RAPPORT TECHNIQUE TECHNICAL REPORT

CEI IEC 60782

Première édition First edition 1984-01

Mesures des transducteurs magnétostrictifs ultrasoniques

Measurements of ultrasonic magnetostrictive transducers

Cick to view the full control of the co

Numéros des publications

Depuis le 1er janvier 1997, les publications de la CEI sont numérotées à partir de 60000.

Publications consolidées

Les versions consolidées de certaines publications de la CEI incorporant les amendements sont disponibles. Par exemple, les numéros d'édition 1.0, 1.1 et 1.2 indiquent respectivement la publication de base, la publication de base incorporant l'amendement 1, et la publication de base incorporant les amendements 1 et 2.

Validité de la présente publication

Le contenu technique des publications de la CEI est constamment revu par la CEI afin qu'il reflète l'état actuel de la technique.

Des renseignements relatifs à la date de reconfirmation de la publication sont disponibles dans le Catalogue de la CEI.

Les renseignements relatifs à des questions à l'étude et des travaux en cours entrepris par le comité technique qui a établi cette publication, ainsi que la liste des publications établies, se trouvent dans les documents cidessous:

- «Site web» de la CEI*
- Catalogue des publications de la CEI
 Publié annuellement et mis à jour régulièrement
 (Catalogue en ligne)*
- Bulletin de la CEI
 Disponible à la fois au «site web» de la CEI
 comme périodique imprimé

Terminologie, symboles graphiques et littéraux

En ce qui concerne la terminologie générale, le lecteur se reportera à la CEI 60050. Vocabulaire Electrotechnique International (VEI).

Pour les symboles graphiques, les symboles littéraux et les signes d'usage général approuvés par la CEI, le lecteur consultera la CEI 60027: Symboles littéraux à utiliser en électrotechnique, la CEI 60417: Symboles graphiques utilisables sur le matériel. Index, relevé et compilation des feuilles individuelles, et la CEI 60617: Symboles graphiques pour schémas.

Voir adresse «site web» sur la page de titre.

Numbering

As from 1 January 1997 all IEC publications are issued with a designation in the 60000 series.

Consolidated publications

Consolidated versions of some IEC publications including amendments are available. For example, edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the base publication incorporating amendment 1 and the base publication incorporating amendments 1 and 2.

Validity of this publication

The technical content of IEC publications is kept under constant review by the IEC, thus ensuring that the content reflects current technology.

Information relating to the date of the reconfirmation of the publication is available in the IEC catalogue.

Information on the subjects under consideration and work in progress undertaken by the technical committee which has prepared this publication, as well as the list of publications issued, is to be found at the following IEC sources:

IEC web site*

- Catalogue of IEC publications
 Published yearly with regular updates
 (On-line catalogue)*
- IEC Bulletin
 Available both at the IEC web site* and as a printed periodical

Terminology, graphical and letter symbols

For general terminology, readers are referred to IEC 60050: *International Electrotechnical Vocabulary* (IEV).

For graphical symbols, and letter symbols and signs approved by the IEC for general use, readers are referred to publications IEC 60027: Letter symbols to be used in electrical technology, IEC 60417: Graphical symbols for use on equipment. Index, survey and compilation of the single sheets and IEC 60617: Graphical symbols for diagrams.

* See web site address on title page.

RAPPORT TECHNIQUE TECHNICAL REPORT

CEI **IEC** 60782

Première édition First edition 1984-01

Mesures des transducteurs magnétostrictifs ultrasoniques

Measurements of ultrasonic magnetostrictive ult chorn con. Cick to view the full

© IEC 1984 Droits de reproduction réservés — Copyright - all rights reserved

Aucune partie de cette publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie et les microfilms, sans l'accord écrit de l'éditeur

No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission Telefax: +41 22 919 0300

3, rue de Varembé Geneva, Switzerland e-mail: inmail@iec.ch IEC web site http://www.iec.ch

Commission Electrotechnique Internationale International Electrotechnical Commission Международная Электротехническая Комиссия

CODE PRIX PRICE CODE

Pour prix, voir catalogue en vigueur For price, see current catalogue

SOMMAIRE

1	Pages
Préambule	6
Préface	6
Liste des symboles	8
Section un — Introduction	
Articles 1. Domaine d'application	10 10 10 14 14 14 16 16 18
Section Deux — Conditions De Mesure	10
6. Généralités 7. Paramètres opératoires 8. Charge acoustique liquide 9. Préparation des mesures des transducteurs de catégorie P 9.1 Préparation du transducteur 9.2 Préparation de l'eau 10. Prescriptions générales relatives à l'appareillage	18 20 20 20 20 20 20 20
Section trois — Processus de mesure	
11. Puissance électrique d'entrée	22 22 22 22 24
12.1 Méthode du wattmètre calorimétrique 12.2 Méthode du flux de puissance 12.3 Méthode du wattmètre 12.4 Méthode du diagramme d'impédance 13. Amplitude de déplacement vibratoire 13.1 Méthode du microscope optique	24 26 28 28 30 30
13.2 Méthodes des capteurs de vibrations 14. Fréquence de résonance du transducteur 14.1 Méthode de la puissance maximale 14.2 Méthode de l'amplitude maximale 14.3 Méthode de l'impédance caractéristique	30 32 32 32 33
15. Largeur de bande et facteur de qualité mécanique	34 34
16. Impédance électrique du transducteur à la résonance 16.1 Méthode du voltmètre et du wattmètre 16.2 Méthode du pont 16.3 Méthode du voltmètre et du phasemètre	30 30 30 30
16.4 Méthode des trois voltmètres	3

CONTENTS

·	Page
Foreword	7
Preface	7
List of symbols	9
Section One — Introduction	
Clause	
1. Scope 2. Object 3. Classification of transducers 4. List of essential characteristics 5. Definitions of characteristics and their symbols 5.1 Input electrical power P_e 5.2 Electroacoustical efficiency of the transducer η_{ea} 5.3 Vibrational displacement amplitude ξ 5.4 Frequency of resonance f_{res} 5.5 Bandwidth Δf . 5.6 Electrical impedance of the transducer Z . 5.7 Blocked (damped) electrical impedance of the transducer Z_d	111 111 111 155 155 177 177 179 19
Section Two — Measuring conditions	
6. General 7. Operating parameters 8. Acoustical liquid load 9. Preparation for measurement of P-category transducers 9.1 Preparation of the transducer 9.2 Preparation of water 10. General requirements for the instrumentation	19 21 21 21 21 21 21
SECTION THREE — MEASURING PROCEDURES	
11. Electrical input power 11.1 Wattmeter method 11.2 Impedance method 11.3 Three voltmeter method	23 23 23 23
12. Electroacoustical efficiency 12.1 Calorimetric-wattmeter method 12.2 Power flow method 12.3 Wattmeter method 12.4 Impedance diagram method 13. Vibrational displacement amplitude 13.1 Optical microscope method 13.2 Vibrometer methods	25 25 27 29 29 31 31
14.1 Maximum power method 14.2 Maximum amplitude method 14.3 Impedance characteristic method	33 33 33 33
15. Bandwidth and mechanical quality factor 15.1 Input power frequency characteristic method 15.2 Amplitude frequency characteristic method 16. Electrical impedance of the transducer at resonance 16.1 Voltmeter and wattmeter method	3: 3: 3: 3'
16.2 Bridge method 16.3 Voltmeter and phasemeter method 16.4 Three voltmeter method 17. Blocked (demped) electrical impedance of the transducer	3' 3' 3'

	Pages
Annexe A — Conditions de mesures	40
Annexe B – Bases et limites de la mesure de la puissance acoustique par la méthode calorimétrique	42
Annexe C — Bases de la méthode du wattmètre et de la méthode du diagramme d'impédance pour la mesurendement du transducteur	
Annexe D — Capteurs de vibrations pour des mesures de l'amplitude de déplacement sans contact	46
Annexe E — Bibliographie	48
Figures	50

ECNORIN.COM. Click to view the full PDF of IEC TR. Got 82: 1984

	Page
APPENDIX A — Measuring conditions	41
APPENDIX B - Basis of the calorimetric method of measuring the acoustic power and its limitations	43
APPENDIX C — Basis of the wattmeter method and of the impedance diagram method of measurement of transducer efficiency	
APPENDIX D - Vibrometers for non-contact measurements of displacement amplitude	47
Appendix E — Bibliography	48
Figures	50

Echo anto vientre fundo de la constante funda de la constante fund

COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

MESURES DES TRANSDUCTEURS MAGNÉTOSTRICTIFS ULTRASONIQUES

PRÉAMBULE

- 1) Les décisions ou accords officiels de la CEI en ce qui concerne les questions techniques, préparés par des Comités d'Etudes où sont représentés tous les Comités nationaux s'intéressant à ces questions, expriment dans la plus grande mesure possible un accord international sur les sujets examinés.
- 2) Ces décisions constituent des recommandations internationales et sont agréées comme telles par les Comités nationaux.
- 3) Dans le but d'encourager l'unification internationale, la CEI exprime le vœu que tous les Comités nationaux adoptent dans leurs règles nationales le texte de la recommandation de la CEI, dans la mesure où les conditions nationales le permettent. Toute divergence entre la recommandation de la CEI et la règle nationale correspondante doit, dans la mesure du possible, être indiquée en termes clairs dans cette dernière.

PRÉFACE

Le présent rapport a été établi par le Sous-Comité 29D: Ultrasons, du Comité d'Etudes n° 29 de la CEI: Electroacoustique.

Des projets furent discutés lors des réunions tenues à Stresa en 1969, à Londres en 1971, à Oslo en 1972, à Moscou en 1974, à Gaithersburg en 1976, à Budapest en 1977, à Stockholm en 1979 et à Sydney en 1980. A la suite de cette dernière réunion, un projet, document 29D(Bureau Central)18, fut soumis à l'approbation des Comités nationaux suivant la Règle des Six Mois en février 1982.

Les Comités nationaux des pays ci-après se sont prononcés explicitement en faveur de la publication:

Afrique du Sud (République d')

Allemagne

Australie

Autriche

Belgique

Chine

Italie

Japon

Pays-Bas

Roumanie

Royaume-Uni

Suède

Danemark Union des Républiques Espagne Socialistes Soviétiques

Etats-Unis d'Amérique

INTERNATIONAL ELECTROTECHNICAL COMMISSION

MEASUREMENTS OF ULTRASONIC MAGNETOSTRICTIVE TRANSDUCERS

FOREWORD

- 1) The formal decisions or agreements of the IEC on technical matters, prepared by Technical Committees on which all the National Committees having a special interest therein are represented, express, as nearly as possible, an international consensus of opinion on the subjects dealt with.
- 2) They have the form of recommendations for international use and they are accepted by the National Committees in that sense.
- 3) In order to promote international unification, the IEC expresses the wish that all National Committees should adopt the text of the IEC recommendation for their national rules in so far as national conditions will permit. Any divergence between the IEC recommendation and the corresponding national rules should, as far as possible, be clearly indicated in the latter.

PREFACE

This report has been prepared by Sub-Committee 29D: Ultrasonics, of IEC Technical Committee No. 29: Electroacoustics.

Drafts were discussed at meetings held in Stresa in 1969, in London in 1971, in Oslo in 1972, in Moscow in 1974, in Gaithersburg in 1976, in Budapest in 1977, in Stockholm in 1979 and in Sydney in 1980. As a result of this latter meeting, a draft, Document 29D(Central Office)18, was submitted to the National Committees for approval under the Six Months' Rule in February 1982.

The National Committees of the following countries voted explicitly in favour of publication:

Australia
Austria
Belgium
China
Denmark
Germany
Italy

Japan Netherlands Romania

South Africa (Republic of)

Spain Sweden Union of Soviet

Socialist Republics

United Kingdom

United States of America

MESURES DES TRANSDUCTEURS MAGNÉTOSTRICTIFS ULTRASONIQUES

LISTE DES SYMBOLES

= puissance électrique d'entrée = tension d'excitation du transducteur = courant d'excitation du trans- I_{T} ducteur = déphasage entre $V_{\rm T}$ et $I_{\rm T}$ = puissance acoustique de sortie du transducteur $P_{\rm d}$ = puissance de perte magnétique du transducteur $P_{\rm ml}$ = puissance de perte mécanique interne du transducteur = puissance mécanique totale fournie $P_{\rm m}$ par le transducteur = courant de polarisation I_{Tp} = résistance de l'enroulement du transducteur = rendement électroacoustique $\eta_{\rm em}$ = rendement électromécanique = rendement mécanique-acoustique = amplitude de déplacement vibra-

= fréquence de résonance du trans-= fréquence de résonance série du transducteur = fréquence d'antirésonance du trans f_{a} ducteur = largeur de bande Δf = facteur de qualité mécanique = impédance électrique du transducteur composante réelle de l'impédance électrique = composante imaginaire de l'impédance électrique Z_{res} = valeur de l'impédance électrique à la fréquence de résonance = impédance électrique bloquée du transducteur = résistance connectée en série avec $R_{\rm s}$

le transducteur

= fréquence

MEASUREMENTS OF ULTRASONIC MAGNETOSTRICTIVE TRANSDUCERS

LIST OF SYMBOLS

= frequency = electrical input power = frequency of resonance of the = driving voltage of transducer = series resonance frequency of the I_{T} = driving current of transducer $f_{\mathbf{r}}$ transducer = antiresonance frequency of the = phase shift between V_T and I_T f_{a} transducer $P_{\rm a}$ = acoustical output power of trans-= bandwith Δf = mechanical quality factor $P_{\rm d}$ = magnetic loss power of transducer Q = electrical impedance of the trans-= internal mechanical loss power of ducer R = real component of the electrical transducer impedance $P_{\rm m}$ = total mechanical power delivered imaginary component of the elecby the transducer trical impedance = polarizing current Z_{res} = value of electrical impedance at = resistance of winding of the transthe frequency of resonance = blocked electrical impedance of the = electroacoustical efficiency $\eta_{\rm em}$ = electromechanical efficiency transducer η_{ma} = mechanoacoustical efficiency = resistor connected in series with $R_{\rm s}$ = vibrational displacement amplitude the transducer

SECTION UN - INTRODUCTION

1. Domaine d'application

Le présent rapport est applicable aux transducteurs magnétostrictifs, qu'ils soient de type métallique laminé ou de type ferrite, conçus pour émettre une puissance acoustique sonique ou ultrasonique, dans les milieux liquides ou solides; ne transmettant pas d'information, ils servent à différents traitements ultrasoniques, tels que usinage, soudage, action chimique, etc., en fonctionnant à la fréquence de résonance avec une alimentation par générateurs de puissance.

Ce rapport s'applique aussi, moyennant certaines modifications, à des transducteurs spéciaux, comme ceux qui sont conçus pour utilisation avec des métaux fondus, etc.

Dans ce rapport, on considère uniquement les transducteurs ayant une seule fréquence de résonance en fonctionnement.

2. Objet

Ce rapport spécifie les caractéristiques fondamentales et les méthodes recommandées, destinées aux mesures de l'évaluation des performances des transducteurs.

3. Classification des transducteurs

Dans ce rapport, les transducteurs à mesurer sont classés en deux catégories:

Catégorie P (émetteurs ultrasoniques)

Transducteurs conçus pour rayonner une puissance acoustique dans un liquide. Le diaphragme métallique, ou pavillon, fixé à l'extrémité rayonnante du transducteur pour assurer une meilleure adaptation au milieu, peut être considéré comme faisant partie du transducteur.

Catégorie A (appareillage ultrasonique)

Transducteurs, avec ou sans transformateurs mécaniques, destinés à augmenter l'amplitude de vibration ou, par ailleurs, à supporter des conditions de charge, conçus pour l'usinage, le soudage ultrasonique, etc. L'outil ou l'embout fixé à l'extrémité de sortie du transformateur peut être considéré comme faisant partie du transducteur à mesurer.

4. Liste des caractéristiques fondamentales

Le tableau I spécifie les caractéristiques fondamentales à mesurer avec les méthodes correspondantes et l'indication de la catégorie du transducteur.

SECTION ONE - INTRODUCTION

1. Scope

This report is applicable to magnetostrictive transducers, of both laminated metal and ferrite types, designed for producing sonic or ultrasonic acoustic power in liquid or solid media, and for different kinds of ultrasonic processing such as cutting, welding, chemical processing, etc. Transducers for information carrying signals are excluded. The transducers, which may be sonic or ultrasonic, operate at the resonance frequency and are supplied from electric power generators.

It also applies with some modifications to special transducers, for example those designed for application to molten metals, etc.

In this report only transducers with a single working frequency of resonance are considered.

2. Object

This report specifies the essential characteristics and the preferred methods of measurement for evaluating the performance of transducers.

3. Classification of transducers

In this report the transducers to be measured are classified in two categories:

Category P (ultrasonic transmitters)

Transducers, designed for radiating acoustic power in liquid. The metal diaphragm or piston, attached to the radiating end of the transducer for better matching to the medium, can be regarded as a part of the transducer itself.

Category A (ultrasonic instruments)

Transducers with or without mechanical transformers to increase the vibration amplitude or otherwise meet load requirements, designed for ultrasonic cutting, welding, etc. The tool or tip attached to the output end of the transformer can be regarded as part of the transducer to be measured.

4. List of essential characteristics

Table I specifies the essential characteristics to be measured together with the corresponding methods and with the indication of transducer category.

TABLEAU I

Caractéristiques	Unités	Catégorie du transducteur		Méthodes de mesures		_Article/
1	Onites			Primaire	Secondaire	Paragraphe
Puissance électrique d'entrée P _e	watt	P	A	Wattmètre		11.1
		P	A		Impédance	11.2
		P	A		Trois voltmètres	11.3
Rendement électroacoustique η _{ea}	%	P		Wattmètre calorimétrique		12.1
			A	Flux de puissance		12.2
		P	A		Wattmètre	12.3
		P	A		Diagramme d'impédance (admittance)	12.4
Amplitude de déplacement vibratoire ξ	micromètre		A	Microscope optique	C	13.1
		P	A	Of	Capteur de vibrations	13.2
Fréquence de résonance $f_{ m res}$	kilohertz	P	A	Puissance maximale		14.1
			A	full .	Amplitude maximale	14.2
		P	Nik		Impédance caractéristique	14.3
Largeur de bande Δf Facteur de qualité mécanique Q	kilohertz	P V	A	Caractéristique en fréquence de la puissance d'entrée		15.1
	-ON.C.		A		Caractéristique en fréquence de l'amplitude	15.2
Impédance électrique à la fréquence de résonance Zres	ohm	P	A	Voltmètre et wattmètre		16.1
		P	A		Pont	16.2
		P	A		Voltmètre et phasemètre	16.3
		P	A		Trois voltmètres	16.4
Impédance électrique bloquée (amortie)	(amortie)	P	Α	Voltmètre et wattmètre		17
Z_{d}		P	A		Pont	
		P	A		Voltmètre et phasemètre	
		P	A		Trois voltmètres	1

TABLE I

Characteristic	W.T. *A.	Transducer category		Measurin	g methods	Clause/ Sub-clause
Characteristic	Units			Primary	Secondary	
Input electrical	watt	P	A	Wattmeter		11.1
power $P_{\rm e}$		P	A		Impedance	11.2
		P	A		Three voltmeters	11.3
Electroacoustical efficiency η _{ea}	%	P		Calorimetric- wattmeter		12.1
			A	Power flow		3 12.2
		P	A		Wattmeter	12.3
		P	A		Impedance (admittance) diagram	12.4
Vibrational displacement amplitude ξ	micrometer		A	Optical microscope	C	13.1
		P	A	20	Vibrometer	13.2
Frequency of resonance f_{res}	kilohertz	P	A	Maximum power		14.1
			A	EUIT	Maximum amplitude	14.2
		P	enk		Impedance characteristic	14.3
Bandwidth Δf Mechanical quality factor Q	kilohertz	PO	A	Input power frequency characteristic		15.1
	COM. Cil		A		Amplitude frequency characteristic	15.2
Electrical impedance at the frequency of resonance Z _{res}	ohm	Р	A	Voltmeter and wattmeter		16.1
		P	A		Bridge	16.2
		P	A		Voltmeter and phasemeter	16.3
		P	A		Three voltmeters	16.4
Blocked (damped) electrical impedance	ohm	P	A	Voltmeter and wattmeter		17
$Z_{ m d}$		P	A		Bridge	
		P	A		Voltmeter and phasemeter	
		P	A		Three voltmeters	

5. Définitions et symboles des caractéristiques

5.1 Puissance électrique d'entrée Pe

La puissance active alternative P_e consommée par le transducteur à partir du générateur de puissance peut être exprimée par:

- 14 -

$$P_{\rm e} = V_{\rm T} I_{\rm T} \cos \varphi$$

où: $V_{\rm T}$ est la tension d'excitation aux bornes du transducteur, $I_{\rm T}$ le courant parcourant son enroulement et φ le déphasage entre cette tension et ce courant.

Note. — Sauf spécification contraire, relative aux tensions, courants et pressions soniques, variant tous de façon sinusoïdale, les symboles utilisés sous-entendent les valeurs efficaces.

La puissance électrique totale d'entrée $P_{\rm e}$ peut être exprimée en la décomposant en plusieurs parties:

$$P_{\rm e} = P_{\rm d} + P_{\rm ml} + P_{\rm a} = P_{\rm d} + P_{\rm m},$$

$$P_{\rm m} = P_{\rm ml} + P_{\rm a}$$

où P_a est la puissance acoustique de sortie, P_d la puissance de perte magnétique due à l'hystérésis magnétique et aux courants de Foucault, P_{ml} la puissance de perte mécanique interne et P_m la puissance mécanique totale fournie par le transducteur.

Les transducteurs, polarisés par courant continu ou par courant alternatif basse fréquence I_{Tp} , absorbent, en plus de la puissance P_{e} , la puissance due au courant de polarisation P_{ep} :

$$P_{\rm ep} = I_{\rm Tp}^2 \cdot R_{\rm w}$$

où $R_{\rm w}$ est la résistance de l'enroulement.

5.2 Rendement électroacoustique du transducteur η_{ea}

Rapport, exprimé en pourcentage, de la puissance acoustique de sortie P_a à la puissance électrique d'entrée P_e :

$$\eta_{\rm ea} = \frac{P_{\rm a}}{P_{\rm e}} \cdot 100\%$$

La valeur de η_{ea} peut être exprimée par:

$$\eta_{\rm ea} = \eta_{\rm em} \cdot \eta_{\rm ma}$$

où $\eta_{\rm em}$ est le rendement électromécanique du transducteur chargé et $\eta_{\rm ma}$ son rendement mécanique-acoustique.

Rendement électromécanique η_{em}

Rapport, exprimé en pourcentage, de la puissance mécanique totale $P_{\rm m}$ à la puissance électrique d'entrée $P_{\rm e}$:

$$\eta_{\rm em} = \frac{P_{\rm m}}{P_{\rm e}} \cdot 100\%$$

Rendement mécanique-acoustique η_{ma}

Rapport, exprimé en pourcentage, de la puissance acoustique de sortie P_a à la puissance mécanique totale P_m : P_a P_a

$$\eta_{\text{ma}} = \frac{P_{\text{a}}}{P_{\text{m}}} \cdot 100\% = \frac{P_{\text{a}}}{P_{\text{a}} + P_{\text{ml}}} \cdot 100\%$$

5. Definitions of characteristics and their symbols

5.1 Input electrical power P_e

The active a.c. power P_e consumed by the transducer from the power generator may be expressed as:

$$P_{\rm e} = V_{\rm T} I_{\rm T} \cos \varphi$$

where: V_T is the driving voltage at the transducer terminals, I_T the current flowing through its winding, and φ is the phase shift between this voltage and this current.

Note. — For all sinusoidal varying voltages, currents and sound pressures, the relevant symbols denote the root mean square values, unless otherwise specified.

The total electrical input power $P_{\rm e}$ may be expressed as consisting of several parts:

$$P_{e} = P_{d} + P_{ml} + P_{a} = P_{d} + P_{m},$$

$$P_{m} = P_{ml} + P_{a}$$

where P_a is the acoustical output power, P_d is the magnetic loss power due to magnetic hysteresis and eddy currents, P_{ml} is the internal mechanical loss power and P_m is the total mechanical power delivered by the transducer.

Transducers, polarized with direct current or low-frequency alternating current I_{Tp} consume the polarizing current power P_{ep} in addition to the a.c. power P_{e} :

$$P_{\rm ep} = I_{\rm Tp}^2 \cdot R_{\rm w}$$

where $R_{\rm w}$ is the resistance of the winding.

5.2 Electroacoustical efficiency of the transducer η_{ea}

The ratio, expressed as a percentage, of the acoustical output power P_a to the electrical input power P_e :

$$\eta_{\rm ea} = \frac{P_{\rm a}}{P_{\rm e}} \cdot 100\%$$

The value of η_{ea} may be expressed as

$$\eta_{\rm ea} = \eta_{\rm em} \cdot \eta_{\rm ma}$$

where $\eta_{\rm em}$ is the electromechanical efficiency of the loaded transducer and $\eta_{\rm ma}$ is its mechanoacoustical efficiency.

Electromechanical efficiency η_{em}

The ratio, expressed as a percentage, of the total mechanical power $P_{\rm m}$ to the electrical input power $P_{\rm e}$:

$$\eta_{\rm em} = \frac{P_{\rm m}}{P_{\rm e}} \cdot 100\%$$

Mechanoacoustical efficiency η_{ma}

The ratio, expressed as a percentage, of acoustical output power P_a to the total mechanical power P_m : $P_a \qquad P_a$

$$\eta_{\text{ma}} = \frac{P_{\text{a}}}{P_{\text{m}}} \cdot 100\% = \frac{P_{\text{a}}}{P_{\text{a}} + P_{\text{ml}}} \cdot 100\%$$

5.3 Amplitude de déplacement vibratoire ξ

Amplitude des vibrations mécaniques de la pointe de l'appareil ultrasonique, c'est-à-dire de l'extrémité de sortie du transformateur mécanique fixé au transducteur.

5.4 Fréquence de résonance fres

Fréquence correspondant à la valeur maximale de la puissance électrique d'entrée P_e ou à celle de l'amplitude de déplacement vibratoire ξ (amplitude de vitesse vibratoire $\xi \omega$).

 $f_{\rm res}$ dépend de l'impédance électrique de sortie $Z_{\rm g\,out}$ du générateur de puissance d'excitation. Lorsque $Z_{\rm g\,out}$ est très petite par rapport à l'impédance électrique du transducteur Z et que la tension d'excitation est maintenue constante lorsque la fréquence varie ($V_{\rm T}={\rm constante}$), $f_{\rm res}$ coïncide en première approximation avec la fréquence d'antirésonance $f_{\rm a}$. Lorsque $Z_{\rm g\,out}$ est très grande par rapport à l'impédance électrique du transducteur et que le courant d'excitation est maintenu constant lorsque la fréquence varie ($I_{\rm T}={\rm constante}$), $f_{\rm res}$ coïncide en première approximation avec la fréquence de résonance série $f_{\rm r}$. Dans les conditions réelles, la fréquence de résonance $f_{\rm res}$ est généralement comprise entre $f_{\rm r}$ et $f_{\rm a}$.

Fréquence de résonance f_r

Fréquence de résonance dans le cas où le transducteur est alimenté par un générateur électrique à courant constant (l'impédance de sortie $Z_{g \text{ out}}$ étant très grande par rapport à Z); elle est pratiquement égale à la fréquence correspondant au maximum de l'impédance électrique du transducteur ou au maximum de l'amplitude de la vitesse vibratoire et au maximum de la puissance d'entrée à courant d'excitation constant

Fréquence d'antirésonance fa

Fréquence de résonance dans le cas où le transducteur est alimenté par un générateur électrique à tension constante (l'impédance de sortie $Z_{g \text{ out}}$ est très petite par rapport à Z); elle est pratiquement égale à la fréquence correspondant au minimum de l'impédance électrique du transducteur ou au maximum de l'amplitude de la vitesse vibratoire et au maximum de la puissance d'entrée à courant d'excitation constant.

5.5 Largeur de bande Δf

Intervalle de fréquence autour de la résonance situé dans la courbe de réponse en fréquence du transducteur, limité, de part et d'autre de $f_{\rm res}$, par les fréquences correspondant aux valeurs de $P_{\rm e}$ égales à la moitié de sa valeur maximale ou aux valeurs de ξ égales à 0,7 fois sa valeur maximale.

Courbe de réponse en fréquence (à tension constante)

On trace les valeurs de P_e ou ξ en fonction de la fréquence pour une valeur constante de V_T . Il convient que la bande de fréquences de la courbe soit élargie aussi loin qu'il est nécessaire pour caractériser convenablement le transducteur dans ses conditions de charge.

Courbe de réponse en fréquence (à courant constant)

On trace les valeurs de P_e ou ξ en fonction de la fréquence pour une valeur constante de I_T . Il convient que la bande de fréquence de la courbe soit élargie aussi loin qu'il est nécessaire pour caractériser convenablement le transducteur dans ses conditions de charge.

Le facteur de qualité mécanique Q d'un transducteur mesure ses pertes mécaniques; il est défini par:

$$Q = \frac{f_{\text{res}}}{\Delta f}$$

5.3 Vibrational displacement amplitude ξ

The amplitude of mechanical vibrations of the tip of the ultrasonic instrument, i.e. of the output end of the mechanical transformer attached to the transducer.

5.4 Frequency of resonance f_{res}

The frequency, corresponding to the maximum value of the electrical input power P_e or to the maximum of the vibrational displacement amplitude ξ (vibrational velocity amplitude $\xi\omega$).

 $f_{\rm res}$ depends on the electric output impedance $Z_{\rm g\,out}$ of the driving power generator. When $Z_{\rm g\,out}$ is very low in comparison with the electrical impedance Z of the transducer and the driving voltage is maintained constant with varying frequency ($V_{\rm T}={\rm constant}$), $f_{\rm res}$ approximately coincides with the anti-resonance frequency $f_{\rm a}$. When $Z_{\rm g\,out}$ is very high in comparison with the electrical impedance of the transducer and the driving current is maintained constant with varying frequency ($I_{\rm T}={\rm constant}$), $f_{\rm res}$ approximately coincides with the series resonance frequency $f_{\rm r}$. In actual conditions the frequency of resonance $f_{\rm res}$ is usually between $f_{\rm r}$ and $f_{\rm a}$.

Resonance frequency $f_{\rm r}$

The frequency of resonance for the case where the transducer is excited by a constant current electrical generator (output impedance $Z_{g \text{ out}}$ is very large compared to Z). It is approximately equal to the frequency corresponding to the maximum electrical impedance of the transducer or to the maximum vibration velocity amplitude and maximum input power at constant driving current.

Anti-resonance frequency f_a

The frequency of resonance for the case where the transducer is excited by a constant voltage electrical generator (output impedance $Z_{g \, \text{out}}$ is very small compared to Z). It is approximately equal to the frequency, corresponding to the minimum electrical impedance of the transducer or to the maximum vibrational velocity amplitude and maximum input power at constant driving voltage.

5.5 Bandwith Δf

The frequency interval about the resonance in the frequency response curve of the transducer, limited at both sides of $f_{\rm res}$ by the frequencies corresponding either to magnitudes of $P_{\rm e}$ equal to 0.5 of its maximum value or to magnitudes of ξ equal to 0.7 of its maximum value.

Frequency response curve (at constant voltage)

The values of P_e or ξ are plotted versus frequency with a constant value of V_T . The frequency range of the curve should be extended as far as necessary to describe properly the transducer under its loading conditions.

Frequency response curve (at constant current)

The values of P_e or ξ are plotted versus frequency with a constant value of I_T . The frequency range of the curve should be extended as far as necessary to describe properly the transducer under its loading conditions.

The mechanical quality factor Q of a transducer is a measure of its mechanical losses. It is defined as:

$$Q = \frac{f_{\text{res}}}{\Delta f}$$

Impédance électrique du transducteur Z

Rapport de la tension alternative d'alimentation à ses bornes au courant alternatif correspondant parcourant son enroulement. On peut l'exprimer sous la forme:

$$Z = |Z| e^{j\varphi}$$

où la grandeur de l'impédance du transducteur est:

$$|Z| = \frac{V_{\rm T}}{I_{\rm T}}$$

et φ est l'angle de déphasage entre la tension d'alimentation et le courant. L'autre forme d'expression de l'impédance est Z = R + jXavec R et X désignant respectivement ses composantes réelle et imaginaire.

Les relations suivantes s'en déduisent: $Z^2 = R^2 + X^2,$ $\operatorname{tg} \varphi = \frac{X}{R}$ Impédance électric

$$Z = R + jX$$

$$Z^2 = R^2 + X^2,$$

$$tg \varphi = \frac{X}{R}$$

Impédance électrique à la résonance Z_{res}

Valeur de l'impédance électrique du transducteur à sa fréquence de résonance.

5.7 Impédance électrique bloquée (amortie) du transducteur Z_d

Impédance électrique du transducteur en absence de vibrations mécaniques.

SECTION DEUX — CONDITIONS DE MESURE

6. Généralités

Suivant un principe général, les mesures des caractéristiques d'un transducteur doivent être effectuées dans certaines conditions, dont la liste est donnée ci-dessous; celles-ci se rapprochent au mieux des conditions réelles de fonctionnement des dispositifs ultrasoniques:

- a) température ambiante du liquide ou de l'air;
- b) refroidissement;
- c) support du transducteur;
- d) conditions sur les surfaces latérales et arrière (air ou matériau poreux);
- e) conditions de polarisation;
- f) conditions de charge.

Pour les transducteurs de catégorie A, on peut effectuer les mesures des caractéristiques telles que P_e , ξ , f_{res} , Δf , Q, Z_{res} et Z_d , sans charge extérieure, à condition que l'impédance de charge externe soit normalement petite par rapport à l'impédance mécanique interne du transducteur.

5.6 Electrical impedance of the transducer Z

The ratio of the a.c. driving voltage on its terminals to the corresponding a.c. current, flowing through its winding. It may be expressed in the form:

$$Z = |Z| e^{j\varphi}$$

where the magnitude of the transducer impedance is

$$|Z| = \frac{V_{\rm T}}{I_{\rm T}}$$

and φ is the phase shift angle between the driving voltage and the current. The other form for the impedance is

$$Z = R + iX$$

where R is the real and X the imaginary component.

The following relations then hold:

$$Z^2 = R^2 + X^2,$$

$$\tan \varphi = \frac{X}{R}$$

Electrical impedance at resonance Z_{res}

The value of the electrical impedance of the transducer at its frequency of resonance.

5.7 Blocked (damped) electrical impedance of the transducer Z_d

The electrical impedance of the transducer in the absence of mechanical vibrations.

SECTION TWO — MEASURING CONDITIONS

6. General

As a general principle, the measurements of transducer characteristics should be performed under conditions, listed below, closely approximating the conditions of actual operation in ultrasonic devices:

- a) ambient temperature of liquid or air;
- b) cooling;
- c) transducer support;
- d) conditions on side and rear surfaces (air or porous material);
- e) polarization conditions;
- f) loading conditions.

Measurements of such characteristics as P_e , ξ , f_{res} , Δf , Q, Z_{res} and Z_d of A-category transducers may be performed without external load, if its external load impedance is normally low compared to the internal mechanical impedance of the transducer.

La mesure des rendements (voir article 12) devra être effectuée dans tous les cas avec l'impédance de charge convenable. Comme les transducteurs de catégorie A fonctionnent avec une charge variable, la charge avec laquelle le rendement est mesuré devra être décrite en détail

7. Paramètres opératoires

Au cours des mesures, les paramètres opératoires – tension d'alimentation alternative, puissance d'entrée – doivent reproduire les valeurs assignées correspondant aux conditions effectives de fonctionnement. Il n'est pas recommandé d'extrapoler les valeurs des paramètres relatives aux mesures effectuées à faible niveau au régime de fonctionnement opératoire à forte puissance. Les valeurs du niveau de puissance, de la tension d'alimentation, et autres paramètres, qui peuvent changer les résultats des mesures, doivent être représentées en regard des résultats de mesures (voir annexe A, article A1). Pendant les mesures, il convient de veiller à ne pas dépasser les limites de puissance et d'amplitude indiquées par le fabricant.

8. Charge acoustique liquide

L'eau doit être le type de liquide à employer pour les mesures des transducteurs de catégorie P (voir annexe A, article A2). Si le niveau optimal de liquide au-dessus de la surface rayonnante du transducteur est spécifié par le fabricant, les mesures doivent être effectuées avec ce niveau.

9. Préparation des mesures des transducteurs de catégorie P

9.1 Préparation du transducteur

Toutes les surfaces et les parties du transducteur, plongées dans l'eau pendant les mesures, doivent être soigneusement nettoyées avant immersion, de façon à les libérer de toute souillure et de graisse; cela doit être effectué de préférence par nettoyage ultrasonique.

Si l'on n'a pas spécifié de prescriptions spéciales quant à la position du transducteur en condition de fonctionnement, le transducteur doit être positionné durant les mesures de telle sorte que des bulles gazeuses ne puissent pas s'accumuler sur sa surface (voir annexe A, article A3).

9.2 Préparation de l'equ

L'eau doit être dégazée par chauffage à 70 °C puis soumise à l'action des ultrasons pendant une durée minimale de 2 h sans chauffage additionnel; l'intensité ultrasonore doit être suffisante pour produire la cavitation (voir annexe A, article A3); enfin, on terminera par un refroidissement à la température correspondant aux conditions de fonctionnement.

10. Prescriptions générales relatives à l'appareillage

La fréquence et la gamme dynamique du générateur de puissance d'attaque (et de l'amplificateur de puissance en cas d'utilisation) doivent être appropriées au transducteur à mesurer; il en est de même pour tous les appareils de mesures. L'accord du générateur doit être précis, car, dans un intervalle de 20 kHz, des écarts de 10 Hz sont importants pour des transducteurs ayant un facteur de qualité mécanique élevé.

La tension de sortie du générateur (ou de l'amplificateur en cas d'utilisation) doit être réglable de telle façon que les mesures puissent être effectuées à n'importe quel niveau de puissance et avec n'importe quelle valeur de la tension d'attaque.

Measurement of the efficiencies (see Clause 12) should in every case be performed with the appropriate load impedance. Since A-category transducers typically operate with a variable load, the load under which the efficiency is measured should be described in detail.

7. Operating parameters

During the measurements the operating parameters such as the a.c. driving voltage or the input power shall be in accordance with rated values corresponding to actual operating conditions. Extrapolation of parameter values obtained from measurements at low power level to operating conditions at high power is not recommended. The values of power level, driving voltage and other parameters which may affect the results of measurements shall be shown together with the measured results (see Appendix A, Clause A1). During the measurement care shall be taken not to exceed the power and amplitude limits as given by the manufacturer.

8. Acoustical liquid load

The liquid for measurements of P-category transducers shall be water (see Appendix A, Clause A2). If the optimum liquid level above the radiating surface of the transducer is specified by the manufacturer, measurements shall be performed at that level.

9. Preparation for measurement of P-category transducers

9.1 Preparation of the transducer

Prior to immersion, all the transducer surfaces and parts which will be immersed in water during measurements shall be carefully cleaned so as to be free from contamination and grease, preferably by ultrasonic cleaning.

If no special requirements for the position of the transducer under working conditions are specified, the transducer shall be positioned during measurements in such a way that gas bubbles cannot accumulate on its surface (see Appendix A, Clause A3).

9.2 Preparation of water

The water shall be degassed by heating up to 70 °C and then ultrasonically activated for at least 2 h without additional heating at an ultrasound intensity sufficient to produce cavitation (see Appendix A, Clause A3). It is then cooled to the working condition temperature.

10. General requirements for the instrumentation

The frequency and the dynamic range of the driving power generator (and power amplifier, when used) as well as of all the measuring instruments, shall be adequate for the transducer to be measured. The tuning of the generator shall be fine, since over a range of 20 kHz changes of 10 Hz are important for transducers with a high mechanical quality factor.

The output voltage of the generator (or amplifier when used) shall be adjustable so that the measurements may be performed at any given magnitude of the driving voltage or power level.

Lorsqu'on procède aux mesures, il faut disposer de condensateurs et bobines d'inductance dans le cas de transducteurs magnétostrictifs à polarisation par courant continu; on évite ainsi de faire passer un courant continu dans l'amplificateur et on découple la source de courant continu de polarisation du circuit de courant alternatif.

SECTION TROIS - PROCESSUS DE MESURE

11. Puissance électrique d'entrée

11.1 Méthode du wattmètre

La méthode du wattmètre est la méthode primaire utilisée pour mesurer la puissance électrique alternative de n'importe quelle catégorie de transducteur ultrasonique. Dans cette méthode, la valeur de $P_{\rm e}$ est déterminée directement par lecture de la graduation d'un wattmètre. Les prescriptions suivantes s'appliquent à l'appareil: il doit permettre d'effectuer les mesures non seulement avec une tension et un courant d'attaque sinusofdaux, mais aussi avec une tension et un courant présentant une certaine distorsion; il devra être à faible inertie, avec une constante de temps inférieure à 1 s. L'erreur de mesure devra être inférieure à $\pm 5\%$, quel que soit le type de charge, y compris des charges correspondant à de faibles facteurs de puissance (faibles valeurs de $\cos \varphi$).

11.2 Méthode d'impédance

La méthode d'impédance est une méthode secondaire; elle est employée si on ne possède pas de wattmètre ayant les propriétés requises et si les conditions de fonctionnement sont suffisamment linéaires, c'est-à-dire si les distorsions de la tension et du courant du transducteur, par rapport à une forme d'onde sinusoïdale, sont négligeables. Avec cette méthode, la valeur de P_e est calculée à partir des formules suivantes:

$$P_{e} = V_{T} I_{T} \cos \varphi = \frac{V_{T}^{2}}{|Z|} \cos \varphi$$

$$P_{e} = I_{T}^{2} R = \frac{V_{T}^{2}}{R^{2} + X^{2}} R$$

Les composantes de l'impédance électrique du transducteur |Z|, R et X, définies au paragraphe 5.6, sont mesurées au moyen d'une des méthodes bien connues (voir article 16).

 $V_{\rm T}$ est lue sur la graduation d'un voltmètre électronique, en mesurant la tension alternative aux bornes du transducteur, et $I_{\rm T}$ est lu sur la graduation d'un ampèremètre haute fréquence, en mesurant le courant alternatif parcourant l'enroulement du transducteur. La valeur de $I_{\rm T}$ peut également être déterminée par $V_{\rm R}/R_{\rm s}$, $V_{\rm R}$ étant la tension à travers une petite résistance non réactive égale à $R_{\rm s}$ connectée en série avec le transducteur. Les appareils doivent satisfaire aux conditions suivantes relatives aux erreurs de mesures de $V_{\rm T}$, $I_{\rm T}$ et $V_{\rm R}$ qui ne doivent pas dépasser $\pm 1\%$ et à la valeur de $R_{\rm s}$ qui doit être connue avec une erreur inférieure à 1%.

11.3 Méthode des trois voltmètres

La méthode des trois voltmètres est une méthode secondaire, utilisée dans les mêmes conditions que la méthode d'impédance (voir paragraphe 11.2). La valeur de $P_{\rm e}$, suivant cette méthode, est calculée par la formule:

$$P_{\rm e} = \frac{V_{\rm G}^2 - V_{\rm R}^2 - V_{\rm T}^2}{2 R_{\rm s}}$$

When performing measurements, capacitors and inductors are required for magnetostrictive transducers with direct current polarization in order to prevent the d.c. current from flowing into the amplifier and in order to decouple the d.c. polarizing current source from the a.c. circuit.

SECTION THREE - MEASURING PROCEDURES

11. Electrical input power

11.1 Wattmeter method

The wattmeter method is the primary method used for measuring the electrical a.c. power of any type of ultrasonic transducer. In this method the magnitude of P_e is determined directly as the reading on the scale of a wattmeter. The following requirements apply to the instrument: it shall permit measurements to be performed not only with sinusoidal driving voltage and current, but also with distorted voltage or current waveform; it should be of low inertia, with a time constant of less than 1 s. The measuring error should be not more than $\pm 5\%$ under any kind of load, including low power factor loads (small values of $\cos \phi$).

11.2 Impedance method

The impedance method is a secondary method and it is used if a wattmeter having the required properties is not available and the operating conditions are sufficiently linear, i.e. the distortions of sinusoidal waveform of transducer voltage and current are negligible. The magnitude of $P_{\rm e}$ is calculated in this method according to one of the formulae:

$$P_{e} = V_{T} I_{T} \cos \varphi = \frac{V_{T}^{2}}{|Z|} \cos \varphi$$

$$P_{e} = I_{T}^{2} R = \frac{V_{T}^{2}}{R^{2} + X^{2}} R$$

The components of the electrical impedance of the transducer |Z|, R and X defined in Subclause 5.6, are measured by one of the well-known methods (see Clause 16).

 $V_{\rm T}$ is the reading on the scale of an electronic voltmeter measuring the a.c. voltage on the transducer terminals, and $I_{\rm T}$ is the reading on the scale of the high frequency amperemeter measuring the a.c. current in the transducer winding. The magnitude of $I_{\rm T}$ may also be determined as $V_{\rm R}/R_{\rm s}$, where $V_{\rm R}$ is the voltage across a small non-reactive resistor of magnitude $R_{\rm s}$ connected in series with the transducer. The instruments shall satisfy the following requirements: errors in measurement of $V_{\rm T}$, $I_{\rm T}$ and $V_{\rm R}$ shall be not more than $\pm 1\%$ and the magnitude of $R_{\rm s}$ shall be known with an error of less than 1%.

11.3 Three voltmeter method

The three voltmeter method is a secondary method, used under the same conditions as the impedance method (see Sub-clause 11.2). The magnitude of P_e is calculated in this method according to the formula:

$$P_{\rm e} = \frac{V_{\rm G}^2 - V_{\rm R}^2 - V_{\rm T}^2}{2 R_{\rm s}}$$

où $V_{\rm T}$ et $V_{\rm R}$ sont, respectivement, les tensions alternatives à travers le transducteur et la résistance égale à $R_{\rm s}$, connectée en série avec le transducteur, et $V_{\rm G}$ est la tension somme. Le circuit de principe de cette méthode est donné à la figure 1, page 50.

Dans l'exécution de la mesure, il est recommandé d'utiliser un système de commutation de façon à effectuer toutes les mesures de tension avec un seul et même appareil avec une erreur inférieure à $\pm 2\%$.

Dans la perspective d'une plus grande précision de la méthode, la valeur de la résistance devra être sensiblement égale au module de l'impédance du transducteur Z et être connue avec une erreur inférieure à 1%.

- Notes 1. L'impédance de charge du générateur d'alimentation (amplificateur) est maintenant égale à $R_s + Z$. Il convient que l'impédance de sortie du générateur soit adaptée à cette nouvelle impédance de charge.
 - 2. La puissance dissipée par la résistance R_s peut être du même ordre de grandeur que la puissance consommée par le transducteur. Le générateur devra être capable de fournir cette puissance additionnelle, de même que la résistance devra pouvoir permettre d'ajuster la puissance adéquate.
 - 3. Dans le processus de mesure, il est nécessaire d'assurer l'interchangeabilité de Zet R_s au moyen d'un système de commutation, pour satisfaire aux conditions de mise à la masse de l'appareillage de mesure de tension. Si le transducteur nécessite aussi une mise à la masse, la méthode n'est pas applicable.

12. Rendement électroacoustique

12.1 Méthode du wattmètre calorimétrique

La méthode du wattmètre calorimétrique est la méthode primaire pour la mesure du rendement électroacoustique des transducteurs de catégorie P avec charge liquide. Le rendement électroacoustique η_{ea} est calculé directement par le rapport de la puissance acoustique P_a rayonnée dans le liquide, à la puissance électrique P_e (voir paragraphe 5.2).

La puissance acoustique rayonnée est mesurée par la méthode calorimétrique, la puissance électrique d'entrée au moyen d'un wattmètre (voir paragraphe 11.1). Lorsque les conditions de linéarité sont remplies, la valeur de $P_{\rm e}$ peut aussi être mesurée par la méthode d'impédance ou par la méthode des trois voltmètres (voir paragraphes 11.2 et 11.3).

Dans la méthode calorimétrique de mesure de la puissance acoustique, on utilise l'eau comme liquide de charge, avec les conditions définies dans la section un (voir article 8 et paragraphe 9.2). Le processus général de mesure est le suivant: on branche le transducteur et on mesure la différence de température $T_2 - T_1$ qui intervient dans la cuve pendant la durée de l'opération Δr (voir figure 2, page 50). La valeur de P_a est calculée par la formule:

$$P_{\rm a} = \frac{c \, m \, (T_2 - T_1)}{\Delta t}$$

où c est la chaleur spécifique de l'eau et m la masse d'eau.

On utilise un certain nombre de thermocouples (dix environ), habituellement cuivreconstantan, et un potentiomètre pour les mesures de température. Si la différence de température à mesurer dépasse 2°C, un thermomètre, gradué en 0,1°C ou avec un intervalle plus petit, peut être utilisé à la place des thermocouples.

Les conditions suivantes doivent être remplies pour garantir une précision raisonnable de la méthode (voir annexe B):

a) l'intervalle de temps Δt ne doit pas dépasser 20 s à 30 s (sa valeur optimale étant de l'ordre de 10 s);

where $V_{\rm T}$ and $V_{\rm R}$ are the a.c. voltages respectively across the transducer and across the resistor of magnitude $R_{\rm s}$, connected in series with the transducer, and $V_{\rm G}$ is their summed voltage. The basic circuit of the method is shown in Figure 1, page 50.

In measuring practice, a switching device is recommended in order to perform all the voltage measurements by means of one and the same instrument with an error of not more than $\pm 2\%$.

For greatest accuracy, the magnitude of the resistor should be approximately equal to the magnitude of the transducer impedance Z and known with an error of not more than 1%.

- Notes 1. The load impedance of the driving generator (amplifier) is now equal to $R_s + Z$. The output impedance of the generator should be matched to this new load impedance.
 - 2. The power dissipated by the resistor R_s may be of the same order of magnitude as the power consumed by the transducer. The generator should be able to provide this additional power, while the resistor should have the proper power handling capacity.
 - 3. In the measuring procedure the interchange of Z and R_s by means of a switching device is necessary because of the earthing conditions of the voltage measuring instrument. If the transducer also requires an earthed connection this method is not applicable.

12. Electroacoustical efficiency

12.1 Calorimetric-wattmeter method

The calorimetric-wattmeter method is the primary method for measurement of the electroacoustical efficiency of P-category transducers with liquid load. The electroacoustical efficiency $\eta_{\rm ea}$ is calculated directly as the ratio of acoustical power $P_{\rm a}$ radiated into the liquid to the electrical power $P_{\rm e}$ (see Sub-clause 5.2)

The radiated acoustical power is measured by the calorimetric method, and the electrical input power by means of a wattmeter (see Sub-clause 11.1). When the linearity conditions are fulfilled the magnitude of P_e may also be measured by the impedance method, or by the three voltmeter method (see Sub-clauses 11.2, 11.3).

In the calorimetric method of measuring acoustical power, water is used for the liquid load, meeting the requirements of Section One (see Clause 8 and Sub-clause 9.2). The general measuring procedure is as follows: the transducer is switched on and the temperature difference $T_2 - T_1$ arising in the tank during its operation time Δt is measured (see Figure 2, page 50). The magnitude of P_a is calculated according to the formula:

$$P_{\rm a} = \frac{c \, m \, (T_2 - T_1)}{\Delta t}$$

where c is the specific heat of water and m is the mass of the water.

A number of thermocouples (about ten), usually copper-constantan, and a potentiometer are used for temperature measurements. If the temperature difference to be measured exceeds 2 °C, a thermometer with scale divisions of 0.1 °C or smaller may be used instead of thermocouples.

The following conditions shall be fulfilled to ensure reasonable accuracy of the method (see Appendix B):

a) the time interval Δt shall not exceed 20 s to 30 s (its optimum value being about 10 s);

- b) la température T_1 , au moment du branchement du transducteur, ne devra pas différer de la température ambiante de plus de 3 °C à 5 °C;
- c) la méthode n'est pas applicable pour de très faibles valeurs de P_a, lorsque l'élévation de température de l'eau de la cuve, pendant les 20 s à 30 s de fonctionnement du transducteur, est inférieure à 1 °C.

Il convient de prendre d'autres précautions dans l'éventualité où l'échange de chaleur entre le liquide dans la cuve et les parois de la cuve ou le milieu extérieur pourrait influencer les résultats (voir annexe B).

L'erreur doit être inférieure à $0.2\,^{\circ}$ C en ce qui concerne les mesures de température et à $0.5\,^{\circ}$ s en ce qui concerne les mesures de temps. Les mesures étant effectuées avec une telle précision, et les conditions mentionnées ci-dessus étant remplies, l'erreur ne sera pas supérieure à $\pm 10\,^{\circ}$ 6 dans la méthode d'évaluation calorimétrique de la puissance acoustique, et à $15\,^{\circ}$ 6 dans celle du rendement électroacoustique.

12.2 Méthode du flux de puissance

La méthode du flux de puissance est la méthode primaire pour mesurer le rendement électroacoustique des transducteurs de catégorie A.

Le rendement électroacoustique est déterminé par une méthode analogue à celle du wattmètre calorimétrique (voir paragraphe 12.1); la seule différence réside dans la mesure de la puissance acoustique de sortie P_a . On mesure la valeur de P_a en intercalant une ligne de transmission mécanique entre le transducteur et la charge, c'est-à-dire un barreau métallique cylindrique de longueur égale à un multiple entier de la demi-longueur d'onde; on utilise alors la méthode de mesure de la puissance, décrite ci-dessous (voir annexe E: bibliographie [2] et [11]).

L'agencement de la mesure est représente sur la figure 3, page 51. On utilise des capteurs de vibrations étalonnés, dont la tension de sortie est proportionnelle au déplacement vibratoire axial dans la ligne de transmission. Les capteurs de vibrations peuvent être placés indépendamment des nœuds et des ventres. Des filtres F_1 et F_2 sont nécessaires pour avoir des fréquences de coupure identiques:

Pour les mesures dans la gamme non linéaire, on réalise une suppression totale des seconds harmoniques des signaux du flux de puissance, en choisissant $\frac{f_{\text{res}}}{2}$ comme fréquence de coupure des filtres, et $\lambda/6$ comme intervalle d entre les capteurs de vibrations: λ est la longueur d'onde dans la ligne de transmission. La valeur de P_a est alors calculée par la formule:

$$P_{\rm a} = \frac{5}{\sqrt{3}} \frac{Z_{\rm L} S_{\rm L} V_0}{\gamma_1 \gamma_2} \overline{V}_{\rm m}$$

où Z_L est l'impédance acoustique spécifique de la ligne de transmission, S_L l'aire de sa section droite, γ_1 et γ_2 les sensibilités des capteurs de vibrations, déterminées par leur tension de sortie divisée par la vitesse vibratoire, V_0 la tension de référence du multiplicateur électronique, déterminée par le produit de sa tension d'entrée divisée par sa tension de sortie:

$$V_0 = \frac{V_1' \cdot V_2'}{V_{\rm m}}$$

La tension de sortie $V_{\rm m}$ du filtre passe-bas F_3 est utilisée pour calculer la puissance acoustique totale $P_{\rm a}$. Pour obtenir une réponse extrêmement rapide de $\overline{V}_{\rm m}$ aux fluctuations du flux

- b) the temperature T_1 at the moment of switching on the transducer should not differ from the ambient temperature by more than 3°C to 5°C ;
- c) the method is not applicable in cases of very low P_a values, when the temperature rise in the water tank during 20 s to 30 s of transducer operation is less than 1 °C.

Other precautions should be taken to preclude the possibility that the heat exchange between the liquid in the tank and the tank walls or the surroundings may affect the results. (See Appendix B.)

The error in temperature measurements shall be not more than 0.2 °C and the error in time measurements shall be not more than 0.5 s. With such accuracy of measurement and all the above-mentioned conditions fulfilled, the error in the calorimetric method of evaluation of acoustical power will be not more than $\pm 10\%$, and that of the electroacoustical efficiency not more than 15%.

12.2 Power flow method

The power flow method is the primary method for measurement of the electroacoustical efficiency of A category transducers.

The electroacoustical efficiency is determined by a method similar to the calorimetric-wattmeter (see Sub-clause 12.1), the only difference being in the measurement of the acoustical output power P_a . The value of P_a is measured by introducing a mechanical transmission line, for example a cylindrical metal rod with a length equal to a multiple of a half wavelength, between the transducer and the load and by employing the method of power measurement described below (see Appendix E: Bibliography [2] and [11]).

The measurement arrangement is outlined in Figure 3, page 51. Calibrated vibrometers are used, whose output voltage is proportional to the axial vibrational displacement in the transmission line. The vibrometers may be positioned without regard to nodes and antinodes. Filters F_1 and F_2 are required to have identical cut-off frequencies.

For measurement in the non-linear range, a total suppression of second harmonic power flow signals is achieved by choosing $\frac{f_{\rm res}}{2}$ as the cut-off frequency for the filters and $\lambda/6$ as the distance d between the vibrometers, where λ is the wavelength in the transmission line. Then the magnitude of P_a is calculated according to the formula:

$$P_{\rm a} = \frac{5}{\sqrt{3}} \frac{Z_{\rm L} S_{\rm L} V_0}{\gamma_1 \gamma_2} \overline{V}_{\rm m}$$

where Z_L is the specific acoustic impedance of the transmission line, S_L is its cross-sectional area, γ_1 and γ_2 are the sensitivities of the vibrometers, determined as their output voltage divided by the vibrational velocity, V_0 is the reference voltage of the electronic multiplier, determined as the product of its input voltage divided by its output voltage:

$$V_0 = \frac{V_1 \cdot V_2'}{V_{\rm m}}$$

The output voltage $V_{\rm m}$ of the low pass filter F_3 is used for the calculation of the net acoustic power $P_{\rm a}$. In order to obtain an extremely quick response of $\overline{V}_{\rm m}$ to power flow fluctuations, it

de puissance, il est recommandé de réaliser F_3 en filtre passe-bas de type Bessel du quatrième ordre, avec une fréquence de coupure égale à $\frac{f_{\rm res}}{2}$.

12.3 Méthode du wattmètre

La méthode du wattmètre est la méthode secondaire de mesure du rendement électroacoustique des transducteurs des deux catégories P et A. Le rendement électroacoustique est déterminé par une méthode analogue à celle qui est décrite au paragraphe 12.1, avec une différence portant sur la mesure de la puissance acoustique P_a . Dans cette méthode, la valeur de P_a est calculée par la formule:

$$P_{\rm a} = (P_{\rm e \, res} - P_{\rm e \, res}') - (P_{\rm el} - P_{\rm el}')$$

où $P_{\rm e\,res}$ et $P'_{\rm e\,res}$ sont les valeurs de la puissance électrique d'entrée correspondant respectivement aux conditions avec charge et sans charge, mesurée à la fréquence de résonance pour la même vitesse vibratoire, égale à la valeur assignée et $P_{\rm el}$ et $P'_{\rm el}$ sont les valeurs de la puissance de pertes électriques «avec charge» et «sans charge». Les mesures de $P_{\rm e\,res}$ et $P'_{\rm e\,res}$ sont effectuées par l'une ou l'autre des méthodes usuelles (voir article $P'_{\rm e\,res}$). La mesure de l'amplitude de vibration est effectuée au moyen de tout capteur de vibrations sans contact (voir paragraphe 13.2) disposé sur l'extrémité arrière du transducteur.

Si V_{T0} et V'_{T0} sont les tensions du transducteur à la résonance correspondant aux puissances d'entrée $P_{e \text{ res}}$ et $P'_{e \text{ res}}$ (points A et A₁ de la figure 4, page 52), les valeurs de P_{el} et P'_{el} sont alors obtenues en traçant P_{e} en fonction de f, le transducteur étant alimenté par une tension égale à

$$\frac{f_{\text{res}}}{f} V_{\text{T0}}$$
 ou $\frac{f'_{\text{res}}}{f} V_{\text{T0}}$ respectivement.

On trace les lignes d'interpolation de P_e dans les domaines hors résonance, asymptotes aux courbes représentatives; les ordonnées de ces lignes correspondant aux fréquences de résonance donnent les valeurs de P_{el} (points C et C_1 de la figure 4).

Cette méthode est limitée par les conditions de forme sinusoïdale exigées pour la tension du transducteur et le déplacement de sa surface. Moyennant une erreur sur les mesures de puissance électrique inférieure à 5%, l'erreur sur l'évaluation de la puissance acoustique ne doit pas dépasser 10% et sur celle du rendement électroacoustique, 15%.

12.4 Méthode du diagramme d'impédance

La méthode du diagramme d'impédance est la méthode secondaire de mesure du rendement électroacoustique des deux catégories de transducteur P et A. Cette méthode ne peut s'appliquer que dans les cas rigoureusement linéaires, et, pour les transducteurs de catégorie P, uniquement en absence d'ondes stationnaires dans la cuve.

Lorsque des résonances parasites provoquent des perturbations dans l'enregistrement de l'impédance au voisinage de la résonance principale, la méthode ne peut s'appliquer.

Dans cette méthode, les valeurs de l'impédance électrique complexe du transducteur sont tracées dans le plan R-X à différentes fréquences dans l'intervalle $f_{res} \pm f$, qui dépend du facteur Q du transducteur. Les mesures de R et X sont effectuées par l'une des méthodes connues (voir article 16) avec une erreur inférieure à $\pm 2\%$.

On peut aussi utiliser des appareillages électroniques pour tracer automatiquement le diagramme d'impédance sur l'écran d'un oscilloscope ou sur l'enregistreur, à condition que leur précision soit suffisante.

is recommended to implement F_3 as a Bessel-type low-pass filter of the fourth order with a cut-off frequency of $\frac{f_{res}}{2}$.

12.3 Wattmeter method

The wattmeter method is a secondary method for measurement of the electroacoustical efficiency of both P and A category transducers. The electroacoustical efficiency is determined by a method similar to that described in Sub-clause 12.1 but with a different measurement of acoustical power P_a . In this method the magnitude of P_a is calculated according to the formula:

$$P_{\rm a} = (P_{\rm e \, res} - P_{\rm e \, res}') - (P_{\rm el} - P_{\rm el}')$$

where $P_{\rm e\,res}$ and $P'_{\rm e\,res}$ are the values of electrical input power in the loaded and unloaded conditions respectively, measured at the frequency of resonance at the same vibration velocity, equal to the rated value and $P_{\rm el}$ and $P'_{\rm el}$ are the values of electrical loss power "on load" and at "no load". The measurements of $P_{\rm e\,res}$ and $P'_{\rm e\,res}$ are carried out by one of the usual methods (see Clause 11). Measurement of the vibration amplitude is performed by means of a non-contact vibrometer of any type (see Sub-clause 13.2) mounted at the rear end of the transducer.

If V_{T0} and V'_{T0} are the transducer voltages at resonance corresponding to the input powers $P_{e \text{ res}}$ and $P'_{e \text{ res}}$ (points A and A₁ in Figure 4, page 52) then the values of P_{e1} and P'_{e1} are obtained by plotting P_{e} versus f while the transducer is driven by the voltage

$$\frac{f_{\text{res}}}{f} V_{\text{T0}}$$
 or $\frac{f'_{\text{res}}}{f} V'_{\text{T0}}$ respectively.

The interpolation lines for P_e from out-of-resonance regions, the asymptotes of the curves, are drawn; the ordinates of these lines, corresponding to the frequencies of resonance, denote the value of P_{el} and P'_{el} (points C and C₁ on Figure 4).

This method is restricted by the requirements that the transducer voltage and its surface displacement shall be of sinusoidal form. With the error of electrical power measurements not more than 5%, the error of the acoustical power evaluation shall be not more than 10%, and that of the electroacoustical efficiency not more than 15%.

12.4 Impedance diagram method

The impedance diagram method is a secondary method for measurement of the electroacoustical efficiency of both P and A category transducers. This method may be applied only in strictly linear cases and for P-category transducers only in the absence of standing waves in the tank.

If parasitic resonances disturb the impedance plot near the main resonance the method is not applicable.

In this method the values of the complex electrical impedance of the transducer are plotted on the R-X plane for different frequencies in the range $f_{res} \pm f$ depending on the Q-factor of the transducer. Measurements of R and X are carried out by one of the known methods (see Clause 16) with an error of not more than $\pm 2\%$.

Electronic devices for automatically plotting of the impedance diagram on the oscilloscope screen or the recorder may also be used, provided their accuracy is sufficient.

Le diagramme d'impédance décrit un cercle au voisinage de la fréquence de résonance (voir figure 5, page 53). Le rendement électroacoustique $\eta_{\rm ea}$ est calculé par le produit $\eta_{\rm em}$ et $\eta_{\rm ma}$ (voir paragraphe 5.2). Les valeurs de $\eta_{\rm em}$ et $\eta_{\rm ma}$ sont déterminées par les formules:

$$\eta_{\rm em} = \frac{d}{d + R_{\rm d}}$$

$$\eta_{\text{ma}} = \frac{D - d}{D}$$

où D est le diamètre du cercle d'impédance correspondant aux conditions «sans charge», d celui correspondant aux conditions «avec charge», R_d est la composante réelle de l'impédance du transducteur bloqué, c'est-à-dire la valeur de la partie réelle de l'impédance au point du cercle proche de la partie de la courbe hors résonance.

La précision de la méthode est d'environ ±10%, la dispersion des points expérimentaux étant, en moyenne, importante lorsqu'on ne dispose pas d'enregistrement automatique.

13. Amplitude de déplacement vibratoire

13.1 Méthode du microscope optique

La méthode du microscope optique est la méthode primaire de mesure de l'amplitude du déplacement vibratoire des transducteurs de catégorie A et d'étalonnage des capteurs de vibrations de différents types. Dans cette méthode, un microscope est focalisé sur un point de la surface latérale du transducteur éclairée spécialement (habituellement sur l'extrémité de sortie de son transformateur mécanique ou sur celle de l'outil jointif en absence de charge). Lorsque le transducteur est mis en vibration suivant son axe, ce point devient une ligne, perpendiculaire à la face rayonnante. La longueur de la ligne, égale au double de l'amplitude du déplacement 2ξ est mesurée au moyen d'un oculaire micrométrique étalonné. S'il se produit simultanément des vibrations transversales, la ligne acquiert une inclinaison par rapport à l'axe du transducteur ou, dans le cas d'un déphasage, la ligne dégénère en une ellipse. On devra alors mesurer la composante, dans la direction axiale, de la ligne oblique, ou les dimensions de la figure observée dans la direction axiale. Le grossissement du microscope doit être environ de 100 à 800 fois. La méthode est limitée à une amplitude minimale de déplacement égale à 2 um.

13.2 Méthodes des capteurs de vibrations

Les méthodes utilisant des capteurs de vibrations de différents types pour la mesure de l'amplitude de déplacement vibratoire du transducteur sont des méthodes secondaires; elles s'appliquent aux transducteurs des catégories A et P dans la condition sans charge (transducteurs de catégorie P sans liquide). Elles s'appliquent aussi aux mesures de l'amplitude de déplacement sur le côté arrière des transducteurs dans la condition avec charge. Dans cette méthode, on peut utiliser des capteurs de vibrations sans contact, à fréquence élevée, de différents types (voir annexe D). L'échelle de l'appareil devra être graduée directement en micromètres, sa bande de fréquences étant 8 kHz à 100 kHz et sa dynamique 0,5 µm à 100 µm. L'erreur de mesure ne doit pas être supérieure à ±10%. Les capteurs de vibrations utilisés avec les transducteurs magnétostrictifs ne devront pas être perturbés par des champs magnétiques intenses variables.

The impedance diagram forms a circle near the resonance frequency (see Figure 5, page 53). The electroacoustical efficiency $\eta_{\rm ea}$ is calculated as the product of $\eta_{\rm em}$ and $\eta_{\rm ma}$ (see Subclause 5.2). Magnitudes of $\eta_{\rm em}$ and $\eta_{\rm ma}$ are determined according to the formulae:

$$\eta_{\rm em} = \frac{d}{d + R_{\rm d}}$$

$$\eta_{\text{ma}} = \frac{D - d}{D}$$

here D is the diameter of the impedance circle, corresponding to "no load" conditions, d is that corresponding to "on load" conditions; R_d is the real component of the blocked transducer impedance, i.e. the value of the real part of the impedance at the point where the circle is next to the out of resonance part of the curve.

The accuracy of the method is about $\pm 10\%$; the averaging of the dispersion of experimental points being important when no automatic plotting is available.

13. Vibrational displacement amplitude

13.1 Optical microscope method

The optical microscope method is the primary method for measurement of the vibrational displacement amplitude of transducers of category. A and for calibration of vibrometers of different types. In this method a microscope is focused on a point on the specially illuminated side surface of the transducer (usually on its mechanical transformer output end or on that of the attached tool in the absence of the load). When the transducer is set into vibration along its axis, this point becomes a line, perpendicular to the radiating face. The line length, equal to twice the displacement amplitude 2ξ is measured by means of the calibrated eyepiece micrometer. If transverse vibrations occur simultaneously, the line acquires an inclination to the transducer axis or, in the case of a phase shift, the line degenerates into an ellipse. The axial direction component of the inclined line or the dimensions of the observed figure in the axial direction should then be measured. Microscope magnification shall be about 100 to 800 times. The method is testricted to a minimum displacement amplitude of $2 \mu m$.

13.2 Vibrometer methods

The methods, using vibrometers of different types for the measurement of transducer vibrational displacement amplitude, are secondary methods, used for transducers of both A and P categories in unloaded condition (category P transducers without liquid). They are also applicable for measurements of the displacement amplitude at the rear side of transducers in the loaded condition. Non-contacting high-frequency vibrometers of different types should be used in this method (see Appendix D). The scale of the instrument should be graduated directly in micrometres, its frequency range being 8 kHz to 100 kHz and the dynamical range 0.5 μ m to 100 μ m. The measurement error should be not more than \pm 10%. Vibrometers used with magnetostrictive transducers should not be disturbed by strong variable magnetic fields.

14. Fréquence de résonance du transducteur

14.1 Méthode de la puissance maximale

La méthode de la puissance maximale est la méthode primaire de mesure de la fréquence de résonance des transducteurs des catégories P et A. La fréquence de résonance $f_{\rm res}$ des transducteurs sous charge est déterminée à partir de la fréquence correspondant au maximum de la puissance d'entrée $P_{\rm e}$. Lors de l'obtention de la caractéristique en fréquence, le transducteur est alimenté par le même générateur que celui qui est utilisé dans les conditions normales de fonctionnement. Exceptionnellement, il est possible de déterminer $f_{\rm res}$ à partir des caractéristiques en fréquence de $P_{\rm e}$, relevées pour de faibles valeurs de $V_{\rm T}$ et $P_{\rm e}$, à la place des valeurs assignées; en effet, la non-linéarité du transducteur et les propriétés en charge ne modifient pas beaucoup les fréquences de résonance.

La valeur de la puissance d'entrée est mesurée au moyen de l'une des méthodes connues (voir article 11). La fréquence, correspondant au maximum de P_e , est mesurée au moyen d'un fréquencemètre électronique.

Cette méthode peut aussi être utilisée pour les transducteurs dans la condition sans charge.

La valeur de $f_{\rm res}$ devra être déterminée avec une erreur inférieure à $\pm 5\%$ pour les transducteurs de catégorie P chargés par un liquide, et avec une erreur inférieure à $\pm 0.5\%$ pour les transducteurs de catégorie A et les transducteurs de catégorie P non chargés.

Dans le cas où la valeur de $V_{\rm T}$ est maintenue constante pendant la mesure de $P_{\rm e}$ en fonction de la fréquence, la valeur de la fréquence de résonance obtenue par cette méthode est sensiblement égale à $f_{\rm a}$; dans le cas où on opère avec une valeur constante de $I_{\rm T}$, la fréquence de résonance est sensiblement égale à $f_{\rm r}$.

14.2 Méthode de l'amplitude maximale

La méthode de l'amplitude maximale est la méthode secondaire de mesure de la fréquence de résonance des transducteurs de catégorie A.

La fréquence de résonance $f_{\rm res}$ des transducteurs est déterminée à partir de la valeur maximale de l'amplitude du déplacement ξ . Lorsqu'on relève la caractéristique en fréquence, le transducteur est alimenté par le même générateur que celui qui est utilisé dans les conditions normales de fonctionnement. Dans le cas où la valeur de $V_{\rm T}$ est maintenue constante, ce maximum a lieu pour une fréquence sensiblement égale à $f_{\rm a}$; dans le cas où on opère avec $I_{\rm T}$ constante, le maximum a lieu pour une fréquence sensiblement égale à $f_{\rm r}$. Les mesures d'amplitude sont effectuées au moyen d'un capteur de vibrations sans contact (voir paragraphe 13.2); les mesures de fréquences sont effectuées avec un fréquencemètre électronique, les fréquences étant déterminées avec une erreur inférieure à 0,5%. La méthode de l'amplitude vibratoire peut également être utilisée pour mesurer la fréquence de résonance des transducteurs de catégorie P dans la condition sans charge (sans liquide).

14.3 Méthode de l'impédance caractéristique

La méthode de l'impédance caractéristique est une méthode secondaire de mesure de la fréquence de résonance des transducteurs des catégories P et A, seulement applicable dans la gamme linéaire. Avec cette méthode, on détermine les fréquences f_a et f_r ; f_{res} , qui correspond aux conditions réelles de fonctionnement, est située entre les deux (voir paragraphe 5.4). Par exception à la règle générale, les mesures de f_r et f_a sont effectuées avec les transducteurs dans la condition sans charge et à un niveau d'excitation très inférieur au niveau assigné.

14. Frequency of resonance of the transducer

14.1 Maximum power method

The maximum power method is the primary method for measurement of the frequency of resonance for both P and A category transducers. The frequency of resonance $f_{\rm res}$ of transducers under load is determined from the frequency corresponding to the maximum input power $P_{\rm e}$. When obtaining the frequency characteristic, the transducer is supplied from the same generator as in normal working conditions. As an exception it is possible to determine $f_{\rm res}$ from the $P_{\rm e}$ frequency characteristics taken at lower values of $V_{\rm T}$ and $P_{\rm e}$ than the rated ones, since the non-linearity of the transducer and load properties do not much affect the frequencies of resonance.

The magnitude of the input power is measured by one of the known methods (see Clause 11). The frequency, corresponding to maximum P_e , is measured by means of an electronic frequency meter.

This method may also be used for transducers in the unloaded condition.

The value of f_{res} should be determined with an error of not more than $\pm 5\%$ for liquid loaded transducers of category P and with an error of not more than $\pm 0.5\%$ for category A transducers and unloaded transducers of category P.

If the magnitude of V_T is kept constant during measurement of P_e versus frequency, the value of the frequency of resonance obtained by this method is approximately equal to f_a ; in the case of constant magnitude of I_T the frequency of resonance is approximately equal to f_r .

14.2 Maximum amplitude method

The maximum amplitude method is a secondary method for measurement of the frequency of resonance of the transducers of category A.

The frequency of resonance f_{res} of the transducers is determined as corresponding to the maximum value of the displacement amplitude ξ . When obtaining the frequency characteristic the transducer is supplied from the same generator as in normal working conditions. If the magnitude of V_T is kept constant, this maximum occurs at the frequency approximately equal to f_a ; with constant I_T the maximum occurs at the frequency approximately equal to f_r . The amplitude measurements are carried out by means of a non-contact vibrometer (see Subclause 13.2); for frequency measurements an electronic frequency meter is used, the frequencies being determined with an error of not more than 0.5%. The vibration amplitude method may also be used for measuring the resonance frequency of category P transducers in the unloaded condition (without liquid).

14.3 Impedance characteristic method

The impedance characteristic method is a secondary method for measurement of the frequency of resonance for transducers of both P and A categories, applicable only in the linear range. In this method frequencies f_r and f_a are determined, and f_{res} corresponding to real working conditions is located between them (see Sub-clause 5.4). As an exception to the general rule, measurements of frequencies f_r and f_a are performed for transducers in the unloaded condition and at an excitation level much lower than the rated one.

Les caractéristiques en fréquence de l'impédance doivent être obtenues sous deux formes:

- a) on trace la tension aux bornes électriques du transducteur V_T en fonction de la fréquence, tandis que le courant du transducteur I_T est maintenu constant. La fréquence correspondant au maximum de V_T est sensiblement f_r (voir figure 6a, page 54);
- b) on trace le courant du transducteur $I_{\rm T}$ en fonction de la fréquence, tandis que la tension du transducteur $V_{\rm T}$ est maintenue constante. La fréquence correspondant au maximum de $I_{\rm T}$ est sensiblement $f_{\rm a}$ (voir figure 6b, page 54).

Les conditions de courant constant peuvent être réalisées expérimentalement en connectant en série le transducteur avec une résistance; la valeur de celle-ci est environ 100 fois supérieure à l'impédance du transducteur. Les conditions de tension constante sont réalisées en alimentant le transducteur à partir d'une source à très faible impédance.

La mesure de V_T devra être effectuée avec une erreur inférieure à 1%, tandis que Perreur sur la mesure de I_T ne doit pas dépasser 1,5%.

Cette fréquence est déterminée au moyen d'un fréquencemètre électronique. Dans les cas où l'impédance complexe du transducteur est connue dans la bande de fréquences proche de la résonance, c'est-à-dire lorsque le diagramme d'impédance du transducteur est disponible (voir paragraphe 12.4), les fréquences f_r et f_a peuvent être déterminées en considérant certains points de ce diagramme; ces points sont obtenus par une construction géométrique simple, comme le montre la figure 4, page 52.

15. Largeur de bande et facteur de qualité mécanique

15.1 Méthode de la caractérisation en fréquence de la puissance d'entrée

La méthode de la caractérisation en fréquence de la puissance d'entrée est la méthode primaire de mesures de la largeur de bande et du facteur de qualité mécanique des transducteurs des catégories P et A. Dans cette méthode, on trace la courbe de réponse en fréquence du transducteur sous la forme de la variation de sa puissance d'entrée $P_{\rm e}$ en fonction de la fréquence f; et on détermine la largeur de bande Δf par l'intervalle de fréquence qui sépare les fréquences situées de part et d'autre de la fréquence de résonance (voir paragraphe 14.1) pour lesquelles les valeurs de $P_{\rm e}$ sont égales à la moitié de sa valeur maximale. Le facteur de qualité mécanique Q est calculé par le rapport de $f_{\rm res}$ à Δf (voir paragraphe 5.5). Les mesures de $P_{\rm e}$ sont effectuées par l'une des méthodes mentionnées ci-dessus (voir article 11) et on détermine la fréquence au moyen d'un fréquencemètre électronique.

15.2 Méthode de la caractérisation en fréquence de l'amplitude

La méthode de la caractérisation en fréquence de l'amplitude est la méthode secondaire de mesure de la largeur de bande et du facteur de qualité mécanique des transducteurs de catégorie A. On trace la courbe de réponse en fréquence du transducteur sous la forme de la variation de l'amplitude de déplacement ξ en fonction de la fréquence; et la largeur de bande Δf est déterminée par l'intervalle de fréquence qui sépare les fréquences situées de part et d'autre de la fréquence de résonance $f_{\rm res}$ (voir paragraphe 14.2) pour lesquelles les valeurs de ξ sont égales à 0,7 fois sa valeur maximale. Le facteur de qualité mécanique Q est calculé par le rapport de $f_{\rm res}$ à Δf (voir paragraphe 5.5). Les mesures de ξ sont effectuées par l'une des méthodes mentionnées ci-dessus (voir article 13) et on détermine la fréquence au moyen d'un fréquencemètre électronique.

The impedance frequency characteristics shall be obtained in two forms:

- a) the voltage on the electrical terminals of the transducer V_T is plotted versus frequency, with the transducer current I_T maintained constant. The frequency, at which V_T is maximum, is approximately f_T (see Figure 6a, page 54);
- b) the transducer current I_T is plotted versus frequency, with the transducer voltage V_T maintained constant. The frequency, corresponding to maximum I_T is approximately f_a (see Figure 6b, page 54).

Constant current conditions may be realized in an experimental device by connecting in series with the transducer a resistor, the magnitude of which is about 100 times greater than the transducer impedance. Constant voltage conditions are realized by feeding the transducer from a very low impedance source.

Measurements of V_T should be performed with an error of not more than 1% while the error in the measurement of I_T may not exceed 1.5%.

The frequency is determined by means of an electronic frequency meter. For cases where the complex impedance of the transducer in the frequency range near the resonance is known, i.e. where the impedance diagram of the transducer is available (see Sub-clause 12.4), frequencies f_r and f_a may be determined as corresponding to certain points on this diagram which are found by simple geometrical construction, as shown in Figure 4, page 52.

15. Bandwidth and mechanical quality factor

15.1 Input power frequency characteristic method

The input power frequency characteristic method is the primary method for measurements of the bandwidth and the mechanical quality factor of transducers of both P and A categories. In this method the frequency response curve of the transducer in the form of the dependance of its input power P_e on the frequency f is plotted and the bandwidth Δf is determined as a frequency interval limited by the frequencies located at each side of the frequency of resonance (see Sub-clause 14.1) which correspond to the magnitudes of P_e equal to half of its maximum value. The mechanical quality factor Q is calculated as the ratio of f_{res} to Δf (see Sub-clause 5.5). The measurements of P_e are performed by one of the above-mentioned methods (see Clause 11) and the frequency is determined by means of an electronic frequency meter.

15.2 Amplitude frequency characteristic method

The amplitude frequency characteristic method is a secondary method for measurements of the bandwidth and the mechanical quality factor of category A transducers. The frequency response curve of the transducer in the form of the dependence of the displacement amplitude ξ on the frequency is plotted and the bandwidth Δf is determined as a frequency interval limited by the frequencies located at each side of the frequency of resonance $f_{\rm res}$ (see Subclause 14.2) which correspond to the magnitudes of ξ equal to 0.7 of its maximum value. The mechanical quality factor Q is calculated as the ratio of $f_{\rm res}$ to Δf (see Sub-clause 5.5). The measurements of ξ are performed by one of the above-mentioned methods (see Clause 13) and the frequency is determined by means of an electronic frequency meter.

16. Impédance électrique du transducteur à la résonance

16.1 Méthode du voltmètre et du wattmètre

La méthode du voltmètre et du wattmètre est la méthode primaire de mesure de l'impédance électrique des transducteurs des catégories P et A. Elle peut être appliquée dans le cas où la tension du transducteur est de forme sinusoïdale. Dans cette méthode, on détermine le module de l'impédance du transducteur |Z| par le rapport de la tension du transducteur V_T au courant du transducteur I_T (voir paragraphe 5.6). La valeur de I_T peut être déterminée par V_R/R_s , V_R étant la tension à travers une petite résistance non réactive égale à R_s connectée en série avec le transducteur.

L'angle de phase φ est déterminé par la formule:

$$\cos \varphi = \frac{P_{\rm e}}{V_{\rm T} I_{\rm T}}$$

Pe étant mesurée selon l'une des méthodes déjà mentionnées (voir article 10)

Lorsqu'on procède aux mesures, le générateur d'excitation doit être accordé à la fréquence de résonance du transducteur et la fréquence doit être mesurée par un fréquencemètre électronique.

L'erreur sur les mesures de tension ne devra pas dépasser 2% et 5% sur les mesures de puissance. En conséquence, l'erreur sur les mesures de |Z| ne devra pas dépasser 5% et 10% pour $\cos \varphi$.

16.2 Méthode du pont

La méthode du pont est une méthode secondaire de mesure de l'impédance électrique des transducteurs des catégories P et A dans la gamme de stricte linéarité.

Les composantes réelle et imaginaire R et X de l'impédance du transducteur sont mesurées au moyen d'un pont d'impédance ou d'admittance quelconque, à condition que sa gamme de fréquences comprenne la fréquence de résonance du transducteur. Dans les mesures au pont, l'erreur ne devra pas dépasser $\pm 2\%$.

16.3 Méthode du voltmètre et du phasemètre

La méthode du voltmètre et du phasemètre est une méthode secondaire de mesure de l'impédance électrique des transducteurs des catégories P et A dans la gamme de stricte linéarité. Dans cette methode, le processus de mesure est presque identique à celui de la méthode du voltmètre wattmètre (voir paragraphe 16.1), la différence portant sur la mesure de l'angle de phase φ . On détermine celui-ci au moyen d'un phasemètre électronique dont la gamme de fréquences englobe la fréquence de résonance du transducteur; l'erreur dans la mesure de l'angle de phase n'est pas supérieure à $\pm 2\%$.

16.4 Méthode des trois voltmètres

La méthode des trois voltmètres est une méthode secondaire de mesure de l'impédance électrique des transducteurs des catégories P et A dans la gamme de stricte linéarité. Le dispositif et le processus de mesure sont semblables à ceux de la méthode des trois voltmètres (voir paragraphe 11.3); les valeurs de |Z| et cos φ sont calculées suivant les formules:

$$|Z| = \frac{V_{\rm T}}{V_{\rm R}} R_{\rm s}$$

$$\cos \varphi = \frac{V_{\rm G}^2 - V_{\rm R}^2 - V_{\rm T}^2}{2 V_{\rm R} V_{\rm T}}$$

16. Electrical impedance of the transducer at resonance

16.1 Voltmeter and wattmeter method

The voltmeter and wattmeter method is the primary method for measurement of the electrical impedance of transducers of both P and A categories. It may be applied in cases where the transducer voltage is of sinusoidal waveform. In this method the magnitude of the transducer impedance |Z| is determined as the ratio of transducer voltage V_T to transducer current I_T (see Sub-clause 5.6). The magnitude of I_T may be determined as V_R/R_s , where V_R is the voltage across a small non-reactive resistor of magnitude R_s connected in series with a transducer.

The phase angle φ is determined according to the formula:

$$\cos \varphi = \frac{P_{\rm e}}{V_{\rm T} I_{\rm T}}$$

with $P_{\rm e}$ measured by one of the above-mentioned methods (see Clause 11).

When performing measurements the excitation generator should be tuned on the frequency of resonance of the transducer and the frequency measured by an electronic frequency meter.

The error of voltage measurements should be not more than 2%, and that of power measurements not more than 5%. Therefore the error in |Z| measurements should be not more than 5% and in cos φ not more than 10%.

16.2 Bridge method

The bridge method is a secondary method for measurements of the electrical impedance of transducers of both P and A categories in the strictly linear range.

The real and imaginary components R and X of the transducer impedance are measured by means of an impedance or admittance bridge of any kind, provided its frequency range includes the frequency of resonance of the transducer. The error in bridge measurements should be not more than $\pm 2\%$.

16.3 Voltmeter and phasemeter method

The voltmeter and phasemeter method is a secondary method for measurement of the electrical impedance of transducers of both P and A categories in the strictly linear range. The measuring procedure in this method is nearly the same as for the voltmeter-wattmeter method (see Sub-clause 16.1), the difference being in the measurement of the phase angle φ . The latter is determined by means of an electronic phasemeter which has a frequency range including the frequency of resonance of the transducer and an error in phase angle measurements of not more than $\pm 2\%$.

16.4 Three voltmeter method

The three voltmeter method is a secondary method for measurement of the electrical impedance of transducers of both P and A categories in the strictly linear range. The measuring arrangement and procedure is as for the three voltmeter method (see Sub-clause 11.3); the values of |Z| and $\cos \varphi$ are calculated according to the formulae:

$$|Z| = \frac{V_{\rm T}}{V_{\rm R}} R_{\rm s}$$

$$\cos \varphi = \frac{V_{\rm G}^2 - V_{\rm R}^2 - V_{\rm T}^2}{2 V_{\rm R} V_{\rm T}}$$

Impédance électrique bloquée (amortie) du transducteur

Pour obtenir la valeur de l'impédance électrique bloquée du transducteur, correspondant aux conditions d'utilisation, on mesure les composantes de l'impédance électrique complexe en dehors de la zone de résonance, à des fréquences inférieures et supérieures à f_{res} ; on opère en maintenant le rapport V_T/f égal à la valeur assignée qu'il prend à la fréquence de résonance. On peut employer n'importe quelle méthode de mesure de l'impédance du transducteur (voir article 16). On trace une ligne passant par les points expérimentaux, dans le plan |Z| - f; c'est la caractéristique en fréquence de l'impédance bloquée du transducteur, et son ordonnée, pour f_{res} , indique la valeur requise de l'impédance bloquée du transducteur dans les conditions d'utilisation.

On réalise le même processus avec la valeur de $\cos \varphi$ en traçant la caractéristique en

actéristic fres.

All the state of the state

17. Blocked (damped) electrical impedance of the transducer

In order to obtain the value of blocked electrical impedance of the transducer corresponding to working conditions, the components of complex electrical impedance are measured outside the resonance region at a number of frequencies below and above f_{res} , the ratio of V_T/f being maintained equal to the rated one at the frequency of resonance. Any method of measurement of transducer impedance may be used (see Clause 16). A line is drawn through the experimental points, plotted on the |Z| - f plane, which is the frequency characteristic of the blocked transducer impedance, and its ordinate, corresponding to f_{res} , denotes the required magnitude of the blocked impedance of the transducer under working conditions.

The same procedure is performed with the $\cos \varphi$ value, plotting the frequency characteristic of cos φ of the blocked transducer and finding by interpolation its value at $f_{\rm res}$.

ey charact ores. 1984.

Tres.

ANNEXE A

CONDITIONS DE MESURES

A1. Influence de la non-linéarité

Les niveaux de la puissance d'entrée et de la tension d'alimentation doivent être les mêmes dans les mesures que dans le fonctionnement opérationnel; en effet, les propriétés magnétiques et mécaniques du transducteur ne sont pas linéaires, de même que les propriétés acoustiques du liquide de charge à cause de la cavitation.

A2. La principale manifestation de la non-linéarité du transducteur se traduit par l'influence de la tension d'alimentation sur les pertes magnétiques et de l'amplitude de déplacement vibratoire sur les pertes mécaniques; il existe aussi une influence de la tension d'alimentation sur les coefficients de transformation électromécaniques.

Les propriétés acoustiques de l'eau sont peu différentes de celles de la plupart des types de liquides employés dans les conditions réelles de fonctionnement.

A3. Influence des bulles d'air et des contaminations

Lorsqu'on mesure les transducteurs de catégorie P rayonnant dans l'eau, il convient de dégazer celle-ci, bien que, dans la plupart des conditions d'utilisation, les liquides soient habituellement saturés d'air ou d'autres gaz naturellement. Mais les mesures avec charge liquide saturée sont généralement instables, par suite de l'accrochage des bulles et de l'éventualité d'apparition de la cavitation à de faibles niveaux de puissance.

La reproductibilité des résultats des mesures est plus importante que la simulation exacte des conditions de fonctionnement. Il est nécessaire de procéder au nettoyage du transducteur avant les mesures, à cause des contaminations de la surface qui peuvent piéger et retenir de petites bulles, lesquelles ont une énorme influence sur les résultats des mesures.

IECHORM. Chick to

APPENDIX A

MEASURING CONDITIONS

A1. Influence of non-linearity

Input power and driving voltage level in measurements shall be the same as in actual operation because of non-linearity of the magnetic and mechanical properties of the transducer and that of the acoustical properties of the loading liquid due to cavitation.

A2. The main manifestation of transducer non-linearity is the dependence of magnetic losses on the driving voltage and of mechanical losses on the vibrational displacement amplitude; there is also a driving voltage dependence of electromechanical transformation coefficients.

The acoustical properties of water do not much differ from those of most kinds of liquids used in actual operating conditions.

A3. Influence of air bubbles and contaminations

When measuring transducers of category P radiating into water, the latter should be degassed, although in most operating conditions liquids are usually saturated with air or other gasses naturally. However, the measurements with saturated liquid load are generally unstable, owing to adhesion of bubbles and the possible occurrence of cavitation at relatively low power levels.

The reproducibility of measuring results is more important than the exact simulation of operating conditions. Cleaning the transducer before measurements is necessary because the contamination on the surface may stick and retain small bubbles, which have considerable influence on the measurement results.

ANNEXE B

BASES ET LIMITES DE LA MESURE DE LA PUISSANCE ACOUSTIQUE PAR LA MÉTHODE CALORIMÉTRIQUE

La méthode de mesure calorimétrique de la puissance acoustique repose sur l'effet d'absorption du son dans les liquides et leur échauffement dû à l'énergie absorbée. Elle est bien adaptée à la mesure de la puissance acoustique dans la gamme non linéaire, c'est-à-dire pour des niveaux de puissance élevés.

Elle peut également être utilisée avec des niveaux faibles, à condition que l'élévation de température due à l'absorption ultrasonique dans le liquide ne soit pas trop petite. A des niveaux d'énergie élevés, le liquide peut se vaporiser ou s'atomiser partiellement. L'énergie utilisée pour cela ne contribue pas à l'échauffement du liquide. C'est la raison pour laquelle le niveau d'énergie ne devra pas être trop élevé. Certains facteurs peuvent considérablement réduire la précision de la méthode, notamment la conduction thermique directement du transducteur à la charge liquide, l'échange de chaleur entre le liquide et son environnement et la formation des ondes stationnaires.

Pour éliminer ou diminuer l'influence du premier facteur, la durée de fonctionnement des transducteurs ne doit pas dépasser 20 s à 30 s. Il faut, toutefois, tenir compte de la lenteur de l'instrument pour mesurer la température. Quand on utilise des thermomètres avec de petites graduations, il est probable que l'indication de la valeur maximale de la température ne sera atteinte que quelque temps après l'interruption de l'alimentation en énergie; c'est pourquoi il faut attendre pour obtenir cette indication. Il s'ensuit une durée de mesure de 20 s à 30 s. Les thermomètres doivent être à faible constante de temps et le fonctionnement du transducteur doit être de courte durée.

L'influence du second facteur (l'échange de chaleur entre le liquide et son environnement) est diminuée en rendant la température initiale de la cuve de mesure pratiquement égale à la température des milieux environnants. On peur aussi supprimer presque complètement l'échange thermique avec l'environnement en utilisant un calorimètre étalon comme cuve de liquide.

On procède à quelques modifications de la méthode calorimétrique pour éliminer l'éventualité que l'absorption de la chaleur par les parois de la cuve puisse modifier les mesures. Ce sont des méthodes de compensation avec une source thermique formée par une résistance électrique chauffante, de puissance électrique consommée connue, ou par un bloc de métal de masse, de chaleur spécifique et de température initiale élevée connues. Par comparaison de l'échauffement de l'eau dans la cuve de mesure induit par le chauffage équivalent avec celui qui est dû aux ultrasons produits par le transducteur, on peut facilement calculer la puissance acoustique produite par le transducteur

L'utilisation des calorimètres peut introduire des ondes stationnaires dans le bain liquide, en causant des variations importantes de la charge du transducteur. Cela peut être vérifié en mesurant l'impédance électrique du transducteur, tout en changeant sa position dans la cuve.

APPENDIX B

BASIS OF THE CALORIMETRIC METHOD OF MEASURING THE ACOUSTIC POWER AND ITS LIMITATIONS

The calorimetric method of measuring acoustical power is based on the effect of sound absorption in liquids and their heating due to the absorbed energy. It is well suited for measuring the acoustical power in the non-linear range, i.e. at high-power levels.

It may also be used at low levels, provided that the temperature rise due to ultrasound absorption in the liquid is not too small. At high energy levels the liquid may partly vaporize or atomize. The energy used for this does not contribute to the heating of the liquid. Therefore the energy level should not be too high. Some factors may considerably reduce the accuracy of the method, notably the direct heat conduction from the transducer to the liquid load, heat exchange between the liquid and the surroundings and the occurrence of standing waves.

In order to eliminate or to diminish the influence of the first factor the operating time of the transducer shall not exceed 20 s to 30 s. The slowness of the instrument for the temperature measurement shall however be taken into consideration. When thermometers with small scale divisions are used, the temperature indication probably reaches its maximum value some time after the energy supply has been switched off, and therefore this indication shall be awaited. Because of this, the duration of the measurement will be longer than 20 s to 30 s. Therefore, thermometers with small time constants shall be used and the operating time of the transducer shall be short.

The influence of the second factor (the heat exchange between the liquid and the surroundings) is reduced by making the initial temperature in the measuring tank nearly equal to the temperature of the surrounding media. Heat exchange with the surroundings may also be nearly completely excluded by using a standard calorimeter as a liquid tank.

Some modifications of the calorimetric method are used in order to eliminate the possibility that the heat absorption by the tank walls may affect the measurement results. These are compensation methods, using an equivalent heater in the form of an electrical wire heater with known consumed electrical power or in the form of a lump of metal with known mass, specific heat and high initial temperature. Comparing the heating of water in the measuring tank induced by the equivalent heater and by the ultrasound produced by the transducer, the acoustical power produced by the transducer can easily be calculated.

The use of calorimeters may introduce standing waves in the liquid bath, as a result of which the acoustic load of the transducer may change greatly. This can be verified by measuring the electrical impedance of the transducer and by changing its position in the bath.

ANNEXE C

BASES DE LA MÉTHODE DU WATTMÈTRE ET DE LA MÉTHODE DU DIAGRAMME D'IMPÉDANCE POUR LA MESURE DU RENDEMENT DU TRANSDUCTEUR

Le principe de mesure du rendement électromécanique par la méthode du wattmètre est la séparation de la puissance de perte mécanique et de la puissance de perte électrique d'un transducteur, à la fréquence de résonance; cette mesure est effectuée par interpolation de la valeur de la puissance de perte électrique loin de la résonance à la fréquence de résonance, avec l'hypothèse qu'il n'existe pas de pertes mécaniques en dehors de la résonance. Le rendement mécanique-acoustique est déterminé en comparant les pertes mécaniques du transducteur dans les conditions avec et sans charge.

En général, cette méthode est adaptée aux transducteurs fonctionnant dans la gamme linéaire. Mais si l'on suppose que les conditions mentionnées dans l'article A1 de l'annexe A sont remplies, elle peut être utilisée au-delà de la gamme de stricte linéarité.

La méthode du diagramme d'impédance repose également sur la caractérisation en fréquence du transducteur dans les conditions avec ou sans charge; elle est seulement applicable dans la gamme linéaire.

La valeur de η_{ea} obtenue par la méthode du diagramme d'impédance correspond à la résonance dans la condition de courant constant, c'est-à-dire à la fréquence de résonance sensiblement égale à f_r ; par contre η_{ea} , obtenu au moyen du wattmètre, est le rendement qui correspond aux conditions de tension constante, c'est-à-dire à la fréquence sensiblement égale à f_a . Cependant, pour des transducteurs correctement chargés, la différence entre les valeurs de η_{ea} à f_r et à f_a est négligeable.

ECNORM. Click to