace:

The following algorithm describes the calculation of the residual d for an input signal x, a predictor order K and
LPC coefficients cof:

with:

The following algorithm describes the calculation of the residual d for an input signal x, a block length N, a
predictor order K and LPC coefficients cof:

Page 44, 11.6.3.2.1, second pseudo-code listing and Page 45, 11.6.3.2.2, second pseudo-code listing, replace
in both cases the fourth line:

for (n = 0; n < K; n++)

with:

for (n = 0; n < min(K, N); n++)

Page 48, replace 11.6.5 entirely, with the following text:

11.6.5 RLS-LMS Predictor

This subclause describes the backward-adaptive prediction scheme that uses adaptive RLS-LMS predictor.
Block diagram of the corresponding encoder and decoder are shown in Figure 11.8 and Figure 11.9,
respectively.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

10 © ISO/IEC 2008 – All rights reserved

Figure 11.8 — Encoder of the RLS-LMS backward-adaptive prediction scheme

In the encoder, the RLS-LMS predictor generates an estimate of the current input audio sample by using the
past samples. This estimate is subtracted from the current sample to generate the residual, which is
subsequently coded by the entropy encoder (11.6.6) to form the ALS bit-stream.

Figure 11.9 — Decoder of the RLS-LMS backward-adaptive prediction scheme

In the decoder, a reverse process is performed. The entropy decoder decodes the ALS bit-stream to the
residual, which is then added to the estimate of the RLS-LMS predictor to re-generate the original audio
sample.
As shown in Figure 11.10, the RLS-LMS predictor consists of a cascade of predictors in the order of a
Differential Pulse Code Modulation (DPCM) predictor (11.6.5.1), a Recursive Least Square (RLS) predictor
(11.6.5.2), and a series of Least Mean Square (LMS) predictors (11.6.5.3). The input samples sequentially
pass through the cascade of predictors. The residual of one predictor serves as the input to the next predictor.
The estimates from the predictors in the cascade are weighted and added together by a linear combiner
(11.6.5.4) to generate the final estimate of the current input sample.

Figure 11.1 — Block diagram of the RLS-LMS predictor

The RLS-LMS predictor can be turned on/off by setting RLSLMS in ALSSpecificConfig() to 1/0, respectively.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

© ISO/IEC 2008 – All rights reserved 11

11.6.5.1 DPCM Predictor

Input: x(n) original audio sample
Residual: e1(n) as input to the RLS predictor
Estimate: y1(n) as input to the linear combiner
The DPCM predictor is the first predictor in the RLS-LMS predictor cascade. It is a simple first-order predictor
with coefficient set to unity, i.e., the previous input sample is used as the estimate of the current input sample.
This is illustrated as follows:

1() (1)y n x n= −

where y1(n) is the estimate by the DPCM predictor, and x(n – 1) is the previous input sample.

11.6.5.2 RLS Predictor

Input: e1(n) residual of DPCM predictor
Residual: e2(n) as input to the LMS predictor
Estimate: y2(n) as input to the linear combiner
The RLS predictor is the second predictor in the RLS-LMS predictor cascade. The RLS algorithm is used to
adapt the predictor weights. The algorithm is initialized by setting the M × M inverse auto-correlation matrix P
to a predetermined value as follows:

 (0) δ=P I

where δ is a small positive number, I is an M × M identity matrix, and M is the RLS predictor order.
The weight vector of the RLS predictor, defined as

 T
RLS RLS,1 RLS,2 RLS,M() [(), (),..., ()]n w n w n w n=w

is initialized by
 RLS (0) 0=w

For each time index n, n = 1, 2, … , the following calculations are made
 1() (1) ()n n n= −v P e

where e1(n) is the RLS predictor input vector defined as
 T

1 1 1 1() [(1), (2),..., ()]n e n e n e n M= − − −e

and

T
1T

1

1 if () () 0
() ()

1 else

n n
n nm

⎧ ≠⎪= ⎨
⎪⎩

e v
e v

() ()n m n=k v

T
2 RLS 1() (1) ()y n n n= −w e

2 1 2() () ()e n e n y n= −

RLS RLS 2() (1) () ()n n n e n= − +w w k

{ }1 T() Tri ((1) () ())n n n nλ−= − −P P k v

where k(n) is the M × 1 gain vector, λ is the forgetting factor that is a positive value slightly smaller than 1, T is
the transpose symbol, and Tri{*} denotes the operation to compute the lower triangular part of P(n) and fill the
upper triangular part of the matrix with the same values as in the lower triangular part. In other words, the
value of P(n) at the i-th row and j-th column (i > j) is copied to the value of P(n) at the j-th row and i-th column.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

12 © ISO/IEC 2008 – All rights reserved

11.6.5.2.1 Joint-Stereo RLS Predictor

For a channel pair element (CPE), if joint_stereo in ALSSpecificConfig() is set to 1, the RLS predictor will work
in the joint-stereo mode. In the joint-stereo mode, the RLS predictor employs both intra-channel prediction and
inter-channel prediction. Figure 11.11 shows the joint-stereo RLS predictor for the left audio channel.

Figure 11.11 — Joint-stereo RLS predictor for L channel

As shown in the figure, the input signals to the predictor are L channel DPCM predictor residual eL,1(n) and R
channel DPCM predictor residual eR,1(n). The joint-stereo predictor consists of an intra-channel predictor aL
and an inter-channel predictor bL. The intra-channel predictor aL generates an estimate of the L channel
current input sample eL,1(n) from past samples eL,1(n-1), eL,1(n-2), …, eL,1(n-M/2), where M is the order of the
joint-stereo RLS predictor. At the same time, the inter-channel predictor bL generates another estimate of
eL,1(n) from R channel past input samples eR,1(n-1), eR,1(n-2), …, eR,1(n-M/2). These two estimates are added
together. The result yL,1(n) is the estimate of the L channel joint-stereo RLS predictor. This process is
represented as

/ 2 / 2

,1 , ,1 , ,1
1 1

() () ()
M M

L L m L L m R
m m

y n a e n m b e n m
= =

= − + −∑ ∑

Where aL,m are coefficients of the intra-channel predictor aL, bL,m are coefficients of the inter-channel predictor
bL. In the equation, the first summation term is the intra-channel predictor estimate, and the second
summation term the inter-channel predictor estimate. The residual eL,2(n) is generated by subtracting estimate
yL,1(n) from eL,1(n) as

,2 ,1 ,1() () ()L L Le n e n y n= −
The L channel joint-stereo RLS predictor is updated by the RLS algorithm given in 11.6.5.2, where the weight
vector, input vector, and residual in the RLS algorithm are redefined as follows:

T
RLS ,1 ,1 ,2 ,2 , / 2 , / 2() [, , , ,..., ,]L L L L L M L Mn b a b a b a=w

T
1 ,1 ,1 ,1 ,1 ,1 ,1() [(1), (1), (2), (2),..., (/ 2), (/ 2)]R L R L R Ln e n e n e n e n e n M e n M= − − − − − −e

2 ,2() ()Le n e n=
The joint-stereo predictor for the right audio channel is shown in Figure 11.12.

Figure 11.12 — Joint-stereo RLS predictor for R channel

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

© ISO/IEC 2008 – All rights reserved 13

As shown in the figure, the input signals to the predictor are L channel DPCM predictor residual eL,1(n) and R
channel DPCM predictor residual eR,1(n). The joint-stereo RLS predictor consists of an intra-channel predictor
aR and an inter-channel predictor bR. The intra-channel aR predictor generates an estimate of the R channel
current input sample eR,1(n) from past samples eR,1(n-1), eR,1(n-2), …, eR,1(n-M/2), where M is the order of the
joint-stereo RLS predictor. At the same time, the inter-channel predictor bR generates another estimate of
eR,1(n) from L channel input samples eL,1(n), eR,1(n-1), …, eR,1(n-M/2+1). These two estimates are added
together. The result yR,1(n) is the estimate of the R-channel joint-stereo RLS predictor. This process is
represented as

/ 2 / 2 1

,1 , ,1 , ,1
1 0

() () ()
M M

R R m R R m L
m m

y n a e n m b e n m
−

= =

= − + −∑ ∑

where aR,m are coefficients of the intra-channel predictor aR, bR,m are coefficients of the inter-channel predictor
bR. In the equation, the first summation term is the intra-channel predictor estimate, and the second
summation term the inter-channel predictor estimate. The residual eR,2(n) is generated by subtracting estimate
yR,1(n) from eR,1(n), that is

,2 ,1 ,1() () ()R R Re n e n y n= −
The R channel joint-stereo RLS predictor is updated by the RLS algorithm given in 11.6.5.2, where the weight
vector, input vector, and residual in the RLS algorithm are redefined as follows:

T
RLS ,0 ,1 ,1 ,2 , / 2 1 , / 2() [, , , ,..., ,]L L L L L M L Mn b a b a b a−=w

T
1 ,1 ,1 ,1 ,1 ,1 ,1() [(), (1), (1), (2),..., (/ 2 1), (/ 2)]L R L R L Rn e n e n e n e n e n M e n M= − − − − + −e

2 ,2() ()Re n e n=
The decoder processes a CPE in the order of LRLRLR.... The current L channel sample is always decoded
before the current R channel sample.

11.6.5.2.2 Mono RLS Predictor

For a single channel element (SCE), the RLS predictor operates in the mono mode. In the mono mode, the
RLS predictor is updated by the RLS algorithm given in 11.6.5.2.
For a CPE, if joint_stereo in ALSSpecificConfig() is set to 0, mono RLS is used for each individual channel in
the CPE. For a CPE, if mono_block in RLSLMS_extension() is set to 1, the CPE will be coded as two individual
channels L and L-R. The L channel is treated as a SCE, whereas the difference channel L-R goes directly to
the entropy encoder. For a SCE, if an input frame contains only constant values, the RLS-LMS predictor is
bypassed for that frame. For a CPE, if both channels contain only constant values, the RLS-LMS predictor is
bypassed for the frame.

11.6.5.2.3 Filtering Operation in RLS predictor

The following pseudo code illustrates how an order-M RLS predictor generates the estimate signal. The order
of the RLS predictor is defined in 11.6.5.6.1.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

14 © ISO/IEC 2008 – All rights reserved

Pseudo code Comments

INT32 *w, *buf;
INT64 temp = 0;

for (i=0; i<M; i++)

temp += (INT64) w[i] * buf[i];

w is RLS predictor weight vector (.16 format)
buf is RLS predictor input vector (.0 format)

temp = w * buf

temp >= 12;

if (temp>0x40000000) temp = 0x40000000;
if (temp<-0x40000000) temp =-0x40000000;

temp is .4 format

Limit the range of temp to
[-0x40000000, 0x40000000]

INT32 y;

y = (INT32) (temp);

y is RLS predictor estimate (.4 format)

11.6.5.2.4 Weight Adaptation in RLS predictor

The following pseudo code illustrates how the weight vector of an order-M RLS predictor is updated.

Pseudo code Comments

INT32 x, y, e;

e = x – y;

x is RLS predictor current input sample
x is .4 format
y is RLS predictor esitimate (.4 format)
e is RLS predictor residual (.4 format)

INT64 **P;
INT32 *buf, *v;
INT16 vs;

[v, vs] = MulMtxVec(P, buf);

P is RLS algorithm matrix P (.60 format)
buf is RLS predictor input vector (.0 format)
v is RLS algorithm vector v
vs is a scale factor

v = P*buf
v is .(28-vs) format

INT64 temp;
INT16 ds;

[temp, ds] = MulVecVec(buf, v);

ds is a scale factor

temp = buf * v
temp is .(60-vs-ds) format

i = 0;
while(temp>0x20000000 && temp!=0)

temp >>= 1; i++;
i += vs + ds;

temp is .(60-i) format

if (i<=60)

temp += (((INT64) 1) << (60-i));
else

reinit_P(P);

If (i<=60)

temp = temp + 1
else

Re-initialize matrix P

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

© ISO/IEC 2008 – All rights reserved 15

INT64 mm;
INT32 m;

if (temp==0)

mm = 1L<<30;
else if (i<=28)

shift = 28-i;
mm = (((INT64)1)<<62) / temp;
if (shift>32)

mm = 1L<<30;
else

mm <<= shift;
else

mm = (((INT64)1)<<(90-i)) / temp;

m = (INT32)mm;

m is the RLS algorithm variable m

If (temp==0)

m = 1;
else

m = 1/temp;

m is .30 format

INT32 *k;

for (i=0; i<M; i++)

temp = (INT64) v[i] * m;
if (vs>=12)

k[i] = temp<<(vs-12);
else

k[i] = temp>>(11-vs);
k[i] = ROUND2(k[i]);

k is the RLS algorithm gain vector k

k = m * v

Scale k

k is .46 format

temp = 0;
for (i=0; i<M; i++)

temp |= (k[i]>0 ? k[i]:-k[i]);
ds = fast_bitcount(temp);
if (ds>30)

ds -= 30;
for (i=0; i<M; i++) k[i] >>= ds;

else
ds = 0;

Obtain MSB in k
Get position of MSB bit

Scale k

k is .(46-ds) format

INT32 *w;

for (i=0; i<M; i++)

temp = (((INT64) k[i] * (e>>3))>>(30-ds));
temp = w[i] + ROUND2(temp);
w[i] = (long) temp;

vs += ds;

w is RLS predictor weight vector

Update RLS weight vector
w = w + k * e
w is .16 format

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

16 © ISO/IEC 2008 – All rights reserved

INT16 lambda;

for (i=0; i<M; i++)

for (j=0; j<=i; j++)
temp = ((INT64) k[i] * v[j])>>(14-vs);
P[i][j] -= temp;
if (P[i][j]>=0x4000000000000000
|| P[i][j]<=-0x4000000000000000)

reinit_P(P); break;
temp = P[i][j] / lambda;
P[i][j] += temp;

lambda is defined in 11.6.5.6.6

Update matrix P (lower triangular)

P = P – k * v
P = P * (1+1/lambda)
P is .60 format

for (i=1; i<M; i++)

for (j=0; j<i; j++)
P[j][i] = P[i][j];

Update matrix P (upper triangular)

for (i=M-1; i>0; i--)

buf[i] = buf[i-1];
buf[0] = x>>4;

Update RLS predictor input vector

buf is .0 format

Pseudo code Comments

[INT32 *v, INT16 vs] = MulMtxVec(INT64 **P, INT32 *buf)

Multiply matrix P by buf,
Return the result in v
P is .60 format, buf is .0 format

INT64 temp=0;
INT16 ps;

for(i=0; i<M; i++)

for(j=0; j<=i; j++)
temp |= (P[i][j]>0 ? P[i][j] : -P[i][j]);

ps = 63 - fast_bitcount(temp);

ps is a scale factor

Obtain MSB in matrix P

Calculate the shift needed
to maximize P

INT64 *u;

for (i=0; i<M; i++)

u[i]=0;
for (j=0; j<M; j++) u[i] +=

(INT64) (((P[i][j]<<ps)+(INT64)0x80000000)>>32) * buf[j];

u = P * buf
u is .(28+ps) format.

INT16 ns;

temp =0;
for (i=0; i<M; i++)

temp |= (u[i]>0 ? u[i] : -u[i]);

ns = fast_bitcount(temp);

ns is a scale factor

Obtain MSB

Get the position of MSB bit

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

© ISO/IEC 2008 – All rights reserved 17

if (ns>28)

ns -= 28;
for(i=0; i<M; i++)

v[i] = (INT32) (u[i]>>ns);
vs = ns - ps;

else
for(i=0;i<M;i++)

v[i] = (INT32) u[i];
vs = -ps;

Scale v

v is .(28-vs) format

Pseudo code Comments

[INT64 z, INT16 ds] = MulVecVec(INT32 *buf, INT32 *v)

Compute inner product of buf and v,
return the result in z
buf is .0 format, v is .(28-vs) format

INT 64 z = 0;

for (i=0; i<M; i++)

z += (INT64) buf[i] * v[i];

z = buf * v

INT64 temp;

temp = (z>0 ? z : -z);
ds = fast_bitcount(temp);

Get the position of MSB bit

if (ds>28)

ds -= 28;
z = (z<<(32-(ds-1)));
z = ROUND2(z);

else
ds = 0;
z = (z<<32);

Scale z

z is .(60-vs-ds) format

Pseudo code Comments

reinit_P(INT64 **P)

Re-initialize matrix P

for (i=0; i<M; i++)

for (j=0; j<M; j++)
P[i][j]= 0;

for (i=0; i<M; i++)

P[i][i] = (INT64) JS_INIT_P;

Clear P to zero

Initialize the diagonal components

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

18 © ISO/IEC 2008 – All rights reserved

Pseudo code Comments

[INT16 count] = fast_bitcount (INT64 temp)

Return the MSB bit position

i = 56; j = 0;
while((temp>>i)==0 && i>0) i -= 8;
temp>>=i;
while(temp>0) temp>>=1; j++;
count = i + j;

The RLS predictor can be turned off by setting RLS_order to zero. In this case, the RLS predictor estimate
y2(n) is set to zero.

11.6.5.3 LMS Predictors

Input: ek-1(n) residual of the previous predictor (could be RLS predictor or LMS predictor)
Residual: ek(n) as input to the next LMS predictor
Estimate: yk(n) as input to the linear combiner
The RLS-LMS predictor contains a series of LMS predictors. The Normalized LMS (NLMS) algorithm is used
to adapt the predictor weights. For an order-M LMS predictor, its weight vector

 T
LMS LMS,1 LMS,2 LMS,M() [(), (),..., ()]n w n w n w n=w

is initialized by

LMS () 0n =w
For each time index n, n = 1, 2, … , the estimate is calculated as

 T
LMS 1() () ()k ky n n n−=w e

where ek-1(n) is the input vector defined as

 T
1 1 1 1() [(1), (2),..., ()]k k k kn e n e n e n M− − − −= − − −e

The LMS predictor weight vector is updated according to

1

1
LMS LMS 7

1 1

() () ()
() ()() (1)

2 () ()

k k k

k k
T

k k k

e n e n y n
e n nn n

n nµ

−

−

− −

= −

= − +
+

ew w
e e

where µk is the NLMS stepsize (Clause 0).

11.6.5.3.1 Filtering operation in LMS Predictor

The following pseudo code illustrates how an order-M LMS predictor generates the estimate signal. The order
of the LMS predictor is defined in Clause 0.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

© ISO/IEC 2008 – All rights reserved 19

Pseudo code Comments

INT32 *w, *buf;
INT64 temp = 0;

for (i=0; i<M; i++)

temp += (INT64) w[i] * buf[i];

w is LMS predictor weight vector (.24 format)
buf is LMS predictor input vector (.0 format)

temp = w * buf

 temp >>= 20;

if (temp>0x7ffffff) temp = 0x7ffffff;
if (temp<-0x7ffffff) temp = -0x7ffffff;

temp is .4 format

Limit the range of temp to
[-0x7ffffff, 0x7ffffff]

INT32 y;

y = (INT32) (temp);

y is LMS predictor estimate (.4 format)

11.6.5.3.2 Weight adaptation in LMS Predictor

The following pseudo code illustrates how the weight vector of an order-M LMS predictor is updated.

Pseudo code Comments

INT32 x, y, e;

e = x – y;

x is LMS predictor current input sample (.4 format)
y is LMS predictor esitimate (.4 format)
e is LMS predictior residual (.4 format)

INT32 *buf;
INT64 pow = 0;

for (i=0; i<M; i++)

pow += (INT64) buf[i] * buf[i];

if (pow>0x4000000000000000)
pow = 0x4000000000000000;

buf is LMS predictor input vector (.0 format)

Compute total signal power in buf
pow = buf * buf

pow is .0 format

INT16 mu;
INT64 temp, temp1;

temp = (INT64) mu * (pow>>7);
temp1 = temp;

mu is NLMS algorithm stepsize (.0 format)
mu is defined in xxx.yyy

temp = mu * pow
temp is .(-7) format

i = 0;
while(temp>0x7fffffff) temp>>=1; i++;

temp = ((INT64) e<<(29-i)) / (INT64)((temp1+1)>>i);

Compute the number of shifts needed
to shift temp into the lower 32 bit

temp = e / (128 + mu*buf*buf)
temp is .40 format

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

20 © ISO/IEC 2008 – All rights reserved

INT32 *w;

for (i=0; i<M;i++) w[i] +=

(INT32) (((INT64) buf[i] * temp + 0x8000)>>16);

w is LMS predictor weight vector (.24 format)

Update weight vector
w = w + (buf*e) / (128 + mu*buf*buf)

for (i=M-1; i>0; i--)

buf[i] = buf[i-1];
buf[0] = x>>4;

Update the input vector

buf is .0 format

11.6.5.4 Linear Combiner

Input: y1(n), y2(n), …,yK(n) estimates from DPCM, RLS, and LMS predictors
Output: ˆ()x n final estimate of the RLS-LMS predictor
The linear combiner multiplies the estimates from the DPCM, RLS, and LMS predictors by a set of weights.
The results are summed together to provide the final estimate of the RLS-LMS predictor. The Sign-Sign LMS
algorithm is used to update the linear combiner weights. If there are in total K predictors in the RLS-LMS
predictor cascade, the linear combiner weight vector is given by

 T
1 2() [(), (),..., ()]Kn c n c n c n=c

The linear combiner input vector is given by

 T
1 2() [(), (),..., ()]Kn y n y n y n=y

The final estimate of the RLS-LMS predictor is given by

 Tˆ() () ()x n n n= c y

The linear combiner weight vector is updated by the Sign-Sign LMS algorithm

 { } { }ˆ() (1) sgn () sgn () ()n n n x n x nα= − + −c c y

where x(n) is the RLS-LMS predictor current input sample, α is the Sign-Sign LMS stepsize (11.6.5.6.5). The
sgn{*} function is defined as

 { }
1 0

sgn 0 0
1 0

r
r r

r

>⎧
⎪= =⎨
⎪− <⎩

The following pseudo code illustrates how an order-K linear combiner generates the final estimate of the RLS-
LMS predictor. The order of linear combiner is given by (LMS_stage+2). The code also shows how the linear
combiner weight vector is updated. It shall be noted that the first two linear combiner weights are not updated.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

© ISO/IEC 2008 – All rights reserved 21

Pseudo code Comments

INT32 *c, *y;
INT64 xhat = 0;

for (i=0; i<K; i++)

xhat += (INT64) c[i] * y[i];
xhat >>= 24 ;

c is linear combiner weight vector (.24 format)
y is linear combiner input vector (.4 format)
xhat is linear combiner output, i.e., final estimate
of RLS-LMS predictor.

xhat is .4 format

INT32 x;
INT64 r;

r = (x<<4) – xhat;

x is RLS-LMS predictor current input sample
x is .0 format

Compute the difference between x and xhat
r is .4 format

INT32 LMS_stepsize;
INT64 temp;

for (i=2; i<K; i++)

temp = (INT64) r * y[i];
if (temp>0 && c[i]<0x40000000)

c[i] += LMS_stepsize;
if (temp<0 && c[i]>-0x40000000)

c[i] -= LMS_stepsize;

Sign-Sign LMS algorithm stepsize (.24 format)
LMS_stepsize is defined in 11.6.5.6.5

Sign-Sign LMS algorithm

Only update linear combiner weights
for the LMS predictors

INT32 e;

e = x - ROUND1(xhat)

e is RLS-LMS predictor residual (.0 format)

11.6.5.5 RLS-LMS Predictor Initialization

The RLS-LMS predictor is initialized at the following moments: start of encoding, start of decoding, start of
each random access (RA) frame, and whenever filter order changes. The RLS-LMS predictor is initialized by
zero-filling the following buffers: DPCM predictor previous input sample, RLS predictor input vector and weight
vector, all LMS predictor input vectors and weight vectors, and linear combiner input vector. The RLS predictor
P matrix is initialized by calling function reinit_P(P). The linear combiner weight vector is set to constant
FRACTION, which represents 1.0 in 8.24 format.
Table 11.27 lists the constants and macros used by the RLS-LMS predictor.

Table 11.27 — Constants and Macros

Constants &
Macros

Value Comments

JS_INIT_P 115292150460684 0.0001 in 4.60
format

FRACTION (1L<<24) 1.0 in 8.24 format

ROUND1(x) ((INT32) ((x+8)>>4)) Rounding function

ROUND2(x) ((INT64) ((INT64) x + (INT64) 1)>>1) Rounding function

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

22 © ISO/IEC 2008 – All rights reserved

11.6.5.6 RLS-LMS Predictor Parameters

The parameters of the RLS-LMS predictor can be changed every frame. This is signalled in
RLSLMS_extension() when ext_mode = 1. Sub-sections 11.6.5.6.1 to 11.6.5.6.6 describe the RLS-LMS
predictor parameters that can be changed.

11.6.5.6.1 RLS_order

This parameter specifies the order of the RLS predictor. Valid values and the corresponding 4-bit indices are
listed in Table 11.28.

Table 11.28 — RLS_order

index RLS_order index RLS_order

0 0 8 16

1 2 9 18

2 4 10 20

3 6 11 22

4 8 12 24

5 10 13 26

6 12 14 28

7 14 15 30

11.6.5.6.2 LMS_stage

This parameter specifies the number of LMS predictors in the RLS-LMS predictor cascade. Valid values and
the corresponding 3-bit indices are listed in Table 11.29.

 Table 11.29 — LMS_stage

index LMS_stage

0 1

1 2

2 3

3 4

4 5

5 6

6 7

7 8

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

ISO/IEC 14496-3:2005/Amd.2:2006/Cor.2:2008(E)

© ISO/IEC 2008 – All rights reserved 23

11.6.5.6.3 LMS_order

This parameter specifies the order of the LMS predictor. Valid values and the corresponding 5-bit indices are
listed in Table 11.30.

Table 11.30 — LMS_order

index LMS_order index LMS_order

0 2 16 32

1 3 17 36

2 4 18 48

3 5 19 64

4 6 20 80

5 7 21 96

6 8 22 128

7 9 23 256

8 10 24 384

9 12 25 448

10 14 26 512

11 16 27 640

12 18 28 768

13 20 29 896

14 24 30 1024

15 28 31 reserved

11.6.5.6.4 LMS_mu

This parameter specifies the stepsize of NLMS algorithm that is used to update the LMS predictor. Valid
values and the corresponding 5-bit indices are listed in Table 11.31.

Table 11.31 — LMS_mu

index LMS_mu index LMS_mu

0 1 16 18

1 2 17 20

2 3 18 22

3 4 19 24

4 5 20 26

5 6 21 28

6 7 22 30

7 8 23 35

8 9 24 40

9 10 25 45

10 11 26 50

11 12 27 55

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-3
:20

05
/AMD2:2

00
6/C

OR2:2
00

8

https://iecnorm.com/api/?name=e1c7e5dfbf717e0cb905b6c7494a3cbe

