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Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IFC
partigipate in the development of International Standards through technical committees established by. the
respgctive organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-goverrnimental] in
liaisoh with ISO and IEC, also take part in the work. In the field of information technology, ISO and 1EC have
established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives,\Part 3.

The main task of the joint technical committee is to prepare International Standards. Draftinternational Standafds
adopfed by the joint technical committee are circulated to national bodies for voting. Publication as an Internatiopal
Standard requires approval by at least 75 % of the national bodies casting a vote.

|
>
—

Attention is drawn to the possibility that some of the elements of this Amendment may be the subject of pat
rightg. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Amendment 1 to International Standard ISO/IEC 10746-4:1998 was ‘prepared by Joint Technical Commitfee
ISO/IEC JTC 1, Information technology, Subcommittee SC 7, Software engineering, in collaboration with ITU-T.
The igdentical text is published as ITU-T Rec. X.904/Amd.1.
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INTERNATIONAL STANDARD
ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY — OPEN DISTRIBUTED PROCESSING —
REFERENCE MODEL: ARCHITECTURAL SEMANTICS

Computational formalization

I ntroduction
leplace the Ist paragraph of the introduction

his Recommendation | Internationa Standard is an integra part of the ODP \Reference Model. It contains|a
irmalisation of the ODP modelling concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9. The

rmalisation is achieved by interpreting each concept in terms of the constructs-of the different standardised formgl
bsCri ption techniques.

ith

4 = o= 3 b

his Recommendation | International Standard is an integra par) of the ODP Reference Moddl. It contains|a
ormalization of the ODP modelling concepts defined in ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9 and |n
[U-T Rec. X.903 | ISO/IEC 10746-3, clause 7 (Computational, Language). The formalization is achieved by interpreting
hch concept in terms of the constructs of the different standardized formal description techniques.

—h

@ —

2 Clause 1 — Scope
Replace the fourth bullet under The RM-ODP consists of

TU-T Rec. X.904 | ISO/IEC 10746-4:~Af chitectural Semantics. contains a formalisation of the ODP modelling
bncepts defined in ITU-T Rec. X.9027] ISO/IEC 10746-2, clauses 8 and 9, and a formalisation of the viewpoint
anguages of ITU-T Rec. X.903 | ISOIEC 10746-3. The formdisation is achieved by interpreting each concept in terms
the constructs of the different standardised formal description techniques. This text isnormative.

ith

[U-T Rec. X.904 | ISO/IEC 10746-4: Architectural Semantics: contains a formalization of the ODP modelling
bncepts defined in-ITU-T Rec. X.902 | ISO/IEC 10746-2, clauses 8 and 9, and a formalization of the computationgl
ewpoint languageof ITU-T Rec. X.903 | ISO/IEC 10746-3. The formalization is achieved by interpreting each concept
terms of the,constructs of the different standardized formal description techniques. This text is normative.

o o~ Q

S<9Q - =

oyl

lepl ace thefourth paragraph

Thepurpose of this Recommendation | International Standard is to provide an architectural semantics for ODP. THis
epsentialy takes the form of an interpretation of the basic modelling and specification concepts of ITU-T Rec. X.902 |
ISO/IEC 10746-2 and the viewpoint languages of ITU-T Rec. X.903 | ISO/IEC 10746-3, using the various features of
different formal specification languages. An architectural semantics is developed in four different formal specification
languages. LOTOS, ESTELLE, SDL and Z. The result is a formalisation of ODP's architecture. Through a process of
iterative devel opment and feedback, this has improved the consistency of ITU-T Rec. X.902 | ISO/IEC 10746-2 and
ITU-T Rec. X.903 | ISO/IEC 10746-3.

with
The purpose of this Recommendation | International Standard is to provide an architectura semantics for ODP. This
essentially takes the form of an interpretation of the basic modelling and specification concepts of ITU-T Rec. X.902 |

ISO/IEC 10746-2 and the computational viewpoint language of ITU-T Rec. X.903 | ISO/IEC 10746-3, using the various
features of different formal specification languages. An architectural semantics is developed in four different formal

ITU-T Rec. X.904/Amd.1 (2000 E) 1


https://iecnorm.com/api/?name=7e144c929800792221066f2ca8d4519b

| SO/IEC 10746-4:1998/Amd.1: 2001 (E)

specification languages: LOTOS, ESTELLE, SDL and Z. Theresult is aformalization of ODP's architecture. Through a
process of iterative development and feedback, this has improved the consistency of ITU-T Rec. X.902 |
ISO/IEC 10746-2 and ITU-T Rec. X.903 | ISO/IEC 10746-3.

Add the following paragraph at the end of Scope:

Annex A shows one way in which the computational viewpoint language of ITU-T Rec. X.903 | ISO/IEC 10746-3 can be
represented in the formal languages LOTOS, SDL, Z and Estdle. This Recommendation | International Standard also

)

Clause 2 — Normative references

(@)

hange publication date for ITU-T Recommendation Z.100 from (1993) to (1999).
BO/|EC 13568:

> —

dd the following reference:

N

Notation, ISO/IEC JTC 1 SC 22 WG 19 Advanced Working Draft 2.C, July 13th 1999.

Subclause 3.2 — Definitions from | TU-T Recommendation'Z.100
eplace the list with the following terms:

Ctive, adding, all, alternative, and, any, as, atleast, axioms, block,_call, channel, comment, connect, connection
bnstant, constants, create, dcl, decision, default, else, endalternative, endblock, endchannel, endconnectioh,
nddecision, endgenerator, endnewtype, endoperator, endpackage, endprocedure, endprocess, endrefinement, endsel egt
ndservice, endstate, endsubstructure, endsyntype, endsysten, env, error, export, exported, external, fi, finalized, fqr
fpar, from, gate, generator, if, import, imported, in, inherits, input, interface, join, literal, literals, map, mod, nameclags,
npwype, nextstate, nodelay, noequality, none, not, now, offspring, operator, operators, or, ordering, out, output,
package, parent, priority, procedure, process, provided, redefined, referenced, refinement, rem, remote, reset, returp,
returns, revealed, reverse, save, select, self, sender, Service, set, signal, signallist, signalroute, signalset, spelling, start,
Slate, stop, struct, substructure, synonym, syntypeysystem, task, then, this, timer, to, type, use, via, view, viewed, virtual,
with, xor.

@ DO X T D

Subclause 3.3 — Definitions from the Z-Base Standard
hange subclause title to:
3 — Definitions fromithe Z Notation.
eplace the list with.fallowing terms:

Kiomatic description, data refinement, hiding, operation refinement, overriding, schema (operation, state, framing),
chema cal cdlis; schema composition, sequence, type.

QO T W O O
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6) Annex A

Add a new Annex A as follows:

Annex A

Computational Formalization

A.1.1  Concepts

e formalization of the computational language in LOTOS uses the concepts defined in the formalizationrof the bagc
odedlling and structuring rules given in ITU-T Rec. X.902 | ISO/IEC 10746-2 clauses 8 and 9.

Hlementary Structures Associated with Operational and Signal I nterfaces

Tio formalize the computational language in LOTOS it is necessary to introduce certain elementary structures. Thege
include parameters that might be associated with certain computational interfaces and a basic\model of information thet
muight be used in a stream flow.

Tlo formalize parameters it is necessary to introduce two concepts. names for things)and types for things. Names are
simply labels. As we shdl see, the computationa viewpoint requires that checks»eg. for equality, are done on thege
abels when interfaces are constructed. We may represent names generally by:

type Name is Boolean
sorts Name
opns newName: -> Name
another Name: Name -> Name
_eg_,_ne : Name, Name ->Bpol
endtype (* Name*)

pr brevity sake we omit the equations, which are expectéd to be obvious. It is possible to be more prescriptive here, e.
5ing character strings from the LOTOS library. Thetonly thing we are interested in regarding names is that we can
termine ther equality or inequality.

sdiscussed in this Recommendation | International Standard, a type in the ODP sense may not be interpreted directly |n
e process algebra part of LOTOS. It is_however possible to mode types through the Act One part of LOTOR.
nfortunately, whilst Act One was designéd specifically for representing types, it is limited in the ways in which types
nd types relationships are checked. For 'example, it is not possible to check subtyping or equivalence up to isomorphigm
Etween types due to type equality inAct One being based on name equivalence of sorts. As abasis for reasoning hefe
e introduce an e ementary notion'of types that allows usto test for equality, inequality and subtyping.

S o CSP> oc T

type AnyTypeis Boolean
sorts AnyType
opns newType: -> AnyType
another Type: AnyType -> AnyType
_eq_,_isSubtype_: AnyType, AnyType -> Bodl
endtype (* AnyType*)

parameter is a relation between a name and its underlying type representation. Thus a parameter may be represented
y:

o >

type Param is Name, AnyType
sortsParam
opns newParam: Name, AnyType -> Param
_eq_,_Nne_,_isSubtype_: Param, Param -> Bool
endtype (* Param *)

As previoudly, we require checks on the equality or inequality of parameters aswell as when one parameter is a subtype
of another. Two parameters are in a subtype relationship when their types are in a subtype relationship. It is aso useful
for usto introduce sequences of these parameters.

type PList is String actualizedby Param
using sortnames PList for String Param for Element Bool for FBool
opns_isSubtype : PList, PList -> Bool

endtype (* PLigt *)

ITU-T Rec. X.904/Amd.1 (2000 E) 3
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Here we use the type String from the LOTOS library actualised with the type Param defined previoudy. We aso include
an operation here isSubtype that can check whether one sequence of parameters is a subtype of another. One parameter
list is a subtype of a second when all of the parametersit contains are subtypes of those found in thefirst. In addition the
parameters should be in the same position in their respective lists. It should be noted that these parameters might contain
references to interfaces used to restrict the interactions that can take place. Whilg it is quite possible to mode an
interface in the process algebra, it is not possible to model a reference to that interface in the process algebra that, loosaly
speaking, captures the functionality of that interface. To overcome this, we model interface referencesin Act One. Given
that an interface reference captures, amongst other things, the signature of the interface, we provide an Act One mode of
signatures for operations. Operations consist of a name, a sequence of inputs and possibly a sequence of outputs. For
simplicity’s sake, we do not consider here whether the operation is of infix, prefix or suffix notation. This may be

represented by:

type Op isName, PList
sortsOp
opns makeOp: Name, PList -> Op
makeOp: Name, PList, PList -> Op
getName: Op -> Name
getlnps Op ->PList
getOuts: Op -> PList
_eq_: Op, Op->Bod
egnsforall opl,0p2: Op, n: Name; pl1, pl2: PList
ofsort Name getName(makeOp(n,pl1,pl2)) = n;
ofsort PList getl nps(makeOp(n,pl1)) = pl1;
getl nps(makeOp(n,pl1,pl2)) = pl1;
getOuts(makeOp(n,pl1)) = <>;
getOuts(makeOp(n,pl1,pl2)) = pl2;
ofsort Bool opl eq op2 = ((getName(opl) eq getName(op2)) and
(getl nps(opl) isSubtype getl nps(op2)) and
(getOuts(op2) isSubtype getOuts(opl)));
endtype (* Op *)

aving amethod of determining whether two operations are the sameteduces the problem of subtyping between abstract
bia types to a set comparison, where set elements are the created operations. Thus a server is a subtype of a second
brver if it supports all operations of the second server. We ngte here that we model two forms of operations: those thigt
D not expect results and those that do expect results. We alSo introduce sets of these operations:

type OpSet is Set actualizedby Op
using sortnamesOpSet for Set Op for Element Bool for FBool
endtype (* OpSet *)

QW o T

Now an interface reference may be represented by the following LOTOS fragment:
type | Ref is QpSet
sorts | Ref
opns makel Ref . OpSet -> |Ref
NULL . -> | Ref
getOps : IRef -> OpSat

_eq_ . IR€f, IRef -> Boal
eqnsforall o: OpSet;irl, ir2: IRef
ofsort OpSet  getOps(makel Ref(0)) = o;
ofsort Bool irleqir2=getOps(irl) eq getOps(ir2) ;
endtype (* | Ref *)

Here we note’that equality of interface references is based only on the operations contained in that reference. It might
ell be extended to cover other aspects, e.g. the location of the interface or constraints on its usage. We also introduge

bts of these interface references.
type | RefSet is Set actualizedby | Ref

oA et LRAFCa for Ot 1D of £ + D | for D |
HSHG- SOt eSS T EreCH oS E T E O =reMeRt =500 To 15061

endtype (* | RefSet *)

@w =

Elementary Structures Associated with Stream Inter faces

The computational viewpoint of ITU-T Rec. X.903 | ISO/IEC 10746-3 also considers interfaces concerned with the
continuous flow of data, e.g. multimedia. These interfaces are termed stream interfaces. Stream interfaces contain finite
sets of flows. These flows may be from the interface (produced) or to the interface (consumed). Each flow is modelled
through an action template. Each action template contains the name of the flow, the type of the flow, and an indication of

causality for the flow.

The computational viewpoint abstracts away from the contents of the flow of information itself. We consider here a
generic idea of information flow where the flow of information is represented by a sequence of flow eements. A flow

4 ITU-T Rec. X.904/Amd.1 (2000 E)
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element may be regarded as a particular item in the flow of information. We note here that flows are regarded in the
computational viewpoint as continuous actions. In our model here we represent streams as sequences of discrete timed
events. On the one hand this allows us to deal with the timing issues of information flows but we achieve this at the cost
of losing the continuous nature of the flows.

Each flow element in an information flow can be considered as a unit consisting of data (this may be compressed) which
we represent by Data. This mode might include how the information was compressed, what information was
compressed, etc. As such it is not considered further here. Flow elements also contain a time stamp used for modelling
the time at which the particular flow element was sent or received. It is aso often the case in multimedia flows that
particular flow elements are required for synchronisation, e.g. synchronisation of audio with video for example.

Therefore we associate a particular Name with each flow e ement. This can then be used for selecting a particular flow
ement from the flow as reg ired. _Erom fhicy we may model_aflow dement as:

type FlowElement is Name, NaturalNumber, Data, Param
sorts FlowElement
opns makeFlowElement: Data, Nat, Name -> FlowElement
nullFlowElement : -> FlowElement
getData : FlowElement -> Data
getTime : FlowElement -> Nat
getName : FlowElement -> Name
toParam : FlowElement -> Param
setTime : Nat, FlowElement -> FlowElement
egnsforall d: Data, st: Nat, n: Name
ofsort Data  getData(makeFlowElement(d,t,n)) = d;
ofsort Nat getTime(makeFlowElement(d,t,n)) = t;
ofsort Name getName(makeFlowElement(d,t,n)) = n;
ofsort FlowElement set Time(s,makeF|lowElement(d;t,n)) = makeFlowElement(d,s,n);
endtype (* FlowElement *)

o =

buld be used, or time intervals. For simplicity here though, we restrict ‘oursel ves to discrete time represented as a natur|
mber. We also introduce an operation that converts a flow element into a parameter. For simplicity we omit t
bsoci ated equations. We al so introduce sequences of these flow elements:

t should be noted here that we model time as a natural number however itsmight well be the case that real (dense) tinF

>

e

QD

type FlowElementSeq is FlowElement
sorts FlowElementSeq
opns makeFlowElement Segi-> FlowElement Seq
addFlowElement: KlewElement, FlowElementSeq -> FlowElementSeq
remFlowElement>FlowElement, FlowElementSeq -> FlowElementSeq
getFlowElement:* Name, FlowElementSeq -> FlowElement
timeDiff: FlowElement, FlowElement -> Nat
eqgnsforall f1,2: FlowElement, fs: FlowElementSeq, n1,n2: Name
ofsort FlowElementSeq
getTime(fl) le get Time(f2) =>
addFlowElement(f1,addF|lowElement(f2,makeFl owElement Seq)) =
addFlowElement(f2,makeFlowElement Seq);
ofsort FlowElement
getFlowElement(n1,makeFlowElementSeq) = nullFlowElement;
nlnen2=>
getFlowElement(nl,addFlowElement(makeF|owElement(d,t,n2),fs)) =
getFlowElement(nl,fs);
nleqn2=>
getFlowElement(nl,addFlowElement(makeF|lowElement(d,t,n2),fs)) =
makeFlowElement(d,t,n2);
endtype (* FlowElementSeq *)

introduce an operation to get the time difference between time stamps of two flow eements. It is possible using this
operation to specify, for example, that al flow e ements in a sequence are separated by equal time stamps. In this case
we have an isochronous flow. We also introduce sets of these sequences of flow e ements:

type FlowElementSeqSet is Set actualizedby FlowElementSeq
using sor tnames FlowElement SeqSet for Set FlowElementSeq for Element Bool for FBool
endtype (* FlowElementSeqSet *)

A.111 Signal

There is no inherent feature of LOTOS which can be used to distinguish between a signal, a stream flow and an
operation. It may be the case, however, that a style of LOTOS can be used to distinguish between signas, streams and

ITU-T Rec. X.904/Amd.1 (2000 E) 5
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operations. For example, all signals might have similar formats for their event offers. An example of one possible format
for the server side of asignal is shown in the following LOTOS fragment.

<g> ?<sgName: Name> I<myRef> ?<inArgs. PList>;

Hereand in therest of A.1, we adopt the notation that <X> represents a placeholder for an X, i.e. g, sgName, myRef and
inArgs represent placeholders for the gate, the name of the signal, the interface reference associated with the server
offering this signal and the parameters associated with the signal respectively.

An example of one possible format for the client side of a signal is shown in the following LOTOS fragment:

<g> I<sigName> !<Somel Ref> I<inArgs>;

g gae (9), g g | e
signal is to be sent to (Somel Ref) and the parameters assoCi ated with the signa (inArgs). We shall seein A.1.1.13\how

f

—t

Q> > H >

-

[

Q -

A

A
H

H

—

interrogations. One example of thisfor the client Sde of an interrogation might be represented by:

interrogation might be represented by:

ese event offers may be used to construct signa interface signatures.

.1.1.2 Operation

he occurrence of an interrogation or announcement.

.1.1.3 Announcement

n interaction that consists of one invocation only. Due to the reasons given in A.1.1.1, only an informal modelling
bnvention can be used to model announcements. One example of this for the client side,of*an announcement might e
bpresented by:

<g> I<invName> I<Somel Ref> I<inArgs>;
he server side of an announcement might be represented by:
<g> <invName: Name> I<myRef> ?<inArgs. PList>;

he data structures here are similar to those in A.1.1.1. We shall seeiin’ A.1.1.12 how these event offers may be used {o
bnstruct parts of operation interface signatures.

.1.1.4 Interrogation

n invocation from a client to a server followed by -0ne’ of the possible terminations from that server to that client.
owever, due to the reasons given in A.1.1.1, ‘only an informal modelling convention can be used to modgl

<g> !<invName> I<Somel Ref> I<inArgs> I<outArgs>;
(<g> ?<termName:Name> [<myRef> ?<outArgs: PList>; (* ... other behaviour *)
[1 (*...other terminations*))

ere termName represents the termination names and outArgs represents the output parameters. The server side of an

<g> ?<invName: Name> !<myRef> ?<inArgs. PList> ?<outArgs. PList>;
(<g> !<termName> |<Somel Ref> I<outArgs>; (* ... other behaviour *)
[1(* ...other terminations*))

he other data structures here are similar to thosein A.1.1.1. We shal seein A.1.1.12 how these event offers may Ilpe
ed to constructparts of operation interface signatures.

1.1.5_Flew

n abstraction of a sequence of interactions between a producer and a consumer object that result in the conveyance Df

0 S ; g
conventlons It is often the case that flows have strict temporal reqwrements placed on them. One example of how this

might be achieved for flow production is through a process that is parameterised by a sequence of data structures to be
sent, e.g. flow elements that can be timestamped when they are sent. A simple example of how this might be modelled in

LOTOSis:
process ProduceAction[ g, ...](... toSend: FlowElementSeq, tnow: Nat, rate: Nat ...):noexit:=
g !<flowName> !<Somel Ref> | <Set Time(tnow+r ate head(toSend))>;
(*... other behaviour and recursewith FlowElement removed from toSend *)
endproc (* ProduceAction *)
Here flow elements are sent together with the current (local) time plus the rate at which the flow elements should be
produced.
6 ITU-T Rec. X.904/Amd.1 (2000 E)


https://iecnorm.com/api/?name=7e144c929800792221066f2ca8d4519b

| SO/IEC 10746-4:1998/Amd.1:2001 (E)

Consumption of flow elements typically has different requirements placed upon it. The need to continually monitor the
time stamps of the incoming flow of information is of particular importance. A simple representation of the consumption

of an information flow may be represented by:

process ConsumeAction[ g,...]|(myRef: | Ref, recFlowElements: FlowElementSeq, tnow, rate: Nat...) :noexit:=
g ?<flowName: Name> ImyRef ?<inFlowElement: FlowElement>;
(* check temporal requirements of inFlowElement are satisfied then *)
(* display FlowElement and recurse with timeincremented *)
(* or recursewith FlowElement added to received FlowElements and timeincremented *)
endproc (* ConsumeAction *)

A.1.1.6 Signal Interface

given interface as being a signal interfaceis only possible informally by modelling the LOTOS events used to represq
ignals differently to any other event. An example of how a signal interface signature might be modelled in LOTOS
veninA.1.1.11.

Ktablishing a given interface as being an operational interface is only possible informally, byymodelling the LOTCQ
ents used to represent operations differently to any other event. An example of how an.opéeration interface signatul
might be modelled in LOTOS isgivenin A.1.1.12.

A
al
S
g
A.1.1.7 Operational Interface
A
e
e

A.1.1.8 Stream Interface

Asthereisnodirect meansin LOTOS to distinguish formally between a flow and any other LOTOS event, establishing
g|ven interface as being a stream interface is only possible informally by modelling the LOTOS events used to represe
fllows differently to any other event. An example of how a stream interface’signature might be modelled in LOTOS
veninA.1.1.13.

g
A.1.1.9 Computational Object Template

m LOTOS a computational object template is represented by, a process definition which has associated with it a set

at is not composed of events modelled as signal signatures, flow signatures or operation signatures. There should al
b some form of environmental contract modelled as part of the process definition, however, LOTOS does not posse

QT =Q

nvironmental contract through an Act One datatype. This should be given asaforma parameter in the value paramet
it of the process definition.

.1.1.10 Computational Interface Template

signal interface template, a Sreamrinterface template or an operational interface template.

.1.1.11 Signal Interface Signature

signal interface signature is represented in LOTOS by a process definition, such that all event offers which requi
nchronisation with'the environment in order to occur are modelled as signal signatures. The occurrence of these evel
fers result in a one-way communication from an initiating to a responding object. Structurally, a signal signature

=S0oO V> > T >

or the signal), a sequence of parameters associated with the signal and an indication of causality. Since all events
OTOS are-atomic, thereisno inherent distinction between events modelled as announcements or signals.

s there is no direct means in LOTOS to distinguish formally between an operation and any.‘other LOTOS event,

bmputational interface templates which the object can instantiate; a behaviour specification, i.e. a behaviour expressign

| of the necessary features to model environmefital contracts fully. It may be possible to model some features in gn

milar to an invacation for an announcement (or a termination associated with an interrogation), i.e. it consists of a nanpe

sthereisno direct meansin LOTOS to digtinguish formally between a signal and any other LOTOS event, eﬂablishillng
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gnal mterface sgnatures differ from operatlonal mterface sgnatures though in that they do not requwe that t

respondmg causalities. From thlswe modd a sgnal mterface sgnature in LOTOS by:

process SignallntSig[ g... |(myRef: | Ref, known: | Refs...): noexit:=
g !<sigName> !<Somel Ref> I<pl>; ...(* other behaviour *)
[]..- (* other initiating actions *)
[]
g ?<sgName: Name> ImyRef ?<inArgs: PList>;
([ not(makeOp(sigName,inArgs) I sln getOps(myRef))] -> ...(* unsuccessful behaviour *)
[]
[ makeOp(sigName,inArgs) Isln getOps(myRef) ] ->  ...(* successful behaviour *) )
[]... (* other responding actions*)
endproc (* SignallntSig*)
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Here we state that a signal interface consists of a collection of event offers. These event offers may model either
outgoing signals, i.e. those event offers with ! prefixing the signal name and list of parameters, or incoming signals, i.e.
those event offers with ? prefixing the signal name and list of parameters. In the case of incoming signals, it is possible
to check that the incoming signal is one expected, i.e. the signal isin the set of allowed signals associated with that
interface reference.

NOTE — This specification fragment requires that the process is instantiated with at least one gate which corresponds to the
interaction point at which the interface exists. The process should aso be instantiated with a set of interface references and its own
interface reference. We note here that it is not possible to write predicates on the signds sent. To do so would require a level of
prescriptivity that we do not have, e.g. ensuring that SomelRef is an interface reference that exists in the set of known interface
references associated with the process. It is possible to perform checks on arriving signals though, i.e. the arriving signal should be
one of the signals associated with that interface reference.We aso note that we have used the choice operator here to model the
composition of individual signals. It is quite possible to use several other composition operators here, eq. interleaving. If
interleaving composition is used then multiple arriving signals can be received before any responding signals are sent. Sinfe
interfaces usually have some form of existence, i.e. they offer operations that can be invoked more than one time, the comments
representing other behaviours are likely to contain recursive process instantiations. Through using the choice operatorwehaved a
form of blocking of signals, i.e. should a signal arrive then it has to be responded to before any other signals can be laccepted.
Similar arguments hold for all other processes representing computational interface signatures.

>

.1.1.12 Operational Interface Signature

>

n operational interface signature is represented in LOTOS by a process definition, such that-~dD event offers whi¢h
@quire synchronisation with the environment in order to occur are modelled as part of operation’'signatures. That is, they
| represent parts of either announcements or interrogations. We may model an operationa* interface signature for|a
ient through the following process definition.

O =

process OplntSigClient[ g... |(myRef: IRef, known: | Refs, ...):noexit:=
g !<invName> <Somel Ref> I<inArgs>; ...(* other behaviour *)
[1... (* other announcements*)
[]

g !<invName> !<Somel Ref> I<inArgs> I<outArgs>; A(*ether behaviour *)
(g ?<termName: Name> ImyRef ?<outArgs: PLigt>;
[ not(makeOp(ter mName,outArgs) Isln getOpslmyRef))] -> ...(* return error message *)
[]
[ makeOp(termName,outArgs) sl n getOps(myRef)] ->  ...(* other behaviour *)
[1... (* other terminations*))
[1...(* other interrogations*)
endproc (* OplIntSigClient *)

T

erewe state that a client interface signature consists'of a collection of event offers. These event offers may model eithger
itgoing (announcement or interrogation) invoeations, i.e. those event offers with ! prefixing the invocation name and
ist of parameters, or incoming terminations,i.€ those event offers with ? prefixing the termination name and list pf
brameters. In the case of incoming terminations, it is possible to check that the incoming termination is one expectef],
E. thetermination isin the set of allowed\termination associ ated with that interface reference.

= O

— O

The Note in A.1.1.11 dso applies to-operationa interface signatures with the appropriate modifications, e.g. replage
ariving signal by invocation.
d

perational interfaces signatures for servers may be represented in LOTOS by:

processOpkntSigServer[ g... ](myRef: | Ref, known: | Refs, ...):noexit:=

g 7<invName: Name> ImyRef ?<inArgs: PList>;

([ het(makeOp(invName,inArgs) | sl n getOps(myRef))] -> ...(* ignore/other behaviour *)
{]

[ makeOp(invName,inArgs) Isln getOps(myRef) | -> ...(* other behaviour *)

[]..- (* other announcements*))

[]

g ?<invName: Name> !myRef ?<inArgs:PList> ?<outArgs.PList>; ...(* other behaviour *)
([ not(makeOp(invName.inAr gs.outArgs) Isin getOpgmyRef))] -> ...(* return error message*)
[]

[ makeOp(invName,inArgs,outArgs) Isin getOps(myRef) ] -> ...(* other behaviour *)
g !<termName> |<Somelref> IresList ; ...(* other behaviour *)
[1... (* other terminations*))
[] .. (* other interrogations*))
endproc (* OplntSigServer *)

Aswith client interface signatures, a server interface signature has a set of known interface references and areference for
itself. This latter interface reference is used to ensure that the announcement or interrogation invocations the server
receives are those that were expected, i.e. they were in the set of operations associated with that interface reference. If
these invocations were not acceptable, e.g. the parameters were not correct or the operation requested was not available,
then error handling behaviours are taken. In the case of announcements this might result in a recursive call with the
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formal parameter list being unchanged. It is aso possible to use a guard here to prevent the event from occurring in the
first place. We do not do so since this might produce unwanted deadlocks in the specification. In the case of
interrogations thiswould result in some form of error message being returned.

Aswith client operational interfacesit is possible to require that the messages received are those that were expected. It is
not possible to have prescriptions on the messages sent though. 1t could be argued that this limitation is not necessarily a
bad thing since, provided every process treats received messages the same way, sent messages should not cause
deadl ocks through their format not being understood for example.

A.1.1.13 Stream Interface Signature

A stream interface signature is represented in LOTOS by a process definition, such that al event offers which require
synchronisation with the environment in order to occur are modelled as either producing or consuming flows. This might
be represented in LOTOS as:

process StreamintSig[ g... |(myRef: 1Ref, known: | RefSet, fss: FlowElementSeqSet...): noexit: =
ConsumeAction[ g...](myRef, known, recFlowElements...) [ ]... (* other consume actions*)
[]
ProduceAction[ g...](myRef, known, FlowElementstoSend, ...) [ ]... (* other produee'actions *)
endproc (* StreamlntSig*)

swith signal interfaces the notion of causality isapplied to individual action templates in the.stream interface signaturie.

stream interface signature contains sets of flows consuming or producing actions. Eachiflow signature is represented
y a process. These processes contain the reference to the stream interface with whigkl they are associated, a set pf
terface references representing the interface references known to that interface and-a 'sequence of flow elementsto send
%the case of producing flows) or receive (in the case of consuming flows). For brevity we do not specify how the set of
i

‘> >

=

~

uences of flow elements that are passed to a stream interface signature are assigned to the producing flows in thgt
terface. When instantiated all consume flows are of course empty.

The Notein A.1.1.11 also applies to stream interface signatures with thie ‘appropriate modifications, e.g. replace arriving
signal by consumer flow.

A.1.1.14 Binding Object

An object which supports a binding between a set of other.computationa objects. An example of how this might Ipe
modelled is shown in the following LOTOS fragment:

process Server Interface g...](myRef: |Ref, known: IRefSet, ...):noexit: =
g ?bind: Name ImyRef ?pl: PList;
([ getl Ref(pl) 1sin known'] ->  ....(* already bound to server *)
Server Inter face gz..J(myRef,known...)
(I
[ not(getl Ref(pl) 1sln known) and not(getOps(get| Ref(pl)) 1sSubsetOf getOps(myRef)) ]->
JL.(* operationsrequested by client not supported by server *)
Serverinter face g...](myRef,known...)
[ not(get Ref(pl) 1sln known) and (getOps(getl Ref(pl)) 1sSubsetOf getOps(myRef)) | ->
...(* successful behaviour *)
Server Interface g...](myRef,| nsert(getl Ref(pl),known)...)
(l
..(* other behavioursrestricted to clientsin known *)
endproc (* Serverlnterface*)

Here, if the-client is already bound to the server, we then refuse the binding request and a recursive call is made. |It
should be noted that this need not necessarily be the case, i.e. the same client might be bound to the same server severd
timés’ concurrently. Each of these bindings might have different properties associated with them, e.g. different sets pf
GJCI a“LI\}Iv‘IQ rahc;ﬂ’j ‘\l.\l'i Lh d;ffu \> | It CUI I;I (Jlntd Th;o ‘\l.V'UUId rau;rc thUL thU %‘v'er Ubja&.vl re“llﬁl T IQAJI d;ffcl \= | It il ItCIf
references for each successful binding. For example, instead of inserting the client interface reference into the set known
for successful binding requests, the server might generate an interface reference which is sent to the client and added to

the set known.

If the client is not already bound to the server, i.e. not in the set of known interface references, then the operations
associated with the client's request are checked. If the operations asked for are not available at the server then some error
behaviour is taken and a recursive call made. For ssimplicity we avoid dealing with the issues involved in type checking
the parameters of client and server operations. For similar reasons we do not deal with environment contracts either. For
brevity we do not provide the Act One operations for accessing the interface references contained in the parameter lists
(getIRef). Rather, we ssimply state that the operations the client requests should be in the set of operations that the server
provides.

ITU-T Rec. X.904/Amd.1 (2000 E) 9
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Finally, if the client asks for legal operations, i.e. in the set of operations supported by the server interface reference then
some successful behaviour occurs. This might be the sending of a positive response to the client. Following thisthe client
interface reference is then added to the set of known interfaces. Membership of this set then allows access to the other
behaviour (not specified here) available at this interface. This other behaviour should realise the set of operations and

constraints given by the interface reference myRef.
A.12  Structuring Rules

A.1.21 Naming Rules

The naming rules contained in the computational language of ITU-T Rec. X.903 | ISO/IEC 10746-3 may only be
supported in LOTOS provided strict modelling practices are followed. For example, when creating operational interface

references, e.g. myRef, ensuring that the invocation, termination name are unique, as wel as the parameter nam
apsoci ated with these operations. Enforcement of these rules can then be achieved through guards to detect the legality
the data structuresreceived (via value passing) at that interface.

A.1.2.2 Interaction Rules

A.1.221 Signal Interaction Rules

It is aways the case in LOTOS that an object offering a signal (or stream or operationa) interface can only initiate (a
respond to) signals, (or flows or operations) that are instances of the associated signal (or flow.or operation) signature
its signd (or stream or operational) interface type. Thisis built in to the synchronisation rules of LOTOS, i.e. only eve
offers with matching (or overlapping) action denotations can synchronise. As discissed in this Recommendation
mternational Standard, there isno rea naotion of causality in LOTOS and events either happen instantaneously togeth
of not a al. Thusit is not the case that an invocation is sent and then received. Theinvocation sending and receiving
gpresented by the occurrence of asingle LOTOS event.

-

.1.2.2.2 Stream Interaction Rules
e A1.2.2.1.

.1.2.2.3 Operation Interaction Rules
e A1.2.2.1.

> (D > (N >

.1.2.2.4 Parameter Rules

tispossiblein LOTOS to use Act One sorts as.camputational interface identifiers. These identifiers may then be p
ia value passing) in the interactions of a given-specification. Following these interactions, these identifiers (sorts)
b used in future event offers of the sender-and the receiver objects, thereby allowing for interactions to occur betw
he sender and thereceiver of the identifier Thus the identifiers can be regarded as computational interface identifiers.

=T o~

be achieved by having some formrof ‘equality through Act Onerewriting.

flispossible in LOTOS to ensure that computational interface identifiersidentify the same computational interface.

A.1.2.25 Flows, Operations and Signals

I it is required that-flows and operations are to be represented in terms of signas then this requires that approprig
modelling conventions in LOTOS are adopted. For example, through having checks (guards) on the names of the signg
ahd associ ated operations or flows.

A.1.23 Binding Rules

I{is possible to have different representations of a given computational interface identifier modelled in Act One. This can

ES
Df

=]
—

is

fe
S

1231 Implir‘it Rinding for Server ﬂpprnrinn Interfaces

An example of the server side of implicit binding is given in A.1.1.14. An example of the client side of an implicit
binding which wishes to invoke operation SomeOp offered by server referenced by SomelRef and terminates upon

completion might be represented in LOTOS as

let myRef: | Ref = makel Ref(insert(someOp,{})
in Clientl nterfacelg,...] (myRef,I nsert(Somel Ref,{},...)
process ClientInterface g, ...J(myRef: IRef, known: |RefSet, ...):noexit:=

g 'bind 'Somel Ref !pl; (* pl contains myRef, Somel Ref refer ences server *)
(g ?reply: Name!myRef ?pl: PList; (* receive successful bind response *)
g 'someOp !Somel Ref 1pl2; stop) (* invoke someOp (contained in myRef) and terminate *)

endprocess (* ClientInterface*)
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A.1.2.3.2 Primitive Binding Rules

Primitive binding can be achieved through adopting appropriate modelling conventionsin LOTOS. An example of this

is

shownin A.1.1.14 and A.1.2.3.1. We note that the client side of primitive binding should not have to dynamically create
the associated interface (and hence interface reference) as described in A.1.2.3.1. Rather, the interface should already

exist.

A.1.2.3.3 Compound Binding Rules

Compound binding can be represented in LOTOS through adopting appropriate modelling conventions. These require
that a process (repreeentlng a blndlng object) is specified that accepts (vra value passrng) collectrons of mterface

o;ect issues a request to create mstanc& of all of thwe referenced mterfaces to the sender of ther&pectlve origi nal bl

requests. These created interfaces are then bound (using primitive binding as shown in subclauses AL1.1

through A.1.2.3.1) to one another. Once binding has taken place, processes are instantiated (created) within the bindi
opject that can subsequently be used to control the interactions of the objects involved in the compound binding:

A.1.24 TypeRules

>

.1.24.1 Subtyping Rulesfor Signal I nterfaces

—

he subtyping rules for signal interfaces can be achieved in LOTOS through ensuring that certain modelling conventio
efollowed. Examples of these conventionsare shownin A.1.1.11 and A.1.1.14.

QD

>

.1.24.2 Subtyping Rulesfor Stream Interfaces

Q -

bnventions are followed. Examples of these conventions are shown in A.14/13and A.1.1.14.

.1.24.3 Subtyping Rulesfor Operational Interfaces

he subtyping rules for operation interfaces can be achieved-in LOTOS through ensuring that certain modellir
bnventions are followed. Examples of these conventionsareshown in A.1.1.12 and A.1.1.14.

Q-4 >

>

.1.25 Template Rules

>

.1.25.1 Computational Object Template Rules

>

computational object can:

* initiate or respond to signals’by having event offers in its associated behaviour expression modelled
signal signatures with the appropriate causality;

e produce or consumeiflows by modelling flow signaturesin its associated behaviour expression;

* invoke or temihate operations by having event offers modelling interrogation and announceme
signatures.irrits behaviour expression;

* instantiate interface or object templates by having interface and object templates as part of its behavio
expriession;

» _~bind interfaces by having a behaviour expression that will enable binding between interfaces to occur;
o\ access and modify its state through events occurring which make up part of its behaviour expression;

e dtop (delete) itsalf by providing a suitable LOTOS termination as part of its behaviour expression, e.

he subtyping rules for stream interfaces can be achieved in LOTOS through ensuring that certain modelling

ns

g

S

stop, exit or [>;

e gpawn, fork and join activities by using combinations of different LOTOS composition operators in i
associ ated behaviour expression, e.g. choice, interleaving and paralldl composition;

ts

* bind to atrading function by offering event offers that can synchronise with a trading function as part of

its behaviour expression. This implies that the LOTOS specification containing the object contains

a

trader specification also. It should be pointed out that the LOTOS event that may represent a trading
action may not be different to any other LOTOS event. That is, the distinction between a trading action
and any other action is merely that the event is between the trader and the object. Therefore a trading

action will be distinguishable from any other action only through its action denotation parameters

in

LOTOS. Hence Act One sorts used as identifiers need to be carefully dealt with to be able to distinguish

between the different actions.
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A.1.25.2 Computational Interface Template I nstantiation

Whilst it is the case that computational interface template instantiation creates a new computational interfacein LOTOS,
it is not the case that computational identifiers are established for these created interfaces also. It is possible to achieve
this however, provided certain modelling conventions are adopted. For example, through engineering interface
references through Act One data structures which are created when the associated interfaces (LOTOS processes) are

created.

A.1.25.3 Computational Object Template I nstantiation

Indantiation of a computational object template in 1 OTOS is achieved through instantiating the associated proce:
Efinition representing the object template. References to the interfaces created in the object instantiation process have
b engineered as discussed in A.1.2.5.2.

o Q

A.1.2.6 FailureRules

hown beforehand which depending on the failure type, is not aways possible. As such this’method of moddlir
failuresislimited in that failures here are predictable, whilst in general thiswill not be the case:

O |

| be modelled to a certain extent in LOTOS by giving al possible system behavigurs,

A.1.2.7 Portability Rules

o

hecking and binding to trading interfaces is only possible if model hing’ conventions are adopted that allow the signatu
interfacesin Act Oneto be represented and used as a basis for type checking and subsequent binding operations.

(@]

1 should be noted that there is no real notion of a given action in LOTOS being a fork or ajoin action. It is only whg
bnsidering the specification behaviour that fork and join actions can be identified.

Q

>

.1.2.8 Conformance and Refer ence Points
LOTOS specification consigts of a system» of possible behaviours. As such, it is not possible to directly identi

specification contains all its reference points inbuilt and it is up to the implementor of the specification to identif
bel and test reference points. Thus atesting process acting on a LOTOS specification may be restricted to a certain pa

the specification, i.e. a given.abject or interface. The identification of this object or interface as a conformance point
brt of the testing process, hawever, and not part of the specification process.

SO S>>

here are many different\fypes of conformance possible within LOTOS. These al relate the behaviour of the specific
on to some form..of expected behaviour. Thus a given specification is said to conform if it exhibits the corrg
Ehaviour, i.e. the behaviour expected in the testing process.

o = o

b~

2 For malization of the Computational Viewpoint L anguagein SDL

The modelling of failures in LOTOS may be achieved to a certain extent by giving all possible behaviours for a givgn
system. That is, successful behaviours and failed behaviours. This means, however, that al possible behaviours wer
k

he infrastructure failures which can occur during interaction (i.e binding, security, communication and resource) may

OTOS supports al of the portability rules of ITU-T Rec. X.903.| ISO/IEC 10746-3, however, signature subtype

iference points which may become either“programmatic, perceptud, interchange or interworking conformance points.

e
g

(e

EN

y

V,
Irt

is

ct

n@DP system (appllcatl ons, ODP functlons) is d@crl bed i in SDL from the computatl onal vi ewp0| ntasa conflguratl q

n

typeﬁ have to be derived from the prm types and block types defined in th|s contribution. The computatl onal Obj ects
interact using an infrastructure offering the ODP functions. The computational modd of the infrastructure is modelled by

an SDL-block. This provides all ODP-functions visible at the computational viewpoint as SDL remote procedures.

Using the formal description technique SDL this subclause shows how the concepts and rules of the computational
language can be expressed. For concepts not fully covered, the use of informal text is proposed. Italics are used to

distinguish between ODP and SDL terms.

An ODP system is described in SDL from the computational viewpoint as a configuration of computational object
These computational objects are instances of block and process types.
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A.21  Concepts

The concepts of the computational language are expressed in SDL-92 according to ITU-T Recommendation Z.100 and
ITU-T Recommendation Z.105 and according to the generic definitions, rules and guidelines of this Recommendation |
International Standard.

A.211 Signa

A signal may be represented by the occurrence of an OUTPUT <sdl-signal> action and the reception of that
<gsdl-signal> (or arelated <sdl-signal> containing the information of the original <sdl-signal>) by the inputport of the
receiving PROCESS

>

>

>

—

he structure of an announcement is given in Table A.1.

NOTE — A signal is an atomic action. Although it is modelled in SDL by a series of (SDL-) actions, atomicity is guarantegd
because the transmisson by a channd and the reception through the receivers inputport are implicit. An output_may ‘be
instantaneous in case that initiator and responder are connected by no-delay channels or by signalroutes.

.2.1.2 Operation

n operation isthe occurence of an interrogation or an announcement.

.2.1.3 Announcement
n announcement is a sequence of actions, modelled by the occurence of the following actiens:
e OUTPUT of an <sdl-signal> by an interface PROCESS of a client object

e INPUT of that <sdl-signal> or a related <sdl-signal> containing ‘the information of the original <sgl-
signal>, by an interface PROCESS of the server object (Invoeation).

NOTE — The gtart of the function to be performed by the server is modell ed /by, the transition triggered by INPUT.

Table A.1—Announcementy(Client and Server side)

PROCESS TY PE Client PROCESS TY PE Server
NHERITS Operationinterface; INHERITS Operationinterface;
. ADDING GATE InterfaceSignature
DUTPUT servicel(pl,p2,p3) TO Serverl ADDING IN WITH servicel;
ENPROCESS TY PE Client STATE bound:;
INPUT servicel(al,a2,a3);
TASK 'perform required function';
NEXTSTATE-;
ENDPROCESS TY PE Server
A.2.1.4 Ipterrogation

>

n interaction between aclient object and a server object that consists of:

*  OUTPUT of an <sdl-signal> by an interface PROCESS of a client object;

e INPUT of that <sdl-signal> (or a related <sdl-signal> containing the information of the original <sdl-
signal>) by an interface PROCESS of the server object (Invocation) followed by;

*  possible execution of the requested function;
. OUTPUT of an <sdl-sgnal> by an interface PROCESS of the server object; and

e INPUT of that <sdl-signal> (or a related <sdl-signal> containing the information of the original <sdl-
signal>) by an interface PROCESS of the client object (T ermination).

The structure of an interrogation is given in Table A.2.
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Table A.2—Interrogation using SDL signals

PROCESS TY PE Client PROCESS TY PE Server
INHERITS Operationinterface; INHERITS Operationinterface;
ADDING GATE InterfaceSignature
OUTPUT servicel(pl,p2,p3) TO Serverl; ADDING IN WITH servicel;
NEXTSTATE waitServicel,
STATE waitServicel STATE bound;
INPUT servicelTermi, INPUT servicel(al,a2,a3);
TASK 'perform required function';
INPUT servicelTerm2; OUTPUT servicelterml TO SENDER;
NEXTSTATE-;
SAVE?*;
. ENDPROCESS TY PE Server
FNPROCESS TY PE Client

ynchronous interrogations can be modelled by value returning REMOTE PROCEDURES The-¢lient calls a REMOTE
ROCEDURE of the interface PROCESS of the server object. The SDL replacement’ mode for REMOTE
ROCEDURES ensures the sequenciality requirements of the interrogation.

T oWy

Tlhe structure of a synchronous interrogation isgiven in Table A.3.

Table A.3—Interrogation using SDL remotepr,ocedur es

PROCESS TY PE Client PROCESS TY PE Server
NHERITS Operationinterface; INHERITS Operationinterface;
MPORTED PROCEDURE servicel,; ADDING

. EXPORTED PROCEDURE servicel REFERENCED;
CALL servicel(parl,par2,par3) TO Serverl;
. STATE bound;

FNPROCESS TY PE Client INPUT PROCEDURE servicel(pl,p2,p3);
NEXTSTATE-;

ENDPROCESS TY PE Server

>

215 Flow

flow is an abstraction,of a set of interactions. It is modelled in SDL at the producer side by a continuous signal gs
hown in Table A.4.

L >

Table A.4—Flow (signal based)

* Producer™/ [* Consumer*/
PROVIDED Available(Data); STATE Receive;
OUTPUT Frame(GatFrame(Daa)) TO BoundTo: PRIORTTY TNPUT Frame(Daa);
NEXTSTATE-;
. NEXTSTATE-;
INPUT NONE;
NEXTSTATE-:

A further abstraction may be based on the concept of IMPORTED and EXPORTED values.
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A.2.1.6 Signal Interface

A PROCESS ingance, which communicates only with (SDL-) S GNALS via non-delaying CHANNELS The PROCESS
isan ingantiation of a subtype of a Signal InterfaceTemplate.

A.2.1.7 Operational Interface

An interface in which all interactions are operations. The PROCESS is an instantiation of a subtype of an
Operational InterfaceTempl ate.

A.2.1.8 Stream Interface

A.2.1.9 Computational Object Template

An object template for a Computational Object. It is represented in SDL as a type based BLOCK definition, where the
Bl OCK TYPE is a specialization of the BLOCK TYPE Computational ObjectTemplate. The concept of environment
bntract is not supported in SDL, informal text has to be used ingtead.

All ingoing/outgoing gates of a Computational ObjectTemplate have to be connected to instantiations of subtypes of the
I mterfaceT emplate processes.

Tihe structure of a BLOCK TYPE computational object templateisgiven in Table A.5,

Table A.5-BLOCK TYPE Computational ObjectTemplate

BLOCK TY PE Computationa ObjectTempl ate;
VIRTUAL PROCESS TY PE SignalInterfaceTemplate REFERENCED;
VIRTUAL PROCESS TY PE StreaminterfaceTemplate REFERENCED;
VIRTUAL PROCESS TY PE OperationinterfaceTempl ate REFERENCED;
VIRTUAL PROCESS TY PE BehaviourTemplate REFERENCED;
PROCESS Loca Behaviour(1,) : BehaviourTemplate;
/*

GATE Definitions

SIGNALROUTE Definitions

PROCESS Definitions

have to be added in specidizations of this TYPE
/*
ENDBLOCK TYPE;

.2.1.10 Computational InterfaceIllemplate

signal interface template, stream interface template or operational interface template. The concept of environment
bntract is not supported in SDL; informal text hasto be used ingtead.

SignalInterfaceTemplate is represented by a type based PROCESS definition, where the PROCESS TYPE is at least|a
pecialization of the PROCESS TYPE signal interface template, as shown in Table A.6. The PROCESS TYPE must haye
nly one GATE connécted to the outside of the surrounding BLOCK. This GATE represents the signal interface signaturg.
Il communication to the outside of the BLOCK must be based on SIGNAL exchange through this GATE. There must npt

ist any OUTPUT to the outside of the surrounding BLOCK in the STATE unbound. The behaviour is specified by the
Focess graph in Table A.6.

S RPTOLL QP

Table A.6 —PROCESS TY PE SignallnterfaceT emplate

PROCESS TY PE Signa InterfaceTempl ate;
GATE InterfaceSignature IN FROM ATLEAST SignalInterfaceTemplate
OUT TO ATLEAST Signal InterfaceTemplate;
DCL BoundTo PId;
START VIRTUAL; NEXTSTATE unbound;
STATE unbound; INPUT VIRTUAL Bind(BoundTo); NEXTSTATE bound;
INPUT VIRTUAL *; NEXTSTATE -;
STATE bound; INPUT VIRTUAL UnBind; NEXTSTATE unbound;
INPUT VIRTUAL *; NEXTSTATE -;
STATE*; INPUT VIRTUAL Delete; STOP,
ENDPROCESS TYPE;
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A Stream Interface Template is represented by a type based PROCESS definition, where the PROCESSTYPE isat least a
specialization of the PROCESS TYPE StreaminterfaceTemplate, as shown in Table A.7. The PROCESS TYPE mug have
only one GATE connected to the outside of the surrounding BLOCK. This GATE represents the Stream Interface
Signature. All communication to the outside of the BLOCK must be based on SSGNAL exchange through this GATE by
continuous signals (flows) in the STATE bound.

The behaviour is specified by the process graph in Table A.7.

Table A.7—PROCESS TY PE Streamlnter faceTemplate

PROCESS TY PE StreaminterfaceTempl ate;

(NI !

GATE InterfaceSignature ADDING IN FROM ATLEAST BinderStreamlinterfaceTemplate
OUT TO ATLEAST BinderStreaminterfaceTemplate;

ENDPROCESS TYPE;

An Operation Interface Template is represented by a type based PROCESS definition, where the PROCESS TYPE is gt
|gast a specialization of the PROCESS TYPE OperationinterfaceTemplate, as shown in Table A.8. The PROCESS TYHE
ust have only one GATE connected to the outside of the surrounding BLOCK. This GATE represents the Operatign
terface Signature. All communication to the outside of the BLOCK must be based on S GNAL “exchange through this
GATE or by REMOTE PROCEDURES The behaviour is specified by the PROCESS body in‘Table A.8.

5 32

Table A.8 —PROCESS TY PE Oper ationl nter faceTemplate

PROCESS TY PE OperationlnterfaceTempl ate;

INHERITS Signal InterfaceTempl ate

GATE InterfaceSignature ADDING IN FROM ATLEAST OperationinterfaceTemplate
OUT TO ATLEAST OperationinterfaceTemplate;

o

NDPROCESS TY PE;

.2.1.11 Signal Interface Signature

names of all SGNALS sent/received by the InterfacePROCESS and gives an indication of their causality (IN WATH ¢r
UT WITH respectively). A Signal Signatureis given'by a SGNAL definition, comprising:

e anamefor the Signd;

A
The signature of a Signal Interface is given by a GATE.definition of the corresponding PROCESS. This contains the st
0
g

e thenumber and types of the@arametersfor the Signal.
DL does not allow for anaming of parameters, however parameters are identified by their position.

dditionally the SGNALSET of the PROCESS contains the set of names of all S GNALSthe PROCESS can receive.

.2.1.12 Operation Interface’ Signature

n Interface Signaturefer an operational Interface, comprises the signature of each operation in the interface. It is givgn
y GATE definitions according to A.2.1.10 or by REMOTE and IMPORTED or EXPORTED PROCEDURE definitions
case of REMOTE PROCEDURES).

> > T

—

e annoupcément signatureis, in case of REMOTE PROCEDURE, reflected by the PROCEDURE signature, otherwige
ifis given:by’a S GNAL definition.

etermination signature is, in case of REMOTE PROCEDURES reflected by the signature of the data type of the
ROQCEDURE return value_otherwise it icgi\/m hy a S GNAL definition

A.2.1.13 Stream Interface Signature

The signature of a Stream Interface is given by a GATE definition, containing the set of names of all SSGNALS
sent/received by the Interface PROCESS i.e. the flows, and an indication of causality as given according to A.2.1.10.

Additionally the SGNALSET of the PROCESS contains the set of names of all SSGNALSthe PROCESS can receive.

In case of remote procedures, these have to be specified in the interface PROCESS as EXPORTED or IMPORTED. The
REMOTE clauserestricts the visibility of EXPORTED PROCEDURES

NOTE — Complementary interface signatures are indicated by GATE definitions with identica signal lists but complementary
direction clauses (IN WITH and OUT WITH respectively).
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A.2.1.14 Binding Object
An instance of a CHANNEL. Theinternal structure of a binding object is specified by a CHANNEL SUBSTRUCTURE.

More complex binding objects should be represented by a configuration of two or more CHANNELS and one or more
BLOCK -instances.

NOTE — Some CHANNELS in SDL are given implicitly, e.g. CHANNELS supporting the communication via EXPORTED
PROCEDURES and EXPORTED values. The use of a configuration consisting of a BLOCK and two or more CHANNELS allows
for bindings between more than two interfaces and for bindings with control interface(s).

A.22  Structuring Rules

triansparent terms, as:
e aconfiguration of BLOCKS and CHANNELS

* internd actions are modelled by local PROCESSES which do not communicate to the eutside of the
BLOCK;

e interactionsare modelled by Interface PROCESES
A computationa specification in SDL is constrained by the rules of the computational language’and by the semantis
of SDL.

The initial set of computational objects is given by the set of BLOCKS and the PROEESSES contained in them. An

nmitial number may be specified for each different kind of PROCESS. The changes in the configuration are expressed (n
he behaviour specification.

— =

A.2.21 Naming Rules

Tlhe static semantics of SDL ensures the following rules:

* digna names are distinct in any signal interface signature because a SSGNAL may appear only onceinfa
GATE d€finition;

e operation names are distinct in any operation-interface signature, because a PROCESS must not export or
import two different PROCEDURES with the 'same name;

e parameters are uniquely identified by their position. There isno naming for SGNAL parameters;

e computationa interface identifiers @e mapped to Plds (PROCESS identifiers) and are therefore uniqiie
throughout the specification.

.2.2.2 Interaction rules

o fulfil the constraint that interactions’at an unbound interface cause an infrastructure failure, all OUTPUT actions must
b qualified with VIA and/or TO clauses. All SGNALS sent outside a Computational Object BLOCK have to be sent by
N Interface PROCESS and routed-through a GATE of that PROCESS

II' Remote Procedure Calls must be qualified with TO. All failures have to be explicitly specified, since SDL does npt
rovide a mechanism for-handling failures. Behaviour is undetermined after an error has occurred.

.2.2.2.1 Signal I'nteraction rules

=4 > T > o4 >

he Signal interaction rules are guaranteed by the SDL semantics. A Signal Interface PROCESS can only send/receiye
hose SIGNALSthat are specified for that PROCESS

—

AN.22.22 Stream interaction rules

Stiream IMarTaces are pased on SIGNAL exuwnge, tererore the stream nteraction ruies are gUdldllLUdU Dy e L
semantics. A Stream Interface PROCESS can only produce/consume those flows that are specified for that PROCESS

A.2.2.2.3 Operation interaction rules

In case of Remote PROCEDURES the Operation Interaction Rules are guaranteed by the SDL semantics. In case of
SIGNALS the specifier hasto apply the following rules:

o for al SGNALS modelling the operation invocations there must be transitions in al states of the
PROCESSto handle these S GNALS (no implicit discard!);

» thetransition or sequence of transitions triggered by the invocation must end with exactly one OUTPUT
<gdl-signal>, where <sdl-signal> is a SSGNAL modelling one of the terminations.
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The order of occurrence of invocation/termination deliver signals of concurrent invocations/terminations does not
necessary follow the order of occurrence of the corresponding invocation/termination submit signals. Concurrent
SIGNALS are ordered in SDL in arbitrary (non-deterministic) order. There is no means to describe the duration of an

operation directly, the duration is arbitrary.

A.2.2.2.4 Parameter rules

Computational interface identifiers are represented as Plds. They can be both argument and result parametersin sign
and operation interactions. Theidentifiers can be passed as a parameter in further interactions.

al

The recipient of a computational interface identifier can use the identifier to engage in interactions with the object

supporting the interface, provided a binding can be established between the interfaces.

interface more than one identifier.
I{ is always possible to determine whether two computational interface identifiers identify the same computation
interface the Pld references.

A.2.2.25 Flows, Operationsand Signals

Tihe replacement model of operations and streams by signalsis guaranteed in SDL. In case of REMOTE PROCEDURH
ahd EXPORTED/IMPORTED a similar replacement model is provided by the SDL standar dk

>

.2.2.3 Bindingrules

teraction between computational objects is only possible when their interfaces are bound to the same binding objex
isis ensured by the SDL semantics since each communication between BLOCKS in SDL requires the BLOCKSto |
nnected by a CHANNEL. Each OUTPUT shall usethe TO <Pld> or VIA<echannel> or VIA <gate> clause.

.2.2.3.1 Implicit Binding for Server Operation I nterfaces

Implicit binding is possible in SDL for computationa object, BLOCKS which are directly connected by a CHANNE
Implicit binding always takes place with operations modelled with REMOTE PROCEDURES The SDL replaceme
odel guarantees the implicit binding rules for server operation interactions. However, the client operation interface h
0 be created explicitly. The scope of an EXPORTED PROCEDURE isrestricted by a REMOTE clause.

—

.2.2.3.2 Primitive binding rules

Fimitive binding requires that the interface PROCESSES of the two computational objects are directly connected by
HANNELSas shown in Table A.9.

O >

Table A.9-Binding Action

interface, however, there is no means to quaify a Pld with an interface signature type or to detectthe type of the

Jomputational identifiers are unambiguous within the SYSTEM specification. SYNONYMS may be used to give Jan

pl

S

[

he

S

a

*nitiater*/ [* Destination*/
VIRTUAL EXPORTED PROCEDURE Bind
" NEWTY PE PIDSet ATLEAST
STATE unbound; OPERATORS noequality;
TASK add: PIDSet,Pld->PIDSet;
N ) - PIDSet, Pld->PIDSet;
Destination:=CALL Bind(SELF, TDest) TO Dest; ENDNEWTYPE: e
DECISQN* Destinati or)l: Def}t; DCL BoundTo PIDSet, ThisType TypeDescrType, Failure Boolean>>
FALSE: /*Binding Failure FPAR Source Pid, Typ TypeDescrType;
NEXTSTATE - RETURNS Dest Pid;
TRUE: TASK BoundTo:= add(BoundTo,Dest) START:
NEXTSTATE Bound; ’/* type checking*
FNDDECISION;

STATE DU, NULL: TASK Falure=true; RETURN NULL;
ELSE: TASK BoundTo:=add(BoundTo,Source),
Failure= false; RETURN SELF;
ENDDECISION;
RETURN NULL
ENDPROCEDURE;
STATE unbound;
INPUT Bind;
DECISION failure;
false: NEXTSTATE Bound;
ENDDECISION;
NEXTSTATE -;
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The binding action is modelled by an EXPORTED PROCEDURE according to Table A.9. A complementary
PROCEDURE has to be provided to delete the binding.

A.2.2.3.3 Compound Binding

In order to use compound binding, a binding object hasto be specified (BLOCK TYPE). This BLOCK TYPE must contain
at least two interface PROCESSES and a local behaviour PROCESS This binding object has to be connected to the
objects involved in the binding by CHANNELS ATLEAST clauses may be used to ensure the binding pre-conditions.

The compound binding action comprises:

4 o - > O

>

>

instantiation of the binding object;

ontrol interfaces may be specified and ingantiated according to A.2.1.10 and A.2.2.5.2.

.2.24 Typerules

DL does not have means to formally describe the ODP type concept. The type.rules of ITU-T Rec. X.903 |
BO/IEC 10746-3 must be used as a style guide for the specification process. The requited subtyping relations for the
nding of interfaces have to be expressed as behaviour of the binding action (PROCESS Binder).

lemplate type rules may be expressed using ATLEAST clauses.

NOTE — ASN.1 or Act One data types can be used to model the type concept,<however, the relation between an object and t
object type can not be verified formally.

.2.25 Templaterules

.2.25.1 Computational object template rules

computational object can:

Instantiation of the interface templates within the binding object, which are associated with a formal,roe
in the binding object template (this may be part of the object instatiation);

primitive binding of theinterfacesinvolved in the binding with the corresponding interfaces of the binding
object;

instantiation of control interfaces asrequired.

ne

initiate or respond to signals (INPUT/QUTPUT);

produce/consume flows,

initiate operation invocations,

respond to operation invocations;

initiate operation terminations;

respond to operation terminations;

instantiate interface templates (CREATE <process>);

instantiate object templates (OUTPUT CreateObject(<objectname>) TO Local Behaviour);
bind.interfaces;

access and modify its state (TASK-actions, NEXTSTATE);

delete one or more of itsinterfaces (OUTPUT Delete TO Interface);
deleteitsdf (STOP);

spawnfo and.ioin-activiti i decomposition):
ars a ='ala ETalal="a S - ig==iila - P -

obtain a computational interface identifier for an instance of the trading function.

A.2.25.2 Computational interfaceinstantiation

Computational interface template instantiation:

creates anew interface PROCESS

produces a computational interface identifier for the interface (P1d).

The instantiation is modelled by CREATE <interface-process-type>. The variables SELF of the creator and OFFSPRING
of the createe contain the new interface identifier.
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A.2.25.3 Computational object template instantiation
Computational object template ingantiation:
e  createsanew PROCESS L ocalBehaviour for the object;
e produces a (non-empty) set of identifiersfor theinitial interface PROCESSES of the new object.

The instantiation is modelled by CALL CreateObject TO <object-type>. This creates a new PROCESS Local Behaviour.
The instantiation of the interface PROCESSES of the new object may be included in the CreateObject PROCEDURE or

may be part of the start transistion of Local Behaviour. The PROCEDURE CresteObject may be refined by inheritance.

TahlaA 10  CroataObiect PROCEDLIRE
oioTe7/ o ortatcooreorr oot =

T

EXPORTED PROCEDURE CreateObject ATLEAST CreateObject
RETURNS ObjectID Pid;

START VIRTUAL; CREATE THIS;

RETURN OFFSPRING,;
ENDPROCEDURE CreateObject;

NOTE — The approach specified here is based on the assumption that there dways will exist a least On ebject of that type. If th
can not be guaranteed, a special (manager) process has to be added to the Computationa ObjectTemplate-BLOCK. Its purpose
the creation of new instances.

>

.2.2.6 Failurerules

b

Il possible computational failures have to be specified explicitly. SDL does not\provide a means to handle failures
he execution of a specification. After the occurence of an (SDL-) error the further behaviour of a system is undefined.

—t

A.2.2.7 Portability rules

wn

DL meets all requirements of the portability rules with the following.exceptions:
e ordering and delivery guarantees for announcemients (delivery of SIGNALS always succeeds or fails);

* interface signature subtype testing.

=

INPUT,OUTPUT,CREATE,CALL) and through syntactic structures.

>

.2.2.8 Conformance and r eference point

—

reference points.

Message Sequence Charts (MSC) ,can additionally be used to specify the required behaviour at a reference point. Tq
methodol ogies are available to ehieck the conformance between an SDL specification and an ITU-MSC specification.

devel oped and can be'used to test the conformance of an object at programmatic conformance points.

A.3 Formalization of the Computational Viewpoint Languagein Z

Hlementary Structur es Associated with Operational and Signal I nterfaces

—

0.formalize the concepts associated with the computational viewpoint in Z, it is necessary to introduce labels [Name] f

DL provides an event based processing model, the permitted actions are represented directly as a part of the language

he GATES of interfaces PROCESSES agtas the communication to the outside of the computational object represent the

A language binding between the standardized interface specification language CORBA-IDL and SDL has begn

is
is

St

tr e o nanc Af Anoratiane and thay MND hvnae Tha OND hnac avictina tn thn cvctamn e donatoad Ihy [

{AgS-e-g-harres of-operaions-aRe-the OB P-types—Fhe-OBP-types-existng-HrtheSyster-are denetes-by farmet-

The parameters that are associated with interfaces to computational objects consist of a name and a type. It should
always be possible to determine the type of a parameter in a given context, e.q. asgiven in 7.2.1 of ITU-T Rec. X.903 |

ISO/IEC 10746-3. Thus param isintroduced as a partial function from names to ODP types in such a context.

Param: Name —+ Type

This function includesin its domain, all of the parameter names that exist in a given context. It is also useful to introduce
sequences of these parameters to enable consideration of the sets of parameters associated with signals, invocations or

terminations.

PList == seq Param
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Elementary Structures Associated with Stream Interfaces

As with the LOTOS formalization of the computational viewpoint, we consider a generic notion of flow consisting of
flow elements. Each flow dement in an information flow can be considered as a unit consisting of data (this may be
compressed) which we represent by [Data]. This model might include how the information was compressed, what
information was compressed, etc. Assuch it isnot considered further here. Flow e ements also contain atime stamp (ts)
used for modelling the time at which the particular flow element was sent or received, hence we introduce the type
[Time]. It is also often the case in multimedia flows that particular flow elements are required for synchronisation, e.g.
synchronisation of audio with video for example. Therefore we associate a particular Name with each flow element. This
can then be used for sdlecting a particular flow element from the flow as required. From this, we may model a flow
element as:

r—FlowElement
|label : Name
|data : Data
!ts : Time

3.1  Concepts

signal is an atomic interaction from an initiator to a responder. Since Z does not fully,possess the object orients

ure of encapsulation, the modelling of interactions between objects requires restrictions on specification styles to
followed. For example, through ensuring that signals sent from initiators to respondershave appropriate variable nam
(and compatible types) for the associated output and input labels respectively.CEnsuring naming considerations afe
isfied can be achieved through appropriate renaming of the schema text representing signal signatures as provid
in A.3.1.11. An example of how this can be achieved is shown in the following.Z fragment.

A
A.3.11 Signal
A
f

D 8

InitiatingSignalSignature
RespondingSignalSignature

SignalSignature [pltAinArgs]
SignalSignature [pk?7 inArgs]

~
~

Now atemplate for aninitiating and responding signal may be given as:

—InitiatingSignalTemplate r—RespondingSignalTemplate
InitiatingSignalSignature RespondingSignalSignature

T

ere the dots are used to imply that there will likely be more information contained in the declaration part of ;me
sthemas, e.g. related to state information of the objects associated with the initiating and responding signals,
predicates to indicate the effects of theé.operation schemas occurring, i.e. the behaviour.

should be noted that schemachiding and schema projection can be used to hide declarations that should not be visible
Lring the interaction, i.e. théy can be removed from the declarations and existentially quantified in the predicate part pf
e schema. The signal template for the interaction itself may be modelled through piping of the respective initiating and
esponding signal schermatemplates.

o =

=

~

SignalTemplate & InitiatingSignalTemplate >> RespondingSignalTemplate

=

hether the signal itself can actually take place is dependent upon the satisfaction of the predicates associated with the
bmposed schemas.

NOTE=The information that is being conveyed as required in 8.8 of ITU-T Rec. X.902/ISO/IEC 10746-2 is given by the output
parameters from the initiating signal, i.e. p1!.

Q

A3 T2 Operation

The occurrence of an operation schema modelling an interrogation or announcement. See also the Notein A.3.1.4.

A.3.1.3 Announcement

The occurrence of an operation schema modelling an invocation from a client to aserver. Asdiscussed in A.3.1.1, Z does
not fully support object-orientation so modelling conventions have to be adopted to model systems of interacting objects.
The conventions on naming can be enforced through appropriate renaming of the invocation template given in A.3.1.12.
This can be represented as:

ClientInvocationSignature
ServerInvocationSignature

InvocationSignature[pl!/inArgs]
InvocationSignature[pl?/inArgs]
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Now atemplate for a client and server invocation may be given as.

—ClientInvocationTemplate —ServerInvocationTemplate
ClientInvocationSignature ServerInvocationSignature

The announcement itself may then be modelled through piping of the respective client and server invocation schemas.

InvocationTemplate £ ClientInvocationTemplate >> ServerInvocationTemplate
Vyhetherthe announcament 1Tsaif canm actuatty take prace 1S depandent upon the satsfaction of the predicaes associar
with the composed schemas.

NOTE — The text in A.3.1.1 to explain the dots in the schemas to represent the unspecified behaviour and the usage-ef.schen
hiding and projection to provide aform of encapsulation is aso gpplicable to announcements.

.3.1.4 Interrogation

he occurrence of an operation schema modelling an invocation between a client and server followed'by the occurren
an associated operation schema modelling a termination between that server and client. As@iscussed in A.3.1.1,

bjects. The conventions on naming can be enforced through appropriate renaming of thé.invocation template givé
A.3.1.12. Invocations associated with interrogations are modelled similarly to-/invocations associated wi
nouncementsasgiven in A.3.1.3.

S o090 -4 >

s discussed in A.3.1.1, schema hiding and schema projection can be used.to model a form of encapsulatio

4> 2

—

emplates (see A.3.1.12). The client and server side of a termination may berépresented as:

ServerTerminationSignature;
ClientTerminationSignature;

TerminatienSignature [pl;!/outArgs]
TerminatienSignature [pl;?/outArgs]

~
~

Here the underscore i indicates that there may be several of these (termination signatures) associated with a sing
nvocation. Now a template for a client and server terminatien,may be given as

—ClientTerminationTemplate,—— —ServerTerminationTemplate,—
ClientTerminationSignature; ServerTerminationSignature;

The subscript i is used to imply that there will likely be severa termination templates, each of which has an associat¢
signature. These signatures may be different.
T

lerminati ons themsel ves may-thien be modelled through piping of the respective server and client termination schemas.

=3

erminationTemplate,
erminationTemplatey

ServerTerminationTemplate; >> ClientTerminationTemplate;
ServerTerminationTemplate, >> ClientTerminationTemplate,

~
~

3

A template for anvinterrogation as an invocation followed by one of the possible terminations may be represented as:

~

InterrogationTemplate £ InvocationTemplate >>
(TerminationTemplate, v TerminationTemplate, v ... )

bes not fully support object-orientation so modelling conventions have to be adopted to medel systems of interacting

erminations and the naming conventions they are to adhere to, can be modeled through renaming of terminatign

na

be
V4

=1
h

n.

e

ith.the composed schemas.

Whether' the interrogation itself can actually take place is dependent upon the satisfaction of the predicates associatTd

NOTE 1 - The text in A.3.1.1 to explain the dots in the schemas to represent the unspecified behaviour and the usage of schema

hiding and projection to provide a form of encapsulation is aso applicable to interrogations.

NOTE 2 — This model of an interrogation, represents a single operation schema, i.e. it is not the case that the invocation occurs

first and is followed by one of the terminations. The whole interrogation represents a single atomic action which either occurs
its entirety or does not occur at al, depending upon the associated predicates. The informal commentary associated with the
specification should be used to explain the intended effect.

A.3.15 Flow

in
Z

The modelling of flowsin Z is very much dependent upon the level of abstraction used when considering the sequence of
interactions representing the flow. Typically, flows of information have stringent timing considerations associated with
them. We consider here a model based upon a flow producer having a sequence of data items (flow elements) to send to
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a flow consumer. These are time stamped when they are sent by the producer and thisis used to determine their validity

on arrival by the consumer. Examples of the state of a producer (PState) and consumer (CSate) can be represented as.

—PsStat —Cstat
ps : seq FlowElement cs : seq FlowElement
ptnow, prate : Time ctnow, crate : Time

vf,, £, : FlowElement |
(f;,£,) in ps e f,.ts > f,.ts

T

ere we use the model of a flow element as given in A.3.1. We state that the producer (and consumer) state consists of

bast a sequence of flow e ements (ps/cs), the current local time (ptnow/ctnow) and the rate at which flow eleméntsare

b sent (prate) or accepted (crate). We also state that al flow eements in the sequence of flow elements associated wi
producer have increasing time stamps. With this model of the producer state we can modd the sending of a flg
ement as:

P2

QT

—PSendFlowElement:
APState
fl: FlowElement

ps # < > A prate’ = prate a
ps’ = tail ps A ptnow’ = ptnow + 1 / prate a
f! == (u FlowElement | data = (head ps).data a
ts = ptnow’ A label = (head ps).labe¥)

pveral things should be pointed out here. Sending a flow e ementaeemoves that flow e ement from the sequence of flo
ements to be sent. The current rate associated with the flow,is‘unchanged. The actual time at which the flow eleme
as sent is dependent upon the current rate and time.

ith the value for the time calculated previoudy. Wenote here that the use of the definite description requires that
[oof obligation is fulfilled to ensure that the flow element sent is unique. This obligation is satisfied through modellir
| flow elementsin the sequence with increasing\(i.e. non-equal) time stamps. Since no flow element in the sequence h

ST =4 = Q)

bguence of flow e ementsis non-empty.

> @

consumer may receive a flow element successfully provided the constraints for its acceptance are satisfied.

—CGetFlowElementQk
ACState
f?: FlowElement

cs’ = ¢s°<f?> A crate’ = crate A ctnow’ = ctnow + 1 / crate A ...

n

pr brevityswe do not consider the acceptance constraintsin detail. These might entail alowing variations in the times
hichithe flow element is acceptable, e.g. jitter. The actual model of a flow may now be represented as:

=

Flow £ PSendFlowElement >> CGetFlowElementOk

he actua flow element sent isthe head flow element.in the sequence of flow dements to be sent. Thisis time stampgd

e same time stamp, the flow eement sent with the current time is unique. Also we require as a precondition that the

[0

W
nt

a

g
pS

At

We note here that this modd of a flow requires that the flow element sent and received has the same base name and th

at

the other local variables of the producer and consumer states have different labels. For brevity, we do not consider the

erroneous cases associated with sending and receiving flow elements in a flow of information.

A.3.1.6 Signal Interface

An interface in which all operation schemas are modelled as signals. An example of the format of an operation schema

representing asignal signatureisgivenin A.3.1.1.

NOTE — The behaviour specification and environment contract associated with a given interface should be represented by
additional Z data structures, e.g. schemas representing the state of the objects involved in the interactions at the interface. The

instantiation of a given interface template should satisfy all predicates associated with the interface templ ate.
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A.3.1.7 Operation Interface

An interface in which all operation schemas are modelled as operations. An example of the format of the operation
schemas representing parts of an operation signature are given in A.3.1.3 and A.3.1.4. Seeasothe NOTE in A.3.1.6.

A.3.1.8 Stream Interface

An interface in which al operation schemas are modelled as flows. An example of the format of the operation schemas
representing aflow signatureisgivenin A.3.1.5. See also the Notein A.3.1.6.

A.3.1.9 Computational Object Template

A
A
in

A

=+ O =

q

= 35 T

[

>2O D>

—

q

H

¢r each sgnal typein the interface. Each action template comprises the name for'thie signal, the number, name and typ

bmplate. A signa sgnature may be represented by:

P
S

brameters associated with this invocation. The usage of this schema to create instances of client or server invocations
gnatures,i.e.'with the associated causality, is given in A.3.1.3 and A.3.1.4. The predicate associated with this schemalfs
uped to-'satisfy the naming rules for parameters, i.e. that parameter names are unique in the context of an invocatign
templatel See A.3.2.1.

Ipport the modelling of objects as a Ianguage feature directly. Instead, the natural language commentary that shoutd
bsociated with every Z specification should be used to denote the Z text, eg. the operation schemas, comprising the
interface(s) of the objects and the relation between them.

.3.1.10 Computational Interface Template

n interface template for either a signd interface, a stream interface or an operation interface” See also the Note
A.3.16.

.3.1.11 Signal Interface Signature

n interface signature for a signal interface. A signal interface signature comprises a finite set of action templates, OF

its parameters and an indication of causality (initiating or responding) with respect to the object that instantiates the

—SignalSignatur

| inArgs: PList
|

ere the schema name (signalSignature) is used to represent the signal name and inArgs to represent the numbar
bme and type of the parameters associated with this signal. The usage of this schemato create instances of initiating or
bsponding signal signatures, i.e. with causdity is givenin A.3.1.1. Seeadso the Notein A.3.1.6.

.3.1.12 Operation Interface Signature

n interface signature for an operation;interface. An operation interface signature comprises a finite set pf
hnouncements and interrogations as appropriate, one for each operation in the interface, together with an indication pf
husality (client or server) for the interface as a whole with respect to the object that instantiates the templatie.
nnouncements consist of invocations only. Interrogations consist of an invocation followed by one of the possibje
rminations. An invocation signéture may be represented as

—InvocationSignatur
| inArXgs: PList
|

ere the schemahame is used to represent the invocation name and inArgs to represent the number, name and type of the

ATeminaion Sgnature may be represented as.

r—TerminationSignature

| outArgs: PList
L

Here the schema nameis used to represent the termination name and outArgs to represent the number, name and type of
the parameters associated with this termination. The usage of this schema to create client or server termination
signatures, i.e. with the associated causdlity, is given in A.3.1.3 and A.3.1.4. It is likely that there will be predicates
associated with this schema, e.g. naming rules etc. as discussed in A.3.2.1. These predicates are similar to those given
previously for invocation templates (with appropriate quantification changes, e.g. replace inArgs with outArgs). See also
theNotein A.3.1.6.
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A.3.1.13 Stream Interface Signature

An interface signature for a stream interface. A stream interface signature comprises a finite set of action templates, one
for each flow type in theinterface. Each action template for a flow contains the name of the flow, the information type of
the flow and an indication of causality for the flow (producer or consumer) with respect to the object which instantiates
the template. An example of a particular flow signatureis given in A.3.1.5. The identification of flow signatures as being
part of a given stream interface can be done through the informal text associated with every Z specification. See also the
Notein A.3.1.6.

A.3.1.14 Binding Object
An object that supports abi ndrng between a set of other computatr onal objects Smce Z do& not support the modellrng

Using the schema calculus and provrdrng informal textual descrrptr ons however, it is qurte possible to model comple,x
interaction scenarios where a form of binding can be considered as existing. For binding objects between client and
server objects for example, this might be achieved through modelling additional operation schemas (representing/parts pf
the interface to the binding object) that are composed with client invocations and their subsequent delivery at servers.
This might be represented as:

~

InvocationViaBind £ (ClientInvocation >> BindInvocation) >> ServerInvocation

chema Bindinvocation should have compatible data types and labels for the variables that ‘répresent the informatign
bing passed between the client and server. An example of the schema Bindinvocation, for the client and server
nvocation givenin A.3.1.3. is:

o (N

—BindInvocation
inArgs!, inArgs?: PList

ere the schema should have the same base name for the data Structures being passed from the client (inArgs?) and
ing passed to the server (inArgdl). It should be pointed out that there is no notion of the schema InvocationViaBind
brtially failing. That is, it isnot the case that the client invocation (Clientlnvocation) and its acceptance by the bindgr
bject (Bindlnvocation) can pass and the deivery QF ‘the invocation from the binding object to the servgr
Ber ver [nvocation) can fail. This can then be represented as:

A0 T O T

~

InvocationViaBindFail £ @GlientInvocation >> BindInvocationFail

Here the schema BindInvocationFail might be medelled as:

—BindInvocationkEad 1l
inArgs?: PList

hspecified reason,~The different possibilities of successful or unsuccessful operations that might take place through|a
nding object can“be represented through the schema calculus. Typically, logical digunction is used to represent the
noices that arépoessible, i.e. failure cases.

NOTE & The behaviour associated with the schema Bindinvocation might impose constraints on the data it receives apd
subsequently sends, i.e. it is possible to write predi cates on the val ues of the variables it accepts as inputs and gives as outputs.

hat is, the binding object accepts the data from the client (inArgs?) but does not deliver it to the server for sole

o T c -

A.32, Structuring Rules of Computational Viewpoint

A.3.21 Naming Rules

The naming rules of the computational viewpoint language can be supported either through the writing of predicates, as
shown in A.3.1.12 for the naming rules associated with parameters, or through the global scoping of schemanames. Thus
it is not possible to declare two operation schemas with the same names, i.e. dl actions are uniquely identified in a
semantically correct Z specification.

A.3.2.2 Interaction Rules

It istypically not the case in Z that operation schemas are grouped together to form anew Z construct, e.g. a schema,
that represents the interface to an object. To do so would in the genera case would result in a schema that does not have
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the same modular structuring and with potentially conflicting predicates representing the behaviour of the
individual schemas. From this it follows that the interaction rules of ITU-T Rec. X.903 | ISO/IEC 10746-3 are not
generally supported in Z.

A.3.221 Signal Interaction Rules

There is no notion of causality in Z, hence it is not meaningful to state that interfaces initiate signals if they have
initiating causality or respond to signas if they have responding causality. The causality label that can be applied to a
given interface is done so informally. It might be the case, however, that notions of causality can be dealt with in the
informal commentary associated with every Z specification in accompaniment with appropriate schema combinations,
e.g. through >>.

A.3.2.2.2 Stream Interaction Rules

SeA322and A.3.22.1.

.3.2.2.3 Operation Interaction Rules

Ctions. This is typically done when refinement of a specification is made. Thus because a client”sends an invocatign
hich a server receives, there is no inherent Z language construct that requires that server-to send an approprige
termination at some later stage. Instead, the sending and receiving of the invocation from the-client to the server and the
slibsequent sending and receiving of the termination from the server to the client is usuay modelled as a single schenpa
ak shown in the example of A.3.1.4. Alternatively, the actions of sending and receiving an invocation and sending and
receiving a termination can be modelled as separate schemas where the accompanying informal text is used to explaln
their relationship.

A
SeeA.3.2.2and A.3.2.2.1. It should also be noted that it is typically not the case that Z models sequencing or ordering pf
a
W

A.3.2.2.4 Parameter Rules

I{istypically not the case in Z that operation schemas are grouped together to form an interface of an object that can e
gbelled and subsequently used for interacting with the interface-it.references. As such Z does not directly support the
modelling of computational interface references as parameters;

>

.3.225 Flows, Operationsand Signals

—

here is no inherent digtinction between a flow, operation or signal in Z. They are all represented by operation schem
hat can be composed with one another in numerous ways, e.g. through the schema calculus, depending upon t%

UH
o

Ehaviour of the system being specified. As such,"modelling flows or operations through signals can be achieved throu
suring that the schemas representing thessignals have the appropriate labels and data types associated with t
Drresponding schema representing the flow or operation respectively.

Q D
® 5O

A.3.23 Binding Rules

I{istypically not the case in(Z that operation schemas are grouped together to form an interface of an object that can e
abelled and subsequently used for interacting with the interface it references. As such, the binding rules of
ITU-T Rec. X.903 | ISOUEC 10746-3 are not generally supported by a Z specification. Instead, it is more often the cage
that Z supports a form_of binding based upon individual operation schemas (representing sgnds, flows, invocations pr
terminations) being-ecomposed with one another. An example of thisis given in A.3.1.14. Through this, it is possible fo
ensure that cerfainbinding rules are satisfied, e.g. through writing predicates to check on the types of parameters beiipg
pessed. Therg,is no feature of Z that restricts how operation schemas may be composed generaly, however. For
example,‘ensuring that only operation schemas with a certain name and having similar declarations are composed with
ohe ancther. Compaosing schemas that are incompatible, e.g. combining schemas through 3 that have declarations pf
variables with similar basenames but different types, resultsin a semantically incorrect specification.

A.3.23.1 Implicit Binding Rulesfor Server Operation Interfaces
SeeA3.22,A323and A.3.2.24.

A.3.2.3.2 Primitive Binding Rules

SeeA.3.22,A323and A.3.2.24.

A.3.2.3.3 Compound Binding Rules
SeeA.3.22,A.323and A.3.2.24.
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