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FOREWORD

In 2009, the ASME V&V 20 Committee published ASME V&V 20, Standard for Verification and Validation in Computa-
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iprmat Fofd Dy mamics and Heat Transter: T e Standard presents a vertficationand vattdatiomapproac i that quartt

odeling error of a mathematical/computational model for a specified quantity of interest at a specified validatioh
nis means that the procedure presented in the Standard applies to pointwise validation variables. This\Suppl
esents a technique to perform a global evaluation of the modeling error of multiple validation variables using th
hmework of the pointwise technique: comparison of simulation solutions with experimental data, and includ
perimental, input-parameter and numerical uncertainties that contribute to the validation uncertainty. This
riate metric can account for uncertainties shared by the multiple validation variables and ifdicates if discrep|
btween simulations and experiments are globally within the validation uncertainties or ¢annot be explained
lidation uncertainties. Therefore, the interpretation of the results obtained from the multivariate metric requi
nowledge of the validation uncertainties obtained from the pointwise technique; therefore, it works as a complen
e pointwise technique and not as a replacement.

This supplement presents the following:

(a) a short description of the pointwise technique presented in the ASME V&V 20 Standard, to allow the use
pplement as a self-contained document

(b) the description of the multivariate metric and the definition of a reference value to make the outcome indep¢
the number of validation variables selected

(c) a simple example illustrating the effect of correlation with discussion and caveats

(d) Nonmandatory Appendix A: a detailed description of the determination of the validation covariance matr
bpends on the experimental, numerical, and input parameter uncertainties for the four types of validation vaj
nsidered in the ASME V&V 20-2009 Standard

(e) Nonmandatory Appendix B: the application of the mhultivariate metric to the example-problem of the ASME {
andard

(f) Nonmandatory Appendix C: examples of evaluation of the validation covariance matrix with discussion
sumptions required for its determination.

Richard Hills is the original author of thefirst draft of the main body of this document developing the multiy
etricapproach. In 2019, a working group.comprising Leonard Peltier, Urmila Ghia, Laura Savoldi, Nima Fathi, and
bwding undertook the task of revising the draft and developing appendices to mature the document as an instru
ide. In 2022, Luis Eca joined thetworking group. The group finalized the technical contents of this docume
hered this document through'réview to become a supplement to the ASME V&V 20-2009 standard.

ASME VVUQ 20.1-2024 was approved as an American National Standard on February 26, 2024.
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CORRESPONDENCE WITH THE VVUQ COMMITTEE

General. ASME codes and standards are developed and maintained by committees with the intent to represent the
CJTISETSUS Of CONCEITIEd MTETESTS. USErs of ASME todes and standards My CoTTespoId Witit tE COTITITIEES to_ plopose
rgvisions or cases, report errata, or request interpretations. Correspondence for this Standard should be sentto.the staff
sgcretary noted on the committee’s web page, accessible at https://go.asme.org/VnVcommittee.

Revisions and Errata. The committee processes revisions to this Standard on a periodic basis to incorporate chhanges
that appear necessary or desirable as demonstrated by the experience gained from the application of the Stahdard.
Approved revisions will be published in the next edition of the Standard.
In addition, the committee may post errata on the committee web page. Errata become effective on the date fdosted.
Users can register on the committee web page to receive email notifications of postedgerrata.
This Standard is always open for comment, and the committee welcomes proposals-for revisions. Such proposals
should be as specific as possible, citing the paragraph number, the proposed wordingsand a detailed description|of the
rdasons for the proposal, including any pertinent background information and-supporting documentation.

Cases
(a) The most common applications for cases are

(1) to permit early implementation of a revision based on an urgént need

(2) to provide alternative requirements

(3) to allow users to gain experience with alternative or poténtial additional requirements prior to incorpdration
djrectly into the Standard

(4) to permit the use of a new material or process
(b) Users are cautioned that not all jurisdictions or owners automatically accept cases. Cases are not to be cons|dered
ag approving, recommending, certifying, or endorsing-any proprietary or specific design, or as limiting in any way the
freedom of manufacturers, constructors, or owners'to’ choose any method of design or any form of constructidn that
cqnforms to the Standard.
(c) Aproposed case shall be written asa question and reply in the same format as existing cases. The proposal shall also
nclude the following information:

(1) a statement of need and backgreund information

(2) the urgency of the case (e.g; the case concerns a project that is underway or imminent)

(3) the Standard and the paragraph, figure, or table number

(4) the editions of the Standard to which the proposed case applies
(d) A case is effective for.use-when the public review process has been completed and it is approved by the cognizant
sypervisory board. Appreved cases are posted on the committee web page.

—

Interpretations. Upoh request, the committee will issue an interpretation of any requirement of this Standard. An
nterpretation cam be issued only in response to a request submitted through the online Inquiry Submittal F¢rm at
hitps://go.asme.prg/InterpretationRequest. Upon submitting the form, the inquirer will receive an automatid email
canfirming, receipt.
ASME dogs not act as a consultant for specific engineering problems or for the general application or understangli
tHe Standard requirements. If, based on the information submitted, it is the opinion of the committee that the i
should-seek assistance, the request will be returned with the recommendation that such assistance be obtained. Inquirers
cd

—-

ASME procedures provide for reconsideration of any interpretation when or if additional information that might affect
an interpretation is available. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME
committee or subcommittee. ASME does not “approve,” “certify,” “rate,” or “endorse” any item, construction, proprietary
device, or activity.

Interpretations are published in the ASME Interpretations Database at https://go.asme.org/Interpretations as they are

issued.
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PREFACE

The ASME VVUQ 20 Subcommittee for Verification, Validation, and Uncertainty Quantification in Computational Fluid

tHis committee as of the issuance of this supplement:

simulation results with experimental data. Simulations and experiments are assumed to_have been performed

parameter uncertainties that are independent or shared by the mtltiple validation set points.
ABPME VVUQ 20.2, Regression at an Application Point, extends the technique presented in the ASME V&V 20 to vali

weighted least-squares approach that accounts for uncertainty in the data. The method can be used for bo
interpolation and extrapolation to ensure that the validationrange covers the domain of application. The metho

same conditions, i.e, same domain, boundary conditions, material properties, and heat transfer coefficients

ABME VVUQ 20.1, Multivariate Metric for Validation, presents a technique that builds en'the pointwise technique off ASME
V&V 20 to make a global assessment of the discrepancies between multiple-validation variables obtained ffom
experiments and simulations. The metric can be applied to the same validatign.yariable at different locations in|space
and/or at different time instants, or to different validation variables at the same location and time instant, or evgn to a
combination of both. Furthermore, the multivariate metric can work with experimental, numerical, and ingut-

Dyrmamics and Heat T ransfer 15 aeveloping GOCUIENtS UTat describe teCiques tat altow USers of Modeing and Sjmula-
tipn, particularly in computational fluid dynamics and heat transfer, to assess the modeling (validation) and-nufperical
(Merification) accuracy of their simulations. The following are standards that have been issued or are being.deyeéloped by

APME V&V 20, Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer, presents
techniques to quantify modeling, numerical, and experimental accuracy for quantities of interest/defined by afscalar
quantity. The techniques apply to a specified variable at a specified validation point and are based on the compar}son of

or the

Hation

variables obtained at an application point where experimental'data are not available. The regression is based on a

th
lology

illustrates how to couple the concepts and procedures presented in ASME V&V 20 with standard statistical techrfiques.

The ASME VVUQ 20.1 and ASME VVUQ 20.2 supplenients may be read as stand-alone documents, but the detailq of the
tgchniques to estimate experimental, numerical, and input-parameter uncertainties are only presented in ASME VRV 20.
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MULTIVARIATE METRIC FOR VALIDATION

1|PURPOSE

This supplement presents a multivariate metric to determine a global assessment of the discrepancies betweenh ¢
1

obtained for a specified variable at a specified validation point.
A reference value is defined to account for the dependence of the multivariate metric on the\iumber of validat

a[consequence, the comparison of the multivariate metric with the reference value,indicates if modeling errd

of the pointwise technique at each of the multiple validation set points.
In this supplement, a summary of the ASME V&V 20-2009 pointwise metri¢is outlined (para. 4.1), followed by
lejvel description and example of the multivariate metric (para. 4.2 and section 5, respectively). To improve clarity

bnmandatory Appendix C presents examples of the choices required in the procedure for using the multivariate

2| SCOPE

The scope of this supplement is similar to the pointwise validation metric described in ASME V&V 20-2009 (s¢
E¢a, Dowding, and Roache, 2022). Therefore, the multivariate metric applies to quantities of interest that are defin
sdalar quantity. The present document describesthe formulations of the multivariate metric for each of the four ty

a fombination of other uncorrelated or corrélated measured variables in a data reduction equation (types 2 and 3
anp independent model or analytic equation (type 4).

Multiple set points may be defined for the same validation variable at different locations in space and/or time in
or by different validation variables:at the same location and time instant, or even by a combination of both. Furthe
the multivariate metric can work with experimental, numerical, and input uncertainties that are independent or s
by the multiple validation set-points.

3| MOTIVATION AND INTRODUCTION

ASME V&V 20-2009 presents a validation approach for estimating the model error, 8,,04e1, cOnsidering experin
nyimerical, and-input uncertainties in the reported comparison data from an experiment, D, and a simulation S (s
E¢a, Dowding,and Roache, 2022). The committee that developed ASME V&V 20-2009 limited its initial considera
validation\for a single validation variable defined by a scalar quantity at a single validation set point. The vali
variablecan be a single directly measured variable, a single dimensional variable determined from a combination o

xperi-

ents and simulations based on pointwise results from multiple validation set points within an application domain. It
sgrves to extend the application of the pointwise or local assessment of the modeling error presented in"ASME V&V 20-
2009. Asetpoint corresponds to the comparison of simulated and experimental values with their respeetive uncertginties

on set

points. The reference value is defined from the expected value of the multivariate metric plus.its standard uncertaipty. As

I's are

globally smaller than, equal to or larger than the validation uncertainty produced by experimental, numericpl and
input parameters uncertainties. The application and interpretation of the multivariate' metric is similar to the application

high-
in the

bedy of the document, the detailed formulation of the multivariate metfic)is reserved for Nonmandatory Appendix|A, and
a fdetailed example (i.e., fin-tube heat exchanger) covering multiple use-cases is outlined in Nonmandatory AppeLdix B.
N

etric.

e also
dbya
pes of

v3lidation variables presented in ASME V&V 20-2009: validation variables obtained from a direct measurement (type 1),

,orin

btants,
more,
hared

nental,
e also
[ion to
Hation
f other
Fiction

measured variables (a data reduction equation), or a single dimensionless variable (such as Nusselt number or fj

ca erete i e e 6 bi 6616 aftas ee oo ee—1h —Heepeneaen FA

del or

analytic equation to determine the validation variable). The ASME V&V 20-2009 approach characterizes an interval for
Omodel aS Omodel € (E = Uyal, E + Uy1). This interval is centered at the comparison error, E, and has a width proportional to the
validation uncertainty uy,. E'is the difference between the results of the simulation Sand experiment D (E =S - D), and uy,
depends on the experimental uncertainty up, the numerical uncertainty u,,m, and the input parameter uncertainty ui,put

that characterize the experimental error 6p, numerical error 8,y and input error §i,put, respectively.
This supplement presents a technique to extend the application of the pointwise or local assessment of the mo

deling

error (6moger) presented in ASME V&V 20-2009 to a global assessment of 8,041 based on pointwise results from multiple
validation set points within an application domain. The approach introduces a multivariate r* metric that is a weighted-
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sum-of-squares average of the comparison errors, E;, where i denotes the ith set point within the multiple set points,i=1,
.., N, and the weights are related to the contribution to the single set-point validation uncertainties, u,;. Use of the r?
metric is common in parameter estimation and other engineering disciplines (Beck and Arnold, 1977). It was introduced
as a validation metric by Hills and Trucano (1999). This metric has been used in several peer-reviewed articles (Hills,
2006; Hills and Dowding, 2008; Pereira, E¢a, and Vaz, 2017) to provide a more holistic, global assessment of model errors.

A multivariate metric is designed to quantify discrepancies between simulation results of a model and experimental
data at more than one validation set point. In its most basic form, the multivariate metric provides a weighted sum of
squares of the comparison errors obtained at each of the multiple set points. The value of the multivariate metric depends
on thg number of set points considered and so a reference result 1s determined from the number ol set points _ajd
knowledge or assumptions about the modeling error at each of the multiple set points (see para. 4.2.1). The referenge
result|provides a threshold value to assess the statistical significance of the modeling errors when compared to the
ion uncertainty, i.e., experimental, numerical, and input-parameter uncertainties. However, oneof the majn
featurps of the multivariate metric is its ability to incorporate and assess the effect of correlations between the compdr-
ison efrors across the multiple validation set points. Correlation between simulation results and experimental data pt
each spt point through shared inputs to data reduction equations is also taken into account because it is-already includ¢d
in the|pointwise ASME V&V 20-2009 validation metric.

The|multivariate metric offers an objective assessment of model performance removing the'subjectivity of traditionjal
appropches like comparing isolines from solutions, looking at the scatter of E;, or comparting color plots which beconme
very domplicated for cases with multiple physics of interest. Stated differently, the multivariate metric provides gn
objective approach for the validation assessment based on the defined performanée:yFor example, Pereira, Eca, aipd
Vaz (2017) calculated the flow around a ship using the time-averaged Navier-Stokes(RANS) equations with 13 differept
turbulence models. For each of the 13 turbulence-model solutions, they quantified comparison error and validatign
uncerfainty of the velocity components at 654 locations in the propeller plane. These single set-point assessmenits
showdd that selection of the optimum turbulence model depended on which set point was selected for assessmeit.
An altérnate approach that assesses the overall performance of the 13 models using the full set of 654 data points is mofe
appropriate. As a simple example, one would not compare how well two'straight lines with different slopes match a setpf
data thatislinear by comparing the lines at each set point. A global metric is needed for the question, “Which model fits the
entire|set of data the best?” The multivariate metric provides stich a global metric. Pereira, E¢a, and Vaz used the multi-
variatg metric to reduce the 654 comparison locations x 13\turbulence models set points to 13 values. This enablgs
ranking of the performance of the 13 turbulence models)with an objective approach. Nonetheless, as discussed fn
para. 4.2.1, comparison of different evaluations of the multivariate metric requires its normalization using a referenfe
value.

Uselof the multivariate metric was a topic of wotkshops at the ASME Verification and Validation Symposiums in 2019
and 2020 (E¢a, et al. 2019, 2020). The workshops participants were able to consistently demonstrate that the discre-
pancigs between simulation results and experimental data were globally larger than the validation uncertainty. As Ecaet
al. (20R0) discussed, at some of the validation set points, a wide range of numerical uncertainties were estimated from tte
same dlata by the different participants:Nonetheless, the result of the multivariate metric was not significantly affected
the vatiability in the estimation of the numerical uncertainty for a few validation set points. The workshop also illustrat¢d
that tHe multivariate metric enables a quantitative evaluation of the modeling error of alternative mathematical moddls
for the same problem, which is not easy to be achieved with local evaluation of the modeling error.

While the multivariateymetric provides the ability to measure overall behavior of a model relative to a set of expefi-
mental data, it does not replace single set-point assessments. For example, a validation data set with a change in physigs,
such as laminar to turbulence transition, may have single set points exhibiting significant modeling errors that becone
obscufed when inclitded into the multivariate metric. Thus, relying on the multivariate metric alone could lead to a falge
sense pf security,in applying the model at other application points within the validation space. Furthermore, increasing
the va
poor
point 1 2 aS-A-eeme A
between simulations and experiments that cannot be explained by the validation uncertainty and not as the sole measure
of modeling credibility.

In this supplement, section 4 presents the procedure for development of the multivariate metric, and section 5 illus-
trates application of the procedure to a comprehensively described example. Section 6 discusses some associated caveats
for further clarification. Nonmandatory Appendix A presents the detailed formulation of the multivariate metric, and an
example based on the ASME V&V 20-2009 fin-tube heat exchanger is described in Nonmandatory Appendix B.
Nonmandatory Appendix C presents examples of the choices required in the procedure for applying the multivariate
metric.

alidation cases yields false security. Useful insight is obtained by applying both multivariate me

ASHFES: orerresttso otteb B 6 orrofd panetes
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4 A MULTIVARIATE METRIC FOR RESULTS FROM MULTIPLE VALIDATION SET POINTS

A multivariate metric is designed to quantify the comparison of simulation results from computational models with
experimental data using data from more than one validation set point. The data can be from a variety of sources, for
example, multiple set points over time and space for a single multidimensional experiment, data from experiments using
the same apparatus at different set points (different flow rates), or data from a combination of variables from a single

experiment.
The multivariate metric introduced in para. 4.2 builds upon single set point validation quantification of model compar-
isen idati i i iquesof ASME V&V 20.200 i pache,

22).Abriefoverview of the approach described in ASME V&V 20-2009 is presented in para.4.1. A detailed develepment
of the multivariate metric follows in para. 4.2.

4|1 Overview of ASME V&YV 20-2009

ASME V&V-20-2009 considers validation for a single validation variable defined by a scalar quartity (see algo Eca,
Dpwding, and Roache, 2022). Therefore, it is mainly focused on, but not limited to, deterministic(simulations. An example
oflits application to stochastic simulations thatrequire the selection of scalar quantities that ciaracterize the distributions
is|presented in E¢a, Dowding, Moorcroft, et al. (2022). The validation metric presented in ASME V&V 20-2009 is bafed on
the comparison error, E, resulting from the comparison of a simulation solution value; S, to the corresponding vdlue, D,
frpm an experiment.
If model inputs are known exactly, the numerical solution is exact (infinite @rid iteratively converged to machine
curacy in a machine with an infinite number of digits) and for an equally perfect experiment with exact cdntrols
and configuration, then the experimentally observed/derived value is also exact; thus, E is the true model error
| odel- In practice, these idealized conditions are impossible to achieve. The ASME V&V 20-2009 method ac¢ounts
fdr errors in the simulation results, S, due to uncertainties in the specification of the input parameters, iy, (e.g.,
uncertainties in boundary conditions, fluid properties, and/or heat transfer coefficients required to perform the sjmula-
tipns), and due to numerical uncertainty, 6,,,m, (mesh/time-stepsidiscretization error and iterative convergence|error,
rqund-off errors and possibly statistical error if simulations-are unsteady and/or stochastic) as well as errors|in the
eXperimental outcomes, 6p. Considering the errors in the sitiulations (6model, Snum, and Sinpye) and in the experiments (6p),
the relation between 8,,,4¢1 and E is as follows:

E =S8 - D = dmpfel + Onum + 5input = op (4-1)

o8]

(9]

In principle, E, S, D, Smodel, Onum, Sinpuw and dpare single-valued numbers. If 8, ym, Sinpur and 6p are known, the truefmodel
effror can be calculated from

Shodel = E — (‘Snum + ‘Sinput - 5D) (4-2)

Single values can be calculated ohly for E, S, and D. An uncertainty is estimated to characterize the unknown errorg, 6,um,
ihpuo and &p, because the true\values are not available. The ASME V&V 20-2009 method characterizes each error dource,
, using standard uncertainties *uy and assuming that the expected value of all these errors is zero.

> >

—tnum < Snum < Ynum (4-3)
~Uinput < Sinput < Uinput (4-4)
—up S 5D S up (4'5)

Thestandard uncertainty uy corresponds conceptually to an estimate of the standard deviation o of the parent|distri-
butién from which &y is a single realization

In eq. (4-3), Unum iS @ measure of the numerical uncertainty that is a consequence of discretization and iterative
convergence, round-off error, and possible statistical convergence in the determination of the simulation value, S. Tech-
niques to determine u,,,, are presented in section 2 of ASME V&V 20-2009.

Also, in eq. (4-4), Uinpue is @ consequence of the standard uncertainties uy in the input parameters required to perform
the simulation that determines S. It is calculated by propagating the standard uncertainties of the input parameters
through the model as discussed in section 3 of ASME V&V 20-2009.
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Figure 4.1-1
Temperature T as a Function of Time
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The|determination of the experimental uncertainty up is discussed in section 4 of ASME V&V 20-2009. Naturally, the
deterthination of up depends on the definition of the validation variable. For example, if the validation variable is 4n
average value calculated from a subset of a ‘population of measurements, up will be different from the up value corre-
sponding to a validation variable defined by the individual measurements.

Thefuncertainties are combined intothe validation uncertainty u,,;, which in the simplest case ofindependence, leads fo

2.2 2 4
Uval = \/”D + Uinput + Ynum P

Chahges to eq. (4-6) required by shared contributions to these uncertainties are presented in ASME V&V 20-2009.
The| outcome of the. ASME V&V 20-2009 method is an interval that should contain the model error &y,o4el,

Smodel € (E - k-uy,y, E + k‘“val) “1

wherd the coefficient k is a coverage factor that defines the desired level of confidence. Values for k are typically in t
range pf 2 t0°3for 95% confidence (ASME V&V 20-2009), but the determination of k requires the knowledge (or assump-
tions)|of-the type of distributions that characterize the experimental input-parameters, and numerical errors.

ASM A also-providesanrexample-toitustrate teationof thepointwisemetricto-tensetpoints—the
results are shown in Figure 4.1-1. Experimental data, Ty,..s, are presented as solid circles with data uncertainty up added
as error bars. A corresponding simulation result, Ty,0qe1, is Shown as a solid line. Its range of uncertainty due to numerical
and input uncertainties, £Uyum+inpus IS shown using offset dotted lines. For this example, tyum+input IS calculated from uyym

and Ujnpy: assuming independence,
_ /.2 2 4-8
Unum+input = 4/ Yinput T ¥num (4-8)
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Figure 4.1-2
Comparison Error E as a Function of Time
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Following the ASME V&V 20-2009 method;amodel comparison error E;and a validation uncertainty u,, ;are caldulated
fgr each of the ten set points (i = 1 to 10)\where an experimental value is available for comparison,

6model,i € (E - k'”val,i) E; + k'”val,i) (4-9)

The validation results are plotted in Figure 4.1-2 with uncertainty evaluated at one standard uncertainty (k= 1).[For all
tgn validation comparisons, Eis negative. However, for seven of the ten set points, the validation uncertainty u,,, is|{larger
tHan the comparison error)E, and so it is not possible to identify the sign of the modeling error 8,,,4e1 (E¢a, Dowdinjg, and
Rpache, 2022), because the limits of the intervals (E - uy, and E + u,,;) have opposite signs. Therefore, at these seyen set
points, the conclusion'is |6model| < |E — Uval|- The fact that seven out of ten of the estimated intervals contain E = 0 ddes not
imply that thepeisapproximately a 7 in 10 chance that the model simulations are statistically consistent with the d4tatoa
rgnge of + onestandard uncertainty. The seven intervals are not centered at E = 0, and the ten evaluations of the modeling
efror share’at least uncertainties in the input parameters and perhaps in the numerical and experimental uncertdinties.
nerefore, validation uncertainties estimated at the ten set points are correlated because they share the same souirce of
icertainty and so their values may not be independent. Note that in this case, the correlation is between uncertaitjties at
e—ten—differentsetpointsandnotbetween—e G““";‘G- a rerteatd i tes—a $;v““ Oint.
The multivariate metric proposed in this supplement provides a global quantitative assessment that indicates if
comparison errors are globally smaller than, equal to, or larger than the validation uncertainties using the framework
proposed in ASME V&V 20-2009.

—
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4.2 Development of Multivariate Metric E,

The multivariate metric presented in this supplement can account for possible correlations of experimental measure-
ments, input-parameters, and numerical errors at the multiple validation set points. The correlation is quantified by a
linear correlation coefficient described in this paragraph.

Correlation may exist between experimental measurement errors at the multiple set points. The specific techniques to
experimentally quantify the correlation are beyond the scope of this supplement. The reader should consult references
(e.g., Coleman and Steele, 2009; Moffat and Henk, 2021) for experimental measurement uncertainty for techniques to
quant]ty correlation. While measurement correlation is difficult to quantity, the metric can be used to investigate,
commjon cases (independent or perfectly correlated). The dependence of the metric on correlation can be identified.'The
outcome provides direction on how resources for quantifying the correlation could change the metric.

Thelcomparison errors (and validation uncertainties) for data taken over multiple set points from an experiment pr
series|of experiments using the same apparatus are often correlated, even if there is no correlation between the errorsin
the measured data. For example, a transient model that overpredicts temperature at one time is likely to overpredict
tempdrature at an adjacent time, see Figure 4.1-2. One would also expect correlation to exist betweén these comparisgn
errorq (and validation uncertainties) evaluated at different spatial locations from the same experiment.

Simpulation solution values at multiple set points are always correlated through the input parameter uncertainty.
Uncerfainty propagation techniques account for the linear correlation of the simulation,solution values at multi
validation set points. The correlation of the numerical solution uncertainty, such as.the ‘€xperimental measureme
uncertfainty, is challenging to quantify. Two common situations, independent (correlation coefficients equal to
or perffectly correlated (correlation coefficients equal to 1), can be used to investigate the correlation of the numeri
uncerfainty at the multiple set points.

Multiple experiments performed using the same apparatus can also lead td-correlated comparison errors (and vali
tion upcertainties). Consider the case of data from heat exchanger tests atmultiple flow rates. Bias in data over multi
tests may be present due to sensor installation uncertainty (i.e., position errors, thermal contact effects, heat losses fro
the sepsor leads), sensor calibration errors, and environmental biases: Simulation models for the experiment contajn
uncerfainty due to uncertainty in the model parameters, which represent material properties and other characteristi
Unles$ comparison errors (and validation uncertainties) are‘taken from independent experiments with the corre-
spondiing model solution evaluated at independent values forthe model parameters (e.g., independent conditions, prop-
erties], the validation data at the different set points willlbe correlated.

The| multivariate metric defined and evaluated in this supplement is based on Least Squares Regression and |is
commnly called an r* metric. This approach takés eorrelation into account by using a weighted sum of squares pf
the cdmparison errors with the weights defined:-by the inverse of a covariance matrix (Hills and Trucano, 1999).
The njetric is a summation of the squaressofithe comparison errors (E = S - D) normalized by the uncertainty n
the erfors represented by the validation unceftainties. The normalized quantities allow for the metric to be comparg¢d
to areference value to indicate whether.the comparison errors are consistent in magnitude and correlation structure with
the vdlidation uncertainties.

Spetifically, the metric is

4

2 _ T,-1 4-10

Epy = E Vi [E ( )
Herg, E is the vector ef comparison errors, E = [S; - D;] = [E;], and V,, is the covariance matrix that characterizes the

correlption structureibetween the multiple validation variables.
The| covariance.matrix V,, can be written in an alternative form

2
Uyal,1 o Pl nbval, 1%val,n
: - -1

val =

11 - U

Yol 1A 1
LI vattt

The off-diagonal terms include the product of the correlation coefficient and the u,,’s at the respective validation set
points. The correlation coefficient is defined in introductory statistics textbooks (Peck, Olsen, and Devore, 2019). The
correlation coefficient is estimated by assessing the effect of errors at the respective set points. Errors that are identically
shared between the set points have a correlation coefficient equal to 1. Errors that are independent between set points
have a correlation coefficient equal to 0. Techniques are provided in Nonmandatory Appendix A to incorporate the effect
of correlation due to shared or independent errors at the multiple validation set points.
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For illustrative purposes, it is useful to consider a two set-point example. After performing the matrix operations of
eq. (4-10), the two-set points result can be expressed as the following equation for an ellipse in the (E;, E3) space:

2 2 E.E
1 E E P1,2P2,15152
g2 1 2 )22

(4-12)
mv 1 _ 2 2 u u
P1,2P2,1 || tval, 1 val2 val, 14val,2

Considering eq. (4-12), one can see that E,%w is the global length of the multivariate vector for E;, weighted by signifi-
cahce e -more certain validation experimentsare urnighfnd more hnavi]y thanless certainvalidation experiments. This
wieighting renders the metric dimensionless (because uy, ; has the same dimension as E;), allowing information|frpm set
points with different validation variables to be used in the global assessment.
Eq. (4-12) also shows that selecting two points with identically shared errors (i.e., perfectly correlated, p1 2| = p21
=[1) will lead to a singular covariance matrix. For this condition between two set points, the multivariate metric is finite if
and only if Ey = E3 and Uya) 1 = Uyar 2. For conditions where all set points have perfectly correlated errors, it is not gppro-
priate to apply a multivariate metric.
On the other hand, for the special case where E; and E; are uncorrelated (p1, = p21 =.0),-€¢q. (4-12) redudes to

2 2
2 Ej Ej ]
Epy=|—5—+ (4-13)
Uyal,1 Uyal,2

E. = \/ET%W is a dimensionless quantity that scales with the number of setgpoints, and so it is necessary to introduce a
rdference value E..;, which has two main purposes as follows:

(a) enabling the comparison of E,,, values obtained from differenttumber of validation set points
(b) estimating the discrepancy between simulations and experinients that can be explained by the validation fincer-
tdinty, i.e., the experimental, input, and numerical uncertainties

4.2.1 Estimating a Reference Value, E,s, for the Multivariate Metric. The reference value squared Erzef is the expected

value ofE,Zm, , denoted ( E,%w ) plus its standard uncertainty. Standard uncertainty is included to handle the special cpse for
which (E;) equal to zero. This case would occur if the simirlation model perfectly represents the physics of the experinents,
ifthe uncertainties in d,,0q4e1 at each set point are represented by symmetric distributions, if one knew and used thje true
vilues for the model parameters and quantities mieasured to evaluate the E;, and if the numerical uncertainty assqciated
wiith the simulation is zero. Note that other measures of central tendency such as mode or median could have been ysed to

define (EV%W).
The evaluation of (E,%w) and its standard uncertainty u ;2 requires knowledge of the underlying distribution for a
mv

population of possible comparisen‘errors E;. The estimation of this standard uncertainty based on normally distrjbuted
camparison errors and the useof-sampling techniques for more general distributions are presented in paras. 4.2.1.1 and
4p.1.2, respectively.
Two methods are deScribed in paras. 4.2.1.1 and 4.2.1.2 for calculating a value for Erzef. For normally distrjbuted
cqmparison errors (paxa. 4.2.1.1), the reference value is derived from the y* distribution. A sampling method is prdposed
if|the comparisomyerrors cannot be reasonably described using a normal distribution (para. 4.2.1.2).

4.2.1.1 Normally Distributed Comparison Errors (Sensitivity Approach). If the comparison errors E; at the mpltiple

sdqt points<an‘be represented by a normal distribution, then E,%w is distributed as Chi-squared, *(df), with the degfees of
freedom;df, equal to the rank of V,,; (Hills, 2006). If the measurements are independent, the rank of V,,,; will be equal to the
nyimber'of measurements. There is no restriction on the independence of the differences, nor requirements for umpi

ean ad ndard-unce ntle ncethe differences be normalized b neg{4 0 he exnected
S S S o-diHerences =Wa¥a - Yala o =Ya 0 e-e

variance of the y*(df) distribution are
(Emw) = (D) = df (+14)

uéz = var(Er%w> = var(;(2 (df)) = 2.df (4-15)

mv
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The Chi-squared distribution, y*(df), is tabulated in most statistical textbooks (NIST/SEMATECH e-Handbook of Statis-
tical Methods) and can be evaluated using internal routines from several software packages, e.g., Microsoft Excel. The sum

of the

expected value and the standard uncertainty (i.e., square root of the variance) of the y*(df) distribution will be used

as a reference value to represent a standard uncertainty range on E,Zm, for normally distributed comparison errors.

4

6m0del

2009.
tion b

appro

set pojint, i, due to the uncertainties represented by the probability distributions associated with)up, unym, and uj,p|.e.

These samples are used to estimate ( Enzw ) and Erzef.

(Ejio

vectorfaccounting for covariances between the validation set points is the estimate ofE,%w .Itis calculated using eq. (4-10).

The fqllowing procedure is used to calculate E,%W .
Step 1. Using the samples E; ; developed from the methodology defined iitASME V&V20-2009 for each of the n validatign
set pojints i = 1, ..., n, evaluate the vector of expected values (means). of the differences

Step 2. Estimate the covariance matrix V,, for correlations between elements (Ej) ; of (E) using the approach outlined jn

Nonm|

Stepy 3. Evaluate (E,%w) using eq. (4-10) using E =2XE).

signifi

that the distribution of differences forthe'“ideal” population about a zero mean value is the same as the distribution pf

popul

The] following procedure is Gised to evaluate E,%w and thus Erzef:
Step} 1. Subtract the corresponding set point expected values (means) from each of the j samples of the differences fpr
each yalidation set point\i:

uinput-

Step 2. Evaluate [E,%w J,i for each set point i, separately, using eq. (4-10) with E'replaced by (E.f) ; This step provideq a
distriBut i i istributi i i

B¢ = <E3w> + Jvar(Eq,) =df + 2df (4-16)

is not normally distributed, E,%W will not be represented by x*(df). In this case, a sampling approach is propoesed fo
estimgte contributions to E ..
A géneral approach to uncertainty quantification is based on Monte Carlo sampling, as presented in ASME W&V 2p-

This approach allows one to fully account for the effect of nonlinearities in the model and various forms of correlp-
etween the data, between the simulation results, and between data and the simulation results, The samplipg
pch generates j samples for the differences Ej;; between the simulation and experiment(for each validatign

4.2.1.2.1 Estimation of the Expected Value<E,fw>. To estimate (Ef%w) by samplingza distribution of the mean valups

Fthe differences E; ; for each validation set pointis calculated and collected intothevector (E). The magnitude of this

<E> B [<Ej>,IE<Ej>,n] o [<EJ>,] (4-17)

hndatory Appendix A.

4.2.1.2.2 Estimation of Erzef. An estimate.of the reference value Erzef by sampling is developed to understand the

cance ofE,%w . Erzef is calculated from-an “ideal” distribution, i.e., one with zero model comparison error. Assuming

ntion of E;; about (E}) ;, Erzef can‘be calculated from the deviations of Ej; from (E}) ;.

(Eref)]",' = {El] - <E]>z] (4-18)

2

Step 3. Evaluate the expected value (i.e., ( E,%w )) and variance [i.e., E,%W ] of this sampled population for E,Zm,.

Step 4. Estimate Erzef with eq. (4-16) using ( Efw yand , var(E,%w) . The value ofE,%w can be compared to Erzef to compile

evidence that the discrepancies can be explained by the estimated uncertainties in its value.
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Figure 4.2.2-1
Assessment of Three Scenarios
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4.2.2 Interpretation of E,%,,,. Figure 4.2.2-1 offersa'simple demonstration of the interpretation of the metric E2
lid horizontal line indicates ( E,%w ) given that the'expected value for E; is zero, i.e., (E;) =0,i= 1, ..., n. Note that (

nzero as the value of any realization of E,%w cannot be negative. The dashed line represents Erzef, ie, ( E,%w )

andard uncertainty u 2
mv

Consider three scenarios of the metric E,%w as quantified by eq. (4-10) in Figure 4.2.2-1. The results for Scenarios ]

2

dicate that the weighted differences between simulations and measurements, E;,,, ,

ofe standard uncertainty of Enzw )ie, E,,Zw < <E3w> + up2 .Nonetheless, Scenario 1is below ( Enzw ) whereas Sce

mv
between ( E,%w ) and Erzef . This suggests that the comparison errors are consistent with the uncertainties a{
terized by V,,.dn contrast, Scenario 3 results in a value for E,%W thatis several standard uncertainties larger than
oviding evidence that the comparison errors are significant relative to the uncertainties. Furthermore, Scen
ovides a,global measure of the ratio between comparison error and validation uncertainty.
The depenidence ofE,%w on the number of selected set points hinders the comparison presented in Figure 4.2.2-1
ingldifferent numbers of set points.

are within the expected val]lle and

A'solution thatimproves interpretability is obtained from the ratio of E,,,,, to E\., which does not depend on the n

.The
2 ..
my ) 1S

lus its
and 2

ario 2

char-

2
Enw)
ario 3

when

mber

of selected set points. E .,/ Efis a quantitative measure of the modeling error that indicates validation assessments based
on global differences between experiments and simulations. Obtaining E,,;,/E\ef < 1 only means that modeling errors are
globally smaller than the validation uncertainties. Therefore, the interpretation of the value of E,,,,/E,..f requires knowl-
edge of the validation uncertainty and comparison errors at each of the set points. As for the pointwise validation metric
(ASME V&V 20-2009; Ec¢a, Dowding, and Roache, 2022), the level of the modeling errors can be as high as the sum of
comparison errors and validation uncertainties. On the other hand, when the ratio E,,,,/E.ef is much larger than unity, it
provides quantitative assessment of the global level of the modeling errors when compared to the validation uncertainty.
Note that the confidence level used in the pointwise evaluation of the numerical, input, and experimental uncertainties is
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Table 5-1
Simulation Model Parameters a and b
Statistic a b
Mean 1.00 0.50
Standard uncertainty 0.05 0.10

GENERAL NOTE: Parameters a and b are independent and normally distributed.

embedded in the determination of the contributions to the covariance matrix, and so it is also reflected in the outcome pf

the mpltivariate metric.
Thejrefore, for analysis purposes, itis recommended to use the ratio E,,,,/ E¢ for quantitative assessments as'it removgs
the ddpendence on degrees of freedom, i.e.,, the number of validation set points.

5 EXAMPLE OF THE APPLICATION OF THE MULTIVARIATE METRIC SHOWING THE.EFFECTS OF
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main xurpose of this section is to illustrate the use of the multivariate meétric in a simple example and to point out the
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section steps through an example for determining the multivariate metric to objectively assess simulation results
very simple two-parameter linear algebraic model using validation measurement data from a test facility pt
le correlated set points in time. The data may be values for time instants«from a time series of temperatuie,
[y magnitude, or any other scalar quantity. There are no restrictions on<whether the data are instantaneoyis
or statistics such as averages or variances; however, such details are funrdamental to estimate the uncertainty
reported measurement data, up, and input uj,pu, and numerical uy,,4 Uncertainties in the simulation results. The

uences of ignoring correlation between the multiple validation\set points.
cond purpose of this section is to illustrate the use of the multivariate metric to objectively compare simulatign
to experimental measurement data across multiple sourees of simulation or experimental data, which can be
le mathematical models as illustrated in Pereira, Eca, and Vaz (2017) or multiple test facilities as in the presept
le. The sensitivity coefficients technique based on alinearity assumption is illustrated in para. 5.1, whereas paifa.
psents the application of the sampling approach that handles nonlinearities.
sider evaluation of the multivariate metric for@yvery simple example of a two-parameter linear algebraic model
validation measurement data at multiple set points. The simulation model consists of the following equatiof:

S(t) =a+ bt (5

S represents the result computedifrom the simulation model, and a and b are input parameters in the model. The
S, is to be compared with the measured quantity, D, at validation set points defined by time, t. For this example, the
values of the model input parameters a and b and their measurement uncertainties are assumed to be normally
uted and independent, and.their means and standard uncertainties are as listed in Table 5-1.

assumption that a and’bare independent implies that the off-diagonal elements in their covariance matrix, Vy, afe
Note that the parameters a and b will be correlated if a least-squares procedure is used to estimate the two
eters simultaneously. In that case, standard statistical packages provide estimates of the corresponding covariange
x of the simudation inputs. This correlation affects estimation of the covariance matrix Vy; s¢e
hndatory Appendix A.

simulation model [eq. (5-1)] is to be tested using data from each of three test facilities with measurements availabjle
times;.yvand t;, from each facility. Because of differences in experimental approaches, equipment, personnel, annd
nmental condltlons one would reasonably expect variability across the three facilities. The multivariate metrlc q-

(4-10}

facility.
Measurements are taken at the two times, t; = 1.0 secand t; = 3.0 sec. The corresponding data for the three facilities and
their standard uncertainties are listed in Table 5-2.

The

simulated quantities, S;, and the corresponding differences, E;, are evaluated using the mean values of the input

model parameters from Table 5-1 in eq. (5-1), and are listed in Tables 5-3 and 5-4, respectively.

10
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Table 5-2
Experimental Data D at Two Measurement Times From Three Independent Facilities
Facility D, D,
(D; at Time t;) (for t; = 1.0 s) (for t; = 3.0 s) Standard Uncertainty, up
1 1.65 2.90 0.05
2 1.35 2.55 0.05
3 148 268 008
Table 5-3
Mean Simulation Results, S;
tl 15
t; 2.5
Table 5-4
Comparison Error, E; at Two Measurement Times From Threé Facilities
E, E;
Facility (for t; = 1.0 s) (tz =3.05)
1 -0.15 -0.40
2 0.15 -0.05
3 0.05 -0.15

(&)

1 Sensitivity Approach

The covariance matrix V,, for the multivariate matrix iS estimated from contributions due to V,,m,, the nun
uncertainty in the simulations; Vi, the input-parameters uncertainty in the simulations; and Vp, the uncertainty
experimental data. The method described in detail inNonmandatory Appendix A is an extension of that described in
V&V 20-2009 for the calculation of uy, from eStimates of tyym, Uinpur, and up for a single set point. According

Vial = Voum + Vinput +Vp

In eq. (5-1), Vyum is zero since the simmdlation model, eq. (4-18), is a simple algebraic equation, which in this
example is not affected by round-off. errors. Therefore,

00
Vaum = [0 0]

The validation variable, D, is directly measured and since the same input parameters are used for each facility, the
dentical shared errars.between the validation set points for the simulation inputs. Therefore, errors in the ing
rgdmeters will haye the same effect on the simulation of each facility. Furthermore, this example corresponds to C
presented in Nohmandatory Appendix A. In the sensitivity method, that is based on a linear approach, the inp

—

tHe input.parameters Vx (see Nonmandatory Appendix A) using the following:

T
Vinput = Xg-Vx-Xg

herical
in the
ASME
ly,
(5-2)

imple

(5-3)

reare
ut pa-
hse 1B
ut pa-

rdmeters covariance matrix Vi, is estimated from the matrix of sensitivity coefficients Xs and the covariance mafrix for

(5-4)

For this simple example, the simulation model is linear, and so it is straightforward to determine the sensitivity matrix

of S with respect to the parameters X; = a and X, = b for the two-time instants:

081 08
_Eg_ltl_ll (5-5)
S AR A B
da db

11
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The covariance matrix Vy for a and b is evaluated using the standard uncertainties given in Table 5-1. Since a and b are
independent, the off-diagonal elements of this matrix are zero.

2
vy = (0.05) 0 5-6)
2
0o (0.10)
Evaluation of Vi, using eq. (5-4) gives
T _ 100125 00325] 57)

Vinput = AS- VXA = 0.0325 0.0925]

Thel nonzero off-diagonal terms in eq. (5-7) signify that the two simulated values S; and S, are correlated:
Thelstandard uncertainty, up, for the measurements from each test facility is listed in Table 5-2. The measurements afe
taken fat different facilities and do not share error sources at the two-time instants. The covariance matrix, Vp, for the
measyrements (Case 1A of Nonmandatory Appendix A) is given by

(005> 0 l k)

D =
0 (0.05)

Give¢n the estimates of Vi,ym [€q. (5-3)], Vinput [€9. (5-7)], and V), [eq. (5-8)], the matrix Vs calculated using eq. (5-5), fs
|4 Voum + Vinput +Vp

val =

= [0 0]+{0.0125 0.0325] [(0.05)2 0 l

5P
00 0.0325 0.0925 0 (0.05)2 5P)

_ 10.0150 0.0325
~ [0.0325 0.0950

Notp that Vy, is applicable for all three facilities because the $tandard deviations of the measurements at the two-tinme
instanjts are identical in all facilities, and so Vp is equal for\the three facilities.

The|standard validation uncertainty, u,;, for each measanement time is the square root of the corresponding diagonjal
term df the matrix in eq. (5-9). The comparison error, E;-and validation uncertainty, uy,;, are shown in Figure 5.1-1 at the
two njeasurement times t; = 1 sec and ¢, = 3 secand the ratio E/uy, is presented in Table 5.1-1.

Forfcomparison of results from the sensitivity approach described in this paragraph and from the sampling approadh,

which|is described in the next paragraph, values for E,,,, = «/E,%w are listed in Table 5.3-1 for Vj,,, calculated using the

sensit]vity analysis (para. 5.1) and using sampling, which is described in para. 5.2. The value of E s for the sensitivity
approfch is calculated from eq. (4-16)wusing df = 2, yielding E..r = 2.

5.2 Sampling Approach

Thi§ approach applies the §ampling methodology described in Nonmandatory Appendix A to the linear example for the
three facilities and the tw0.time-instants listed in Table 5.1-1. The comparison error, E, is calculated from the differenfe
betwegen simulations and*the measurements.

E = meanj[Si,j - Di,j] = meanj[E,-]j] (5'10)

Latin Hypercube sampling (LHS) is used (see ASME V&V 20-2009) with n,. = 1,000 realizations to estimate the effectpf
model paraimeter uncertainty and measurement error on the simulation and experimental data, respectively. The simp-
lation|values are estimated by sampling the following model input parameters:

Si) = Si(aj, b«) (5-11)

The uncertainty in the model parameters is defined with normal distributions using statistics from Table 5-1.
aj, bj = LHS[N(mean(a), standard uncertainty(a); (5-12)
N(mean(b), standard uncertainty(b)]
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Figure 5.1-1
ASME V&YV 20-2009 Validation Metric (E + u,,) at the Two Times for the Three Facilities
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Table 5:1-1
Ratio of Comparison Error, E, to Validation Uncertainty, u,, at the Two Time Instants for the Three Facilities
E/uy.;, Ratio-of Comparison Error to Validation Uncertainty
Time, s Facility 1 Facility 2 Facility 3
1.0 -1.225 1.225 0.408
3.0 -1.298 -0.162 -0.487

Latin Hypercube sampling iscalse used to estimate the effect of measurement error for the experimental data.
Di,j = Di + di,j (5'13)

d; j = LHS[N(0, standard uncertainty(D;)] (5-14)

The experimental'data, D; at the measurement times, t;, are listed in Table 5-2. The statistics of the measurement error
arfe also listed.in’ Table 5-2.
The covariance matrix Vy, is estimated by

Vi

val = Vaum + COV(ES) (5-15)

where{E-)-are-the-sampled—vralues—forthe-compBariSoR—erreEs
TeFe—trat 2 < ree—v-arth +O+—c1t P FFO+S5-

The quantity E,,zw is calculated using eq. (4-10) and the covariance matrix Vy, is estimated from eq. (5-15). The value for
E\¢ for the sampling approach is calculated as described in para. 4.2.1.2 for nonnormally distributed comparison errors.

5.3 Comparison of Results from Sensitivity and Sampling Approaches

Table 5.3-1 lists the values of E,,,, = E,%w and E s calculated using the sensitivity and sampling approaches. The small

differences observed between the Latin Hypercube results (“Sampling Approach”) and the sensitivity-based results in
Table 5.3-1 can be reduced by including a larger number of samples. The present example is linear and normal
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Table 5.3-1
Validation Results for Normally Distributed Simulation Model Parameters
Sensitivity Approach Sampling Approach
Facility Epny Eier Eny Eier
1 1.315 2 1.313 1.992
2 2.687 2 2.793 1.992
3 1.698 2 1.758 1.992
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utions are assumed for input and experimental uncertainties and so statistical convergence will lead tethe same

re 5.3-1 schematically shows the multivariate metric for the three facilities. If E,;,, > E.e;, thefi“the weighté¢d
rison errors are significantly greater than the validation uncertainties at the multiple set points, given thpt
0,i=1, ..., n. The results indicate that the value of the multivariate metric for test Facility"1 and Facility|3
hin the reference bound E .., and that for Facility 2 lies outside this bound. Therefore,"Facility 2 is the onlly
I which the discrepancies between experiments and simulations are globally larger thanthe validation uncertainty.
hat, in this example, the level of u,, at the two validation set points is similar for the thfee facilities (see Figure 5.1-|1)
the multivariate metric is showing that the data of Facility 2 produces the larger modeling errors.
re 5.3-2 illustrates the impact of the correlation characterized by V., on E,,,. The ellipses shown in Figure 5.3}2

ent curves of constant E,%w .The solid curve corresponds to the expected value onyiV<<E,%w>) and the dashed curye

ponds to the reference value, Erzef . The corresponding equations for theellipses in Figure 5.3-2, illustration (a) afe

-1

2 0.0150 0.0325] o[\
E; By -

Em = [E1 E2] [0,0325 0.0950} [ ]

Ey
— (B Ep| 2576 —8814]|E1 (5-16)
= [ 1 2]. .
—88.14_-40.68 | | E,

257.6-E{ + 2-(288.14)-E|-E, + 40.68-EF

E; and E; are the comparison errors at /= 1 and t, = 3, respectively.
inclination of the major axis of the ellipse:and the relative length of the major and minor axes provides a graphidal
entation of the correlation between the.ccomparison errors at the two validation set points (E; att; =1sand E; att{=
br the case of normally distributed\differences, these ellipses correspond to curves of constant joint probability pf
rison errors, assuming (E;) = 04=1, 2. For the present model [Figure 5.3-2, illustration (a)], high values of E; tend o
pond to high values for E,(Likéwise, low E; tends to correspond to low E3. This means that the errors in the
tion of 80ge1,1 aNd S1oadf2 are positively correlated, which affects the global evaluation of the comparison errofs
lidation uncertainties obtained at the two set points.

re 5.3-2 presents also the two comparison errors for the three test facilities as listed in Table 5-4, where the
nce E; (at t = t,.5:1) is plotted along the abscissa, and E;, (at t = t; = 3) is plotted along the ordinate. As for the

rison presented-in Figure 5.3-1, the point corresponding to Facility 1 is within the solid ellipse (E,%w), that fpr
y 3 is within the dashed ellipse (Erzef), and the point for Facility 2 is outside both ellipses. Because of the correlati¢n
d by the'simple linear simulation model, the E,%w for Facility 1 is lower than that for the other two facilities, evg¢n

0 this"point is more than twice the Euclidian distance from E,%w =0 (eg, E;1 =0, E; = 0).
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The discrepancy introduced by ignoring this correlation is illustrated in Figure 5.3-2, illustration (b) that presents the
results obtained ignoring correlation, i.e., setting all the off-diagonal terms in V. to zero. In that case, eq. (4-10) becomes

—1 2 2
2 00150 0 Er| _ B By 517
= [E; E,|- 1r | = A7
Emy = [B1 2][ 0 0.0950] [Ez} 0015 0,095

The ellipses that represent the expected value of E,%w and the reference value Erzef have the two axes parallel to the E;
and E, axes and so they lead to a different ordering of the comparison between the simulations and the test facilities.
Figure 5.3-Z, 1llustration (b) indicates that the agreement between the measurements and simulation results 1s best for
Facility 1 when correlation is considered, but worst when correlation is ignored. In this example with only twa'setpoints,
itfis possible to see that the evaluation of Figure 5.3-2, illustration (b) thatignores correlation (by setting the.off-diagonal
tgrms to zero) matches the assessment based on the pointwise intervals presented in Figure 5.1-1. Fagility1 is tHe only
one that shows two intervals indicating a negative 6,,04e (Uvar i the same for the three facilities), which agrees wjth the
positive correlation between the two validation set points. However, Facility 1 also leads to the largest values of cqmpar-
ispn errors at the two validation set points. Therefore, if correlation is ignored, the largest discrepancies between sjmula-
tipns and experiments are obtained for Facility 1.

5|4 Summary

A validation metric presented is designed to characterize modeling errors when:data is considered from mpltiple
vdlidation set points. Correlation in comparison errors across multiple validation’/set points is induced by simylation
mpodels that possess more than one uncertain model parameter and may befpresent even if the measurements gre not
correlated. Examples of correlated comparison errors include measurements.from different spatial locations or datp from
tine responses. Although not demonstrated, the metric presented can beapplied without modification to multipl¢ types
of measurements as well as measurements of the same type at the same“or multiple set points. The normalization|by the
inverse of the covariance matrix has the effect of scaling the comparison errors, in addition to making them dimensi¢nless.
For example, one may measure temperature and pressure at the'same or at different set points for simultaneous usg in the
miletric. Observed pressure comparison errors and observed emperature comparison errors are expected to be|corre-
lated, for example, if they are associated with the same "eonstitutive model (e.g., the ideal gas law).
The example presented illustrates the importance-of*accounting for correlation. Ignoring correlation can lpad to
incorrect conclusions about the observed comparisonetrors. Incorporating correlation allows one to address integrated
effects at multiple set points and multiple measurement types. A more detailed example of the application of the|multi-
vdriate metric using validation results from~multiple set points is presented in Nonmandatory Appen|dix B.
Npnmandatory Appendix A presents the equations required to calculate the covariance matrix for all the defipitions
of validation variables considered in ASME V&V 20-2009.
The correlation structure induced by even the simplest models (linear in this case) complicates the multiyariate
cogmparison of measurement dataswith model simulation results because equally probable measurement-simylation
differences (comparison errors)'do notlie at a constant distance from the origin, i.e., they are represented by ellipsgs that
have orientations of the major-and minor axes that depend on the correlation between the results at different validation
sgt points. The normalization by V,, accounts for the shapes of these ellipses.
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Figure 5.3-1
Schematic Representation of E,, for Three Facilities (Symbols) Using Sensitivity Approach
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GENERAL NOTE: The solid line represents the expected value while thexdashed line is offset by uncertainty.
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Figure 5.3-2

06 i - ‘\1I
a7 |
/ !
.-’/ !
0.4 / ﬂ ;
/ i
1
!
02
g0
B Cpaigy
-0.2 ‘ Eraviity 2
A iy s
® £,.,=0
-04 <>
S
'06 | 1 | | |
-0.6 -04 -0.2 0 0.2 04 0.6
&
(a) Correlated Errors in Estimates of True Differences
06 T T T /f i | - Y T T T
/// N\
. \
7 \
04 / A
/ )
| \
| £
0.2 ,‘ \
| |
| 1|
! |
g0 | |
| |
| |
‘n ) B iy 1
-0.2 L|, rf ’ Eraciliiy 2
‘\ f A Etacility 3
\ IF . Ezmv = 0
-0.4 \m /
\ / “"Esz
\ /
"\ / === P
% '
-06 I I | g L . |
-06 -04 -0.2 0 0.2 04 0.6
E;

(b) Effect of lgnoring Correlation

17



https://asmenormdoc.com/api2/?name=ASME VVUQ 20.1 2024.pdf

ASME VVUQ 20.1-2024

6 DISCUSSION AND CAVEATS

Different approaches can be used to compare simulation results with experimental measurements obtained at multiple
set points. The methodology presented herein represents an approach to define a multivariate metric for such a compar-
ison. The methodology chosen utilizes the concepts and procedures presented in ASME V&V 20-2009, coupled with
standard statistical techniques.

A multivariate metric allows one to characterize the comparison errors relative to the uncertainties at multiple valida-

tion set points. The weighted multivariate metric, E,%W ,is a standard regression measure of distance between simulation

validation set points.

(a) |Evaluating the multivariate metric for application to multiple validation set points requires the following informp-
tion:
(1) comparison errors E at each set point, i.e., the difference between the simulation results afidjthe experimental
data at each of the multiple validation set points.

(2) the covariance matrix (V) for these comparison errors. The covariance matrix dependson the numerical, inpit,
and eyperimental uncertainties, and the knowledge if errors at the multiple set points are shared (correlated) or npt
shared (independent). Note that the existence of correlation between input and experimental uncertainties at a given set
point plso influences the calculation of V,,, as described in Nonmandatory AppendixA.

(b) |The procedure to obtain V,, depends on the following two considerations:

(1) which of the four cases addressed in ASME V&V 20-2009 defined the validation variables: direct measuremept
(Case [1); result of a data reduction equation using several uncorrelated or corfelated measured variables (Cases 2 and 3);
or the| outcome of measured variables analyzed with a model different-from that used in the simulations (Case 4]
(2) therelationship between comparisonerrors (i.e., differences hetween the numerical and experimental values) pt
the myltiple validation set points, i.e., if these errors are assumed to.be'independent (not shared) or identical (sharefl)

The first consideration was already addressed in ASME V&V 20-2009, whereas the second one is a consequence of the
assesgment performed at multiple validation set points. [t mustBe'emphasized that the use of the appropriate method fpr
calculating the covariance matrix is essential for the outconie of the procedure. The “simplest approach” that ignorgs
correlption and input uncertainty may lead to a misleading’conclusion, whereas including correlation when none exigts
may ldad to an equally misleading conclusion. Therefore;the determination of the covariance matrix must be carried opit
with great care, i.e., selecting the most appropriate‘choice to take into account uncertainties and possible correlatiorfs.
This ignot always a trivial exercise, and it may depend on the definition of the different validation variables included in the
multiariate metric.

(c) [The multivariate metric E,%W produces aweighted distance thatis compared to areference value Erzef obtained fro

the expected value ofE,%w plusits standard deviation. The ratio between these two quantities provides a global assessmept
of the prror in the simulation modelresult. If the ratio is smaller than or close to unity, the comparison errors at multiple
set pdints may not be significant relative to validation uncertainty. The estimation of modeling errors depends ¢n
compgdrison errors and validatiomuncertainties. On the other hand, if the ratio is much larger than unity, the discrepancigs
between simulations and<experiments are mainly due to modeling errors and may indicate significant model bia

It nmjust be emphasized\that the metric is not a quantity that provides a pass/fail outcome of a validation exercide.
Obtaining E,,,/ Er <-1isot the goal of the multivariate metric. When the metric provides an indication of modeling errofs
significantly largerthan validation uncertainties (i.e., the ratio E,,,,/E\efis significantly larger than 1), it must be complg
mentdd with the pointwise information (ASME V&V 20-2009) of the level of validation uncertainties (main-diagonfal
entriep of the\eovariance matrix) to obtain a global estimate of the modeling error.

A cifiticism of any Emv -based metric, whether weighted or not, is that this measure of distance is more sensitive to the

1arger EreReesHetwee M odelpredictioh-andexperimental- databeeause-the 53 re-differenrtvalidationse iG‘
are squared. Another issue that occurs in regression is that an Emv -based metric has a known distribution (y?) only if the
differences are normally distributed. For the case of the multivariate metric, the requirement for normally distributed
differences can be removed if one utilizes the sampling approach discussed in para. 4.2.1.2 and Nonmandatory Appendix

A to evaluate the corresponding distribution for the E,%w based metric.

There is a significant advantage in accounting for the covariance between the E’s at different validation set points. The
approach presented in para. 4.2 transforms the comparison errors across multiple set points into a single measure by
accounting for correlation. This results in an increased ability to resolve the effect of model error when compared to set-
point by set-point evaluation as defined in ASME V&V 20-2009. As aresult, one is more likely to resolve discrepancies that
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are not explained by the validation uncertainty using a properly defined multivariate metric, compared to measures
applied at individual validation set points, as illustrated in the example presented in section 5.

However, because the validation differences are combined appropriately into a single measure based on the covariance
matrix (i.e., linear correlation), the combined representation is approximate if the correlation is nonlinear across multiple
set points. For example, if system physics changes between two time-measurements, resulting in a nonlinear relation
between the errors at these times, the combining may not be appropriate. In such cases, one can apply the multivariate
metric evaluation to subsets of the full domain where the subset is chosen based on similar physics. Similar situations may
appear in transient responses, for example, in the heating of a liquid that leads to evaporation. In that case, the multi-
v{riate metric may be applied to dilferent windows of time that correspond to the same physics.
Recall that the present multivariate metric is an extension of the pointwise estimates of the modeling error provifled by
tHe ASME V&V 20-2009 procedure. It provides a global quantification of the differences between experiments (physical
rdality) and simulations (modeling) that can deal with possible correlations between the n set points used'in its gvalua-
tipn. The ratio between the multivariate metric and a reference value (also discussed in this supplement) leads|to the
alpility to identify discrepancies between simulations and experiments that are globally larger than theé numerical)input,
and experimental uncertainties.
However, to have a global quantification of the modeling error, the level of the pointwise validation uncertaintief must
b¢ considered. Increasing the validation uncertainty at the single set points leads to a decrease of the multivariate metric,
byit this decrease is not caused by an improvement in modeling accuracy. As for the poihtwise metric (Eca, Dowdirlg, and
Rpache, 2022), it should be emphasized that the goal of the multivariate metric is not\t6 obtain a value smaller thian the
rdference value (ratio E,,,/E.ssmaller than unity). If the level of the validation un€erntainties is unacceptably large, p ratio
stnaller than unity only indicates that, globally, the modeling error should be smaller than the sum of comparison ferrors
and validation uncertainties. The ratio E,,,/E s should not be used as a pass /fail threshold of the validation exercige. The

etric does provide a quantitative global assessment of the modeling errérwhen itis much larger than one. Attribuftion of
the source or sources of the global modeling error can only be made threugh the validation uncertainties (that depgnd on
nyimerical, input, and experimental uncertainties at each set point realization and on the associated confidence |level).
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NONMANDATORY APPENDIX A

METHODOLOGY TO EVALUATE THE VALIDATION COVARIANCE
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-1 INTRODUCTION

The purpose of this Appendix is to present the two techniques available to evaluate the validation covariance mat
ara 4.2, eq. (4-9)], which includes contributions from the numerical input parameters and experimental uncertg
ne first technique is based on the sensitivity coefficients approach and the second on sampling-methods. The appli
these two techniques to a single set point is presented in sections 3-2 and 3-3 of ASME\V&V 20-2009. This Stg
esents the application of these techniques to the multivariate metric applied to, fi-validation set points.
The validation covariance matrix characterizes the correlation structure due tosinput, numerical, and measurj
rors for the comparison errors E; obtained at n validation set points that are_defined by eq. (A-1-1),

E; = Si(xl; X2y 'xm) - Di('xb X2y "t 'xm)) i=b 0
S; and D; are the values of the validation variables at the n validatien'set points obtained from experiments (I

The specific form of the equations to evaluate the validation«matrix contributions depends on the followin
(a) the determination of the validation variables. Four cases are considered in ASME V&V 20-2009:
(1) Case 1: validation variable is directly measured.
(2) Case 2:validation variable is a result defined by a data reduction equation with no shared error sources be
e measured variables.
(3) Case 3:validation variable is a result defined\by a data reduction equation with shared error sources betwse
easured variables.
(4) Case 4: the result of a simulation is.compared to a validation variable evaluated from measured vai

These four cases are described in thisJAppendix.

DTES:
For the four cases, the sharing ef'error sources mentioned above is related to the experimental data and input parameter
simulations at each set point.
In Case 4, the model used-in,the simulations is independent from the model applied to the measured variables to obf]
experimental validatiomvariable.
(b) the existence ofshared numerical input parameters or experimental errors at the n validation set points incly
e determination‘ef\V,,. Two bounding cases are considered:
(1) no commion (shared) errors in the simulation (S;) and/or in the experimental measurements (D;) at
lidation set\points.
(2) errors are identically shared at the n validation set points in the simulation (S;) and/or in the experi
easurenients (D)), i.e., errors are the same at the n validation set points.
These two assumptions are bounding for the relationship between errors at the multiple validation set points,

X Vval
inties.
cation
ndard

ement
(A-1-1)

;) and

CA)

tween

en the

iables

5 of the

hin the

dedin

the n

nental

as the

Cq

sefno shared errors has a correlation coefficient of zero, whereas the case of identical shared errors has a corr

lation

coefficient of one. The error sharing between the n validation set points is different from the error sharing that distin-
guishes the four cases described in ASME V&V20-20009. It is a consequence of the application of the multivariate metric to
multiple set points and so it is not addressed in ASME V&V 20-20009.
The flowchart in Figure A-1-1 provides a decision tree to identify the appropriate cases and bounding assumptions for
the relationship between errors at the validation set points. Note that this flowchart does not cover all the possible
situations of a validation exercise. For example, it is assumed that the direct measurement of a validation variable
guarantees that numerical input parameters and experimental contributions to the validation covariance matrix
are independent. Naturally, such assumption may not always apply to directly measured validation variables.
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Figure A-1-1
Logic Flow for Choosing Approach to Calculate the Validation Uncertainty Matrix, V5

Validation variable is No
directly measured

Validation variable is a No
result defined by a

data reduction equation

Yes Yes Validation variaple
Measured variables No comes from measurgd
share no error sources variables analyzed with

a model
Yes
Case 1, ASME V&V 20-2009 Case 2, ASME V&V 20-2009 Case 3, ASME V&V 20-2009 Case4, ASME V&V 20-2009
Validation set points Validation set points Validation set points Validation set points
share no common share no common share no common share no common
errors errors errors errors
Yés No Yes No Yes No. Yes No
(ase 1A | | Case 1B | | Case 2A | | Case 2B | | Case 3A | | Case 3B | | Case 4A | | Case 4B
Howetver, itis notdifficultto adjust each situation using the several possibilities described in the flowchart of Figure A-11.

Thel
all the|
Vval- S
illustr
remar
input

The]
nume
uncer
covery

equations that define the validation covariance matrix V,3rand its contributions are presented in this Appendix fpr
cases included in Figure A-1-1. To avoid unnecessary repetitions, the equations are organized per contribution fo
pction A-2 is dedicated to the sensitivity coefficients'approach with the different contributions to V., organized ps
hted in Table A-1-1. The sampling technique.isdescribed in section A-3. Finally, section A-4 presents importapt
ks about the calculation of V,,, for the strong version of simulation models, i.e., for the cases that assume that 4ll
parameters are hard wired, so there is.nio’input uncertainty.
calculation of the validation covariancematrix V,, is presented using standard uncertainties to characterize the
ical input parameters and experimental errors (Unum, Uinpuw and up). Equivalent equations are obtained if expand¢d
ainties (Unum, Uinpuw and up) are;adopted. Section 6-3 of ASME V&V 20-2009 discusses the determination of the
ge factors required to transform standard uncertainties in to expanded uncertainties.

Table A-1-1
Paragraph Case Contribution to V,,,
A-2.1 1A, 1B, 24, 2B, 3A, 3B, 4A, Numerical uncertainty, V,um
4B
A-2.2 1A, 1B Input parameters uncertainty, Vinpuc
A-2.3 1A, 1B Experimental uncertainty, Vp
A-2.4 2A, 2B, 3A, 3B Correlated experimental and input parameters uncertainty, Vinpue+p
A-25 4A, 4B Input parameters uncertainty of the simulations, Vs;npu, and of the model that handles the

experimental data, Vp input
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A-2 Sensitivity Coefficients Approach

(a) The four different cases illustrated in Figure A-1-1 lead to the following equations:

(1) Cases 1A and 1B: validation variable directly measured with no shared error sources between experiments and

simulations.
Vval = Vhum T Vinput +Vp A-2-1)
(2) Cases 2A, 2B, 3A, and 3B: validation variable computed from a data reduction equation.
Veal = Vum + VEnput+D A-2-2)
(3) Cases 4A and 4B: validation variable is evaluated from measured variables analyzed-with a model.
v (A-2-3)

=

24

4
fo
S€

easured quantities to obtain D;.
(b) These equations have a companion definition of the validation uficertainty u,, for a single set point takep from
ABME V&V 20-20009.

val = Voum + Vinput + VD,num + VD,input

ed to obtained the results of the simulations S;, whereas the Vp,,,,, contribution comes from the model app

r the two limiting cases: validationh set points do not share error sources (correlation coefficients equal to zero, ca
\, 3A, and 4A); validation set'paints share error sources (correlation coefficients equal to one, cases 1B, 2B, 3B, a
pcall that this choice is relatéd to the conditions at the n validation set points and not to the way each validation v4
determined.

-2.1 Contribution of the Numerical Uncertainty, V,um and Vp num (Cases 1, 2, 3, and 4)

The contribution of the numerical uncertainty in cases 1, 2, and 3 leads to V,,um, Whereas two contributions exist f
Voum and Vp, num- The expressions for the determination of these two matrices are similar. Therefore, only the equ
I Vhum-al€ presented. Expressions for Vp ., are easily obtained replacing the numerical standard uncertainty z

t poift Unym; BY Up num, i

(a] No Shared Errors Between the n Validation Set Points (Cases 14, 24, 3A, and 44). The standard uncertainty

In case 4, V,ym and Vp pum correspond to numerical uncertainties from two different models: V,,,,, refers to the model

ied to

(1) Case 1
tgal = tum + uiiput * up (A-2-4)
(2) Cases 2 and 3
“‘%al = Wpum T “i%xput+D A-2-5)
(3) Case 4
“\%al T ”Sz',num + “g,input + “12),num + u%,input A-2-6)

The expressions to determine the different contributions to the validation covariance matrix V., are presented|below

es 1A,
d 4B).
riable

rcase
ations
teach

of the

numerical error ateach set point, up,m ;, can be obtained with the techniques described in ASME V&V 20-2009. When there
are no shared errors between the n validation set points, the contribution of the numerical uncertainty to the validation
covariance matrix V,,, is defined by eq. (A-2-7).
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pam1 O 0
2
0 u . 0
Vaum = . nu.m,2 . . (A-2-7)
2
0 0 Unum,n

(b) Shared Identical Errors Between the n Validation Set Points (Cases 1B, 2B, 3B, and 4B). For the case the numerical
errors are shared by the n set points, the contribution of the numerical uncertainty to the validation covariance matrix
Vhum i defined by eq. (A-2-8).

Unum,1 Unum,1%num,2 **° Ynum,1%num,n
A4 — | ¥num,2%num, 1 Unum,2 --+ Unum,2%num,n (A-28)
num . . .
Unum,n¥num,1 Ynum,n¥num,2 - Unum,n

A-2.2| Contribution of the Input Uncertainty, Vinp. (Case 1)

In cpse 1, the contributions of the numerical input and experimental uncertaintiéssjto the validation uncertainty fis
indep¢ndent and so Vj,,, depends only on uncertainties of the m input parameters uj,pyt,-
(a) |[No Shared Errors Between the n Validation Set Points (Case 1A). When there are no input errors shared by the|n
validafion set points, Vinp is obtained from eq. (A-2-9).

T
Xs,1Vx,1Xs,1 0 o 0
T
0 Xq oV 1 X3y @, 0 o)
Vinput = . 52 )_(’2 5.2 i ) (A-29)
0 0 o Xo Vi X4
S,nVX,n XS n

wherd Xg; is the sensitivity matrix for the simulationand Vy;; is the covariance matrix of the simulation inputs, both at set
point |. Since there are no shared errors, off-diagonal entries in eq. (A-2-9) are identically 0. The sensitivity coefficienjts
vectoi| originated by the m input variables at\each set point i, Xg; is a line vector (1 x m) defined by eq. (A-2-10)

(A-2-10)

X aS; dS;
S~ 0xq 0%y,

The|covariance matrix Vy; iSan{m x m) matrix defined by the standard uncertainties of the input parameters at each set
point | as presented in eq. (A-2-11).

2
(uxl)i 0 0
2
0 (ug) - o0
Vei=| %) ’ (A-2-1j1)
o o /u‘) \
L Ve

(b) Shared Identical Errors Between the n Validation Set Points (Case 1B). If input parameter errors are shared by all
validation set points, i.e,, the n Vy; matrices are all equal, the contribution of the input uncertainty to the validation
covariance matrix is defined by eq. (A-2-12).

Viout = XgVyXe (A-2-12)

inpu
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Xsisa(nx m) matrix containing the m sensitivity coefficients at the n set points defined by eq. (A-2-13),and Vyisam xm

diagonal matrix including the standard uncertainties of the m input parameters x; squared.

08, 08y
Oxp 0%,
Xg=|: -
2s,, as,,
— -
T ]

(A-2-13)

V, is defined by eq. (A-2-11) and can be calculated for any of the n set points.

Al2.3 Contribution of the Experimental Uncertainty, V), (Case 1)

When the experimental measurement does not share any errors with the simulation and the validation variab
directly measured, the contribution of the experimental uncertainty to the validation covariance\matrix is indepen

tgchniques described in ASME V&V 20-20009.
(a) No Shared Errors Between the n Validation Set Points (Case 1A). For the case that the validation set points
share experimental errors, Vp is defined by eq. (A-2-14).

[¢]

. (A-2-15).

Ar2.4 Combined Contribution of Input and Experimental Uncertainties, Vinpue.p (Cases 2 and 3)

b¢tween the cases with (case 3) and without (case 2) shared errors between the measured quantities that
ppinted out-below. Recall that the distinction between cases 2 and 3 is different from the possible corre
b¢tween the n validation set points used in the multivariate metric.

es are
entof

the input uncertainty. The standard uncertainty of the measurement, up,, can be obtained\ateach set point usipg the

Ho not

upy 0 - 0
0 udy ... 0
Vo= 1?,2 . (p-2-14)
0 0 tupy,

(b) Shared Identical Errors Between the n Validation Set'Points (Case 1B). If the experimental errors are shared at the n
vdlidation set points, the contribution of the experimentaluncertainty to the validation covariance matrix Vpis defihed by

2
Up,1  Up,1UD,2 """ UD,14D,n
2
Vp ={UD24D,1 UD2 - 4D2UD,n (h-2-15)
2
Up,n4D,1 UD,n¥D,2 " UDn

When the validatienwariable is a result defined by a data reduction equation, the contribution of input parametdrs and
eyperimental uncertainties to the validation covariance matrix is done simultaneously. There are slight diffefences

Wwill be
lptions

(a) -No-Shared Errors Between the n Validation Set Points (Cases 2A and 3A). The contribution of the combined effect of

input parameters and experimental uncertainty to the validation covariance matrix Vi,py.p When the n validation set
pl' | | s definedl (A-216).

V(input+D)1 1 0 0

0 V(input+D)2,2 -+ 0

Vinput+D = . P . . .
0 0 e V(input+D)n]n
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T
Vlinput+D), , = (Xs,i = Xp,1)Vx,i(Xs,i = Xp,) (A-2-17)

vector containing the sensitivity coefficients of the simulations Xs; is defined by eq. (A-2-10), whereas the vector of

sensitivity coefficients of the experiments Xj; is given by eq. (A-2-18).

The)
obtain
for sh

(b)
share
covari

XS al
defing

Thel
(no sh
betwe
variab

A-2.5

oxy 0%,

Xp, = (A-2*18)

covariance matrix Vx; depends on the existence of shared errors between the measured quantities required fo
the validation variable. For the case of no shared errors (case 2), Vy; is defined by eq. (A-2-11). Onthe other han(d,
hred error between the measured quantities (Case 3), V; is determined from eq. (A-2-19):
7(u2) (upti.) -+ (uyu )
X1 i X17X9 i X1 %m i
2
Vy ;= (“xzuxl)i (uxz)i (uxzuxm)i (A-2-1P)
2
i, o), (12

Shared Identical Errors Between the n Validation Set Points (Cases'ZB and 3B). In the case the n validation points
dentical errors, the contribution of the combined effect of inputiand experimental uncertainties to the validatign
ance matrix Vippuep is determined from eq. (A-2-20).

T 2.
Vinput+D = (XS - XD)VX(XS - XD) (A-2-20)

nd Xp are (n x m) matrices that contain the m¢sensitivity coefficients at the n validation set points. eq. (A-2-1B)
s Xs and X) is determined from eq. (A-2-21).

oD, oD,
6x1 axm
Xp=|: . (A-2-21)
aD, oD,
6x1 axm

definition of the (nxwn) matrix Vyis equivalent to the previous section, i.e., Vy is defined by eq. (A-2-11) for casq 2
ared errors between the measured variables), and Vy is determined from eq. (A-2-19) in case 3 (shared errofs
en the measured variables). We recall that this distinction between cases 2 and 3 is related to the way the validatign
les are determined and not to sharing of errors between the n validation set points.

Contribution of Input Uncertainties When Experimental Value Comes From Measured Variables
Analyzed With a Model, Viyput, Vp,input

In this case there are contributions coming from the m input parameters x; required for the simulation Vi, and from
the I experimental variables, y, used in the model that produces the experimental results D;, Vp ;npue. Note that the model
used to post-process the measured variables is independent from the model used in the simulations.

The

determination of the Vi, matrix is presented in para. A-2.2 and the determination of Vp .y is similar. None-

theless, for the sake of clarity, the definitions of Vin,,: and Vpinpue are presented below.

(a)

No Shared Errors Between the n Validation Set Points (Case 4A). When there are no shared errors between the n

validation set points, the (n x n) matrices Vinpye and Vpinpye are defined by egs. (A-2-22) and (A-2-23).
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T
Xs,1Vx,1Xs,1 0 a 0
T
0 XgoVx 2 Xe, ... 0
Vinput = . 27X - (A-2-22)
: : . o
0 0 XS,nVX,nXS,n
| x5 v, 15 0 0 ]
DIVD.IXD 1
T
0 Xp 2 Vp XD o .. 0 2
VD jinput = . D2"D,2"D2 - th-2-23)
T
0 0 XD VD, nXD,n

The (1 x m) line vector of sensitivity coefficients of the m input parameters of the simulationh Xg; is defir

The (m x m) matrix that defines Vy; is defined by eq. (A-2-11) if the m input parameters of the simulationsrel
rrelated and by eq. (A-2-19) if they are correlated. The (I x [) covarianee'matrix Vp ; is determined by similar defi
., for | independent measured variables used in the model that produces D;, Vj; is defined by eq. (A-2-25).

2
S0 ()

On the other hand, if the | measured-variables are correlated Vp; is determined from eq. (A-2-26).

o .
<uy1),- (uyluyz),- (u)’luyl)i

2
(“yz“yl),» (“yz“yz)i (“yz)i |

t points, Vinpye is defined by eq. (A-2-27),

2
0 ) ... 0
Vp, = (”yz ; (f-2-25)

2
Vp,i= (uyZuyl)i (uyz)i (”yzuyz),- (h-2-26)

ed by

. (A-2-10), whereas the (1 x I) line vector of sensitivity coefficients of the | measured-variables used [in the
odel that produces D; is defined by eq. (A-2-24).
Xp = |— o — (h-2-24)
D M %

re not
itions,

(b) Shared Identical Errors Between the n Validation Set Points (Case 4B). When the errors are shared by the n valilation

T 2.
Vinput = XgVxXg (A-2-27)

and Vpinpue given by eq. (A-2-28).

T 2-
VD, input = XDVDXD (A-2-28)

The (n x m) Xs matrix is defined by eq. (A-2-13) and the (n x [) Xp matrix is determined from eq. (A-2-29).
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Table A-2.6-1
Summary of Equations Required to Calculate the Validation Uncertainty Matrix, V

Case Equations Required Comments
1A Viai (A-2-1); Vium® (A-2-7); Vinpue: (A-2-9); X2 (A-2-10); Vy;: (A-2-11); and Vp: (A-2-14) Vyalis adiagonal matrix
1B Vi (A-2-1); Vium: (4-11); Vippue (A-2-12); Xgi2 (A-2-13); Vx;: (A-2-11); and Vj @ (A-2-15) Vyar is a full matrix
2A Vear (A-2-2); Vium® (A-2-7); Vinpueent (A-2-16); Xg0 (A-2-10); Vy;: (A-2-11); and Xz (A-2-18) Vyaris adiagonal matrix
2B Viar: (A-2-2); Viaum: (A-2-8); Vinpueept (A-2-20); Xsi: (A-2-13); Vy;: (A-2-11); and Xp;: (A-2-21) Vyar is a full matrix
3A Vel (7-2-2); Vium: -2-7); VinpuwDr (-2-10); &s,ir (-2-10); Vi (7-2-19); and Xp ;- (A-2-18) Voal IS adtagomat matrix
3B Viai: (A-2-2); Vium: (A-2-8); Vinpueen: (A-2-20); X5z (A-2-13); Vy;: (A-2-19); and Xp;: (A-2-21) Vyar is a full matnix
4A Viai (A-2-3); Viums Vpnum: (A-2-7); Vinpue: (A-2-22); Vpinpue: (A-2-23); Xgit (A-2-10); Xp i (A-2-24); Vyal can be diagonal qr
Vyi: (A-2-11) or (A-2-19); Vp: (A-2-25) or (A-2-26) full matrix
4B Veai (A-2-3); Vaums Vpnum: (A-2-8); Vinpue: (A-2-27); Vpjinpue: (A-2-28); Xt (A-2-13); Xp i (A-2-29); Vyar is=a full matrix

Vyit (A-2-11) or (A-2-19); Vp;: (A-2-25) or (A-2-26)

The
simula
the dd
deterr

A-2.60 Summary of Equations Required To Determine V,, With Sensitivity Analysis

Tab
in Fig

A-3 PROCEDURE TO EVALUATE VALIDATION COVARIANCE MATRIX, V,a, THROUGH RANDOM SAMPLING

Wh
knowt
uncer
metha
covari

Vnu
the I

I 9

Xp=1|: . (A-2-29)
9, . 9D,
I, %

(n x n) covariance matrix Vyis defined by eq. (A-2-11) if there is ne correlation between the m input variables of the
tion and by eq. (A-2-19) if the m input variables are correlateds Similarly, for independent measured variables fpr
termination of D;, Vp is defined by eq. (A-2-25), whereas the case of correlated measured variables leads to Vp
hined by eq. (A-2-26).

e A-2.6-1 summarizes all the equations required+to calculate V,, for the eight cases included in the chart present¢d
ire A-1-1. The matrix is followed by the corresponding equation number.

bn the distributions that characterize the uncertainties of the input parameters and the experimental data afe
), Monte Carlo sampling can also be used to estimate the covariance matrix V,,,. If the propagation of the inppt
ainties through the model 'used in the simulations is independent of the numerical uncertainty, the sampling
dology described in ASME)V&V 20-2009 leads to eq. (A-3-1) for the definition of each entry of the validati¢n
Ance matrix.

"y

2 (Bir — E) (B — B (a-34)

I=1,K=1

1

n,— 1

[Vval],‘)k ~ [Vnum],‘)k +

is obtained from the equations presented in para. A-2.1; n, is the number of random samples over population; E; fis
sample from the population values associated with the uncertainties, ujnp, and up of set point ; Ej ¢ is the K" samplle

anopwlationyvaluas accaciatad writh tha unecartaintioc o apd-tat-setpointkE—andE—are-thesmeanvalubs
e R YarHesS— tatee Wi HhReert HatSetpott =—aFe-th e

from t

over the n, samples at set points i and k; and the subscripts i, k indicate the i

Equ

e S Hmprraiter A
th k™ element of the corresponding matrix.

ation (A-3-1) estimates the contribution to V., of two validation set points, i and k. Details of the sampling tech-

niques applied at each set point (i and k) for cases 1, 2, 3, and 4 are described in section 5 of ASME V&V 20-2009. However,

as des

cribed in the previous section using sensitivity analysis, the relationship between the errors at the n validation set

points also affects the sampling approach.

The

sampling approach accounts for correlation between the errors characterized by up and uj,,,c and allows for

nonnormally distributed experimental data and simulation model parameters. The sampling method does not make any
assumption about the properties of the model used in the simulations.

28


https://asmenormdoc.com/api2/?name=ASME VVUQ 20.1 2024.pdf

ASME VVUQ 20.1-2024

A-3.1 No Shared Errors Between the n Validation Set Points (Cases 1A, 2A, 3A, and 4A)

When there are no shared errors between the n validation set points, the samples over the input parameters are
independently generated to obtain the distributions of comparison errors. As an example, the input parameter uncer-
tainties of the m input parameters at the n validation set points are sampled as illustrated in eqs. (A-3-2) and (A-3-3).

Ei,I = Si,1<xl,17 x2y1, ey xmyI) - Din(xle, xsz, ey xm’I), i= 1, N (4 [A'B'Z)

Ei o =S (o 7o 05 o X ) =D (o oo xn o X ) i=1 1 A-3-3)
st e 7 S st I SR T

The samples of the input parameter uncertainties are independently generated, i.e., independent sample setsifx:),, x2,; ..
xb/ and [x1x, X2 . Xmk] are generated to evaluate the comparison error at the two validation set pojnts 7 gnd k.

A4 TWO SHARED IDENTICAL ERRORS BETWEEN THE n VALIDATION SET POINTS (CASES 1B, 2B, 3B, and
4B)

When there are shared identical errors between the validation set points, the samples_over the input uncertginties
wpuld be identical, which means that the same sampling of the m input variables is used-at\all the n validation set points,
i.g, I = K in eq. (A-3-1).

At5 VALIDATION COVARIANCE MATRIX, Vy,, FOR THE STRONG VERSION OF THE MODEL

The strong version of model absorbs all errors of the input parameters in dip4e), i-€. all input parameters are hardwired
td the model and so &j,p, is merged with 610401 This leads to a validation uncertainty “331 defined by eq. (A{5-1).
2 2 -5-
Uyal = Upum T 4D A-5-1)
Therefore, the validation covariance matrix defined by eq.,(A-5-2) includes only numerical uncertainty (Vy,},) and
eyperimental uncertainty (Vp), which have been presented\in paras. A-2.1 and A-2.3.

Vval = Viaom + VD A-5-2)
If the errors are not shared at the n validation set points, the validation covariance matrix V., is defined by eqs. (A-2-7)
md (A-2-14). However, if the errors are identically shared at the n validation set points, the three matrices, V,um, Ip, and
V{awill be singular (have a zero determinant),Therefore, the multivariate metric cannot be calculated. In such condiitions,
the modeling error at the n set points sheuldead to similar comparison errors (E) and validation uncertainties (U,};) and
s@ a multivariate metric is not required-to assess the global modeling error.

QO
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NONMANDATORY APPENDIX B
EXAMPLE PROBLEM: FIN-TUBE HEAT EXCHANGER

B-1 INTRODUCTION

The| purpose of this Appendix is to illustrate the application of the multivariate metric to quantitativelyxcomparel a
computational model to experimental data at multiple set points. The multivariate metric discussed insection 4 is used.
Example calculations are shown.

As

presented in the following tables. Example calculations are performed using Excel (Microsoft Office 365 ProPlus, versign

1803)

which
The
(a)
(b)

(c) |Section B-4: reporting of simulation model

(@)
(e

B-2 VALIDATION EXAMPLE

The
ASME
The
Use of
“clean|

B-3 E

Six g
and tH
The
T, giv
inlett
point

The
param
and td
ramet

number of significant digits from the calculation inputs have not been tracked. The precisionofthe input data is s

with default precision. Results are rounded to two digits after the decimal point exceptifor small numbers (< 1),
are reported using scientific notation rounded to two digits past the decimal pgint:
organization of this Appendix is as follows:

Section B-2: reporting of the validation case

Section B-3: reporting of the experimental data

Section B-5: evaluation of the pointwise ASME V&V 20-2009 metric
Section B-6: evaluation of the multivariate metric E

validation case is the fin-tube heat exchanger used as an<example problem in ASME V&V 20-2009. Figure 1-4-1 pf
V&V20-2009 provides a schematic of the geometry identifying relevant geometric features and parameters
experimental data used in this Appendix are syntheti¢ values generated per para. 7-3.2 of the ASME V&V 20-2009.
synthetic rather than experimental data facilitates'“teaching” because dependencies can be controlled to provigle
" results to demonstrate and document effects:

XPERIMENTAL DATA AND UNCERTAINTIES

xperiments are conducted that vary the inflow temperature, T;, from ~70°C to ~ 92°C. The outflow temperature, T,
e ambient temperature, T, are‘measured. See Table B-3-1.
datareduction defined in eq/(B=3-1) is used to calculate the heat transfer rate, qp, from the measured values T; afjd
en the fluid flow rate, Q, the fluid density, p, and the specific heat, C,,. For a given flow condition, an increase in tIe
bmperature yields an in‘crease in the fluid temperature thus an increase in the outlet temperature measurement. Set
conditions and results for each experiment are summarized in Table B-3-1.

ap = PQCY(T; — T,) (B-341)

Fin-Tube Heat Exchanger example assumes that replicate experiments are not performed to quantify data ajd
eter urieertainties. Instead, the experimental apparatus and data collection are assumed to be well characteriz¢d
have.well characterized uncertainties. Estimates of the random and systematic uncertainties for the input pp-

ersyX; = {T;, To, Q, p, and C,}, are reported in Table B-3-2. Additional parameters, X; = {Tw, ks ks h;, hy and h,}, afe

inclu
therm
surfac

ed in Table B-3-Z to support discussion of the simulation model in section B-4. The variables k, and Ky are the
al conductivities of the tube and fin. The variables h;, h; and h, are convective heat transfer coefficients for the inner
e of the tube, fin, and outer surface of the tube, respectively. The flow temperatures T;and T, have shared systematic

sources.

Because the heat transferrate, qp, is calculated from the datareduction eq. (B-3-1), data uncertainty, u,p, is quantified as
input parameter uncertainty from uncertain inputs when propagated through the data reduction equation. For this
example, ugp is calculated using the method of sensitivity coefficients described in para. 4-2.2 of ASME V&V 20-

2009;

see para. 5-2.1.
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d
The sensitivity coefficients, X,-;TD ,for parameters X; are calculated analytically in eq. (B-3-2) using the dataredu

1
eq. (B-3-1).

ction of

Tian pQCpT;
oT;
%p —PGT
odTo
Oy qu_D | PQC(T - T,)
' ox; oQ
0q_D pQCp(T; - ’I;))
dp
c 9| [pQC,>(T— T,>)
Poc,

eq. (B-3-3).

9y, kg —6m’ ]
T— = C,T = 0—=|[6.21 X 10 "— || 4180—— |(70.44°C)(W)) = 1810.18W
1 a,l-; pQ pt (99 m3)( s kgoc ( )< )

0
The computed sensitivity coefficients, XiaqTD , for each experimentare reported in Table B-3-3.

1

-3.1 Experimental Data Uncertainty

rqot-sum-square of uncertainties from random, s, , and'systematic, bgp, sources.

2 2

qu = qu

2
+ qu

inl matrix notation is

2

T
qD = XDVX(H’ld)XD

N

B-3-2)

An example of the calculation of the sensitivity coefficient for parameter T; for Experiment T of Table B-3-1 is defined in

B-3-3)

Data uncertainty, u,,, for the heat transfer rate, qp, for eachvexperiment is computed rigorously using the method of
s¢nsitivity coefficients as described in para. 4-2.2 of ASME V&V 20-2009. Per eq. (4-2-4) of ASME V&V 20-20009, ugpis the

B-3-4)

Equation (4-2-6) of ASME V&V 20-2009-provides the propagation equation for random uncertainty, s,p. The eqpation

B-3-5)

Xp is the matrix of sensitivity.coefficients for an experimental result as written in eq. (B-3-2). Vx (rnd) is the covalriance
miatrix for the random uncertainties in the input parameters. Because cross-correlations of random parameters arp zero,

B-3-6)

V¥ (rnd) is a diagonal matrix with entries 5)2(1, along the diagonal [eq. (B-3-6)].
>512~l, 0 0 0 0]
0 s 0 0 0
Vx(md)={0 0 s 0 0
0 0 0 s 0
ko 0 0 0 |
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Using sensitivity coefficients from Table B-3-3, X for Experiment 1 is defined in eq. (B-3-7).

1810.18
—1732.32

Xp=| 7787 |W (B-3-
77.87
77.87

7)

Similar expressions are used for each experiment. Using uncertainties from Table B-3-2, Vx (rnd) is defined in eq.

(B-3-8

The)

Qm
=N

which|

Caldg
The)
in ma

Vx
ramet

T;a
(sys)

i
4.90 E—-07 0 0 00
0 4.90 E—07 0 00
Vy(nd) = 0 0 2.50E—05 0 0 (B-31
0 0 0 00
0 0 0 00
calculation of quD for Experiment 1 is defined in eq. (B-3-9).
4.90 E—-07 0 0 00 1810.18
0 4.90 E-07 0 0.0 —1732.32 5
= [1810.18 —1732.32 77.87 77.87 77.87] X 0 0 2.50 E-05 0.\01 X 77.87 (W
0 0 0 9° 0 77.87 (B-31
0 0 0 00 77.87
= 3232
yields eq. (B-3-10).

Sgp = |50, = V323W7 = Lgow (B-3-1

ulated values for s, for each experiment are reportediin Table B-3.1-1.
propagation equation for systematic uncertainty, b, ,is‘provided in eq. 4-2-5 of ASME V&V 20-2009. The equati
rix form is defined in eq. (B-3-11).
2 T
qu = XDVX(SYS)XD (B'3'1
sys) is the covariance matrix for systematic uncertainties with non-zero off-diagonal terms for correlated p
brs as follows:

J

P)

0)

n

1)

T .
bTi bTibTo 0 0 0
2
bT,-bTo bTo 0 0 0
V(sys)=| 0 0 by 0 0 (B-3-12)
2
0 0 0 b/, 0
2
0 0 0 0 b
Cp‘
nd T, arecorrelated because they share identical systematic error sources. Using uncertainties from Table B-3-2, Vx
S
H-06E—06—-96E—06 0 0 o
1.96 E—06 1.96 E—06 0 0 0
Vx(sys) = 0 0 1.00 E—04 0 0 (B-3-13)
0 0 0 2.50 E—-0S 0
0 0 0 0 1.00 E-04
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The calculation of quD for Experiment 1 is

bqZD= [1810.18 —1732.32 77.87 77.87 77.87]

196 E-06 1.96 E—06 0 0 0 1810.18
196 E—06 1.96 E—06 0 0 0 —1732.32 ) 5 (B-3-14)
X 0 0 1.00 E—04 0 0 X 77.87 (W7 = 1.38W
0 0 0 2.50 E-05 0 77.87
0 0 0 0 1.00 E—04 77.87
which yields eq. (B-3-15).
Jb"‘ =Jizsw? = 117w (B-3-15)

Calculated values for s, for each experiment are reported in Table B-3.1-1.
ug, for Experiment 1 is the combined value of s, [eq. (B-3-10)] and b,, [eq. (B-3-15)] as follows:

g, = V323W2 + 138W2 = 215 W (p-3-16)
Calculated values for uyp for each experiment are reported in Table B-3.1-1,
Aplot of qp versus T;is presented in Figure B-3.1-1. The range of u,p is included-on the plot as uncertainty barsjon the
data; however, values of ugp are sufficiently small to be occluded by the symbol.

Table B-3-1
Measured Flow Conditions and Calculated Total Heat Transfer Rate
Set Point Conditions Results
Example Experiment T;, °C T, °C Q; me /s p, kg /m3 Cp) J/kg°C T,, °C qp W
1 1 70.440 21.660 6:210 E-06 990 4180 67.410 771.870
2 4 73.580 22.140 6.240 E-06 990 4180 69.720 99.670
3 5 75.520 21.990 6.22 0E-06 990 4180 71.360 10f.080
4 7 80.570 21.880 6.220 E-06 990 4180 75.710 125.090
5 9 87.530 22.080 6.230 E-06 990 4180 82.020 14p.050
6 10 91.900 22110 6.260 E-06 990 4180 85.830 15f.240
Table B-3-2

Random and Systematic Uncertainties for Input Parameters, X;

Input Parameter Standard Uncertainties

X; Random, Sy; Systematic, by,
T;, £C 0.07% 0.14%
T,, 3C 0.07% 0.14%
Q, m/s 0.50% 1.00%
p, kg/m? 0.50%
Cp, J/kg°C 1.00%
T__°C 1.000
k, W/m°C 5.00%
ks W/m°C 5.00%
h;, W/m°C 10.00%
hs W/m°C 10.00%
h,, W/m°C 10.00%
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Table B-3-3
Calculated Sensitivity Coefficients for the Experiments Reported in Table B-3-1
Scaled Sensitivity Coefficients
Experiment T; - dqp/dT;, W T, - dqp/dT,, W Q- dqp/3Q, W p - dqp/dp, W  dqp/dC,, W
1 1810.18 -1732.32 77.87 77.87 77.87
2 1900.01 -1800.34 99.67 99.67 99.67
3 1943.85 -1836.78 107.08 107.08 107.08
7 2073.84 ~1948.75 125.09 125.09 125.09
5 2256.61 -2114.56 142.05 142.05 142.05
6 2380.68 -2223.44 157.24 157.24 15724
Table B-3.1-1
Random, Systematic, and Total Data Uncertainties for the Experimental Data
Standard Uncertainties
Ugp

Experiment Sqpy W bgp, W w %

1 1.80 1.17 215 2.76

2 1.90 1.50 2.42 2.43

3 1.95 1.61 2.53 2.36

4 2.09 1.88 2.81 2.25

5 2.28 2.14 3.13 2.20

6 241 2.37 3.38 2.15
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Figure B-3.1-1
Experimentally Determined Total Heat Transfer as a Function of Inflow Temperature
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B4 SIMULATION MODEL
The simulation model for the fin-tube hieat exchanger is described in para. 7-3.3 of ASME V&V 20-2009. Detdils are
provided in ASME V&V 20-2009, Mandatofy Appendix I. The simulation model differs from the model used to derjve the
synthetic data by a modification to the eontact conductance at the fin/tube interface, see para. 7-3.5.1 of ASME V&V 20-
2009, introducing a known systematic model error.
Br4.1 Simulation Results
Simulations for the setpoint conditions of Table B-3-1 are performed. Simulation parameters, set-point conditions, and
simulation results, gg.are reported in Table B-4.1-1. Simulation results are compared to the experimental data in Figure
B{4.1-1. The simulation results exceed the experimental measurements for T; < 74°F and are less than the experifental
mleasurementsfor T; = 74°F.
ASME V&V-20-2009 quantifies the degree of accuracy of a simulation model for a specified validation variabje at a

scussed in para. B-5.1. Quantification of validation uncertainty is discussed in para. B-5.2.

each parameter X; of the simulation model result g, are computed numerically using central finite-differences. The finite-
difference perturbation size is specified to be the same as the standard uncertainty (deviation) in each parameter to
approximate the gradient in the range of the uncertainty. The calculated sensitivity coefficients are provided in
Table B-4.1-2. Uncertainty due to numerics, U, is reported to be 0.07W for each of the simulation results.
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Table B-4.1-1
Simulation Parameters, Set-Point Conditions, and Results
Simulation Conditions Results
Simulation P, Cp, ky ks h;, hg, hy,
Case T, °C | T, °C | Q, m3/s kg/m> | J/kg°C | To, °C | @5, W | W/m°C | W/m°C | W/m°C | W/m°C | W/m°C
1 70.44 | 21.66 | 621E-06 | 990 4180 | 67.41 | 98.61 386 204 150 6 6
2 7358 22 14 624 E-06 990 4180 6972 104.00 386 204 150 6 6
3 7552 | 21.99 | 6.22E-06 | 990 4180 | 7136 | 10822 | 386 204 150 6 6
4 80.57 | 21.88 | 6.22E-06 | 990 4180 | 7571 | 11866 | 386 204 150 6 6
5 87.53 22.08 | 6.23E-06 990 4180 82.02 | 132.31 386 204 150 6 6
6 91.90 2211 | 6.26 E-06 990 4180 85.83 | 141.12 386 204 150 6 6
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Simulation Results and Experimental Observations for Heat Transfer as Functions of Inflow Temperature
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Table B-4.1-2
Sensitivity Coefficients for the Simulation Result

Scaled Sensitivity Coefficients

Simulation | T;-dqs/ | Tw 0qs/ | Q- 0qs/ | p-0qs/ | C,-0qs/ | k.- 0qs/ | ke-dqs/ | hi-9dqs/ | he-0qs/ | h, - 0qs/
Case aT, W AT, W QW | ap,W | ac, w ok, W ok, W oh, W | ohy, W | ah, W

1 141.69 -43.79 3.96 3.96 3.97 1.50 E-02 | 1.88 E-01 48.55 3.79 41.45

2 148.76 -44.77 4.18 4.18 4.19 1.60 E-02 | 1.99 E-01 51.59 4.03 44.04

3 +52-66 bt 437 437 438 +F-E-02T2067E-6+ 53-67 426 45.82

4 162.89 -44.23 4.78 4.78 4.80 1.80 E-02 | 2.27 E-01 58.85 4.60 50.24

5 176.96 -44.65 5.33 5.33 5.34 2.00 E-02 | 2.53 E-01 65.62 5.13 5¢.03

6 185.80 -44.71 5.66 5.66 5.67 2.10 E-02 | 2.70 E-01 70.01 547 59.77

Bt5 ASME V&V 20-2009 METRIC

Validation metric defined in ASME V&V 20-2009 is applied in this section/The metric will be computed at each
vdlidation set point. These results will be compared to the multivariate metric that is computed in B-5.1.

Bt5.1 Comparison Error, E

The metric in ASME V&V 20-2009 is based on comparison errdy, E, and the validation uncertainty, u,,. Compprison
efror, E, is defined in ASME V&V 20-2009. Per eq. (1-5-1) as

E = 95 ~rdf B-5-1)

The comparison error is computed with g, from Tablés:B-3-3, B-3.1-1, and B-4.1-1 and qp from Table B-3-1. Results are
rgported in Table B-5.2.2-1.

Bf5.2 Validation Uncertainty, u,,,

The validation uncertainty u,, is calculated as the root-sum-square of uncertainty due to numerics, up,m,, and pincer-
tdinty due to uncertain input parameters;Unpyc.p, Which affects both the simulation result and the comparison daa; see
ABME V&V 20-20009.

2 2 2 -5-
Uval = Ynum T Yinput+D B-5-2)

B-5.2.1 Numerical Uncertainty. For the fin-tube heat exchanger simulations, uncertainty due to numerics, Uy, iS
edtimated with a mesh refinement study using the approach reported in ASME V&V 20-2009. The uncertainfy was
eqtimated to be 0.0ZWV for each of the simulation results, therefore uy,, is defined in eq. (B-5-3) as follows:

Upym = 0.07W B-5-3)

B-5.2.2 Simulation Input Parameter Uncertainty. The variable ui,pue.p has random, Uinpueep (rnd), and systgmatic,
Uhputsn (SYs), error sources that combine also as a root-sum-square is defined in eq. (B-5-4).

2 2 2 -5-
uinrmf-l—n = uinr\nf-&—n(rnd) + uinpnf-&—n(Sys) B-5 4)

The propagation equation for the random uncertainty ujnpye.p (rnd) is obtained from eq. (B-5-5) as follows:

2 T -5-
uinput+p(md) = (Xg — Xp)~ Vx(md)(Xg — Xp) (B-5-5)
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The sensitivity matrices for Xg and X are defined in eq. (B-5-6).

Using values from Table B-4.1-2 and Table B-3-3, the sensitivity vectors for Xsand X, and the difference vector Xs—Xp f
ment 1 are defined in eq. (B-5-7) as follows:

[ 141.69 ]

Exper

0
3.96
3.96
3.97

—43.79
1.50E—-02
1.88E—01

48.58
3.79
41.45

) dq |
T3 1D
0T, oT;
0 %p
0 0T0
Qs s
0Q 0Q
% %p
ap dp
d o
. Ys Cp@
dq
S
XS = ooa andXD = 0 (B-54)
t% 0
ok,
d
fﬁ 0
()kf
9ag 0
' on;
a
fﬂ 0
Ohy
9 0
° oh,

W, Xp =

[ 1810.18
—1732.32
77.87
77.87
77.87

[eNeoNoNeNeNo})

W, and X5 — Xp =

| —1668.49]

1732.32
—73.91
—7391
—73.90
—43.79
1.50E—02
1.88E—01
48.55
3.79

41.45

w (B-51

7)
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Vx (rnd) is the covariance matrix for the random uncertainties in the input parameters [eq. (B-5-8)].

ASME VVUQ 20.1-2024

s£0 0 00 0 0 0 0 0 0
2
0 STy 0o 0 O 0 o 0 0 o 0
00 300 0 00 00 0
00 0 550 0 0 0 0 0 0
U U U U sgp U U U U U O
Vg(md)=[0 0 0 0 0 sf 0 0 0 0 0 B-5-8)
2
0O 0 0 0 O Sky 0 0 0
00 0 00 0 0 s,ff 0 0 0
00 000 0 0 0 sp0 0
00 0 00 0 0 0 O sﬁf 0
2
70 0O 0 0 O 0 0o 0 0 o sho'
Using values from Table B-3-2, Vy (rnd) is defined in eq. (B-5-9).
4.90E—-7 0 0 000070 00O
0 4.90E—-7 0 0 0~0.0 OO0 OO
0 0 2.50E-5 000 0 0 0 0 O
0 0 0 Q0 00O0O0O0O
0 0 0 000O0O0O0OO OO
Vx(md) = 0 0 0,~00000000 B-5-9)
0 0 0] 000O0OO0OOO
0 0 0 000O0OO0OOO
0 0 0 000O0OO0OOO
0 0 0 000O0OO0OOO
0 0 0 000O0OO0OOO
The calculation of ui%,puHD(rnd) for Experiment 1 is
2
uinput+D(rnd)
=[—-1668.49 1732.32 —7391\ —7391 —-73.90 —43.79 1.50E—02 1.88E—01 48.55 3.79 41.45]
490 E—07 0 0 00000000 [ —1668.49 |
0 4.90.E~07 0 000O0O0OO0ODO0OTO 1732.32
0 0 2.50E-05 0 0 0 0 0 0O OO —73.91
0 0 0 000000O0DO —73.91 (b-5-10)
0 0 0 000O0O0OO0ODO0OO -73.90 ) 5
X 0 0 0 000O0O0OO0ODOO X | —43.79 |[W™=297W
0 0 0 000O0O0OO0ODOO 1.50 E-02
0 0 0 000O0O0OO0ODOO 1.88 E-01
0 0 0 000O0O0OO0ODO0OO 48.55
0 0 0 00O0O0O0OO0OO0ODO 3.79
0 0 0 0000000O0O 41.45
VV}IiLll lelL‘lb CL{. (B'S'il)
: = [u2 = 2 - (B-5-11)
Uinput+p(tnd) = \[ufpouep(ind) = V2.97W" = 172 W
Calculated values for ujnpue+p (rnd) for each experiment are reported in Table B-5.2.2-1.
The propagation equation for the random uncertainty ujnpue+p (Sys) is defined as follows:
2 T 5.
uinput+D(sys) = (X5 — Xp)~ Vx(sys)(Xs — Xp) (B-5-12)
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Vx (sys) is the covariance matrix for the systematic uncertainties in the input parameters [eq. (B-5-13)].
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bf brby, 0 0 0 0 0 0 0 0 0
bgbr, bf 0 0 0 0 0 0 0 0 0
0o 0 b4 0 0 0 0 0 0O 0 0
0 0 0b 0 0 0 0 0 0 0
0 0 00 nép 00 0 U 0 0
Vy(sys) =| 0O 0 0 0 0 bf 0 0 0 0 0 (B15-1B)
0 0 0 0 0 b, 0 0 0 0
0 0O 0 0 0 0 0 b,ff 0 0
0 0 00 0 0 0 0 by 0O 0
0 0O 0 0 0 0 0 0 O bﬁf
0 0 0 0 0 0 0 0 0 0 by
Using values from Table B-3-2, Vy (sys) is defined in eq. (B-5-14).
VX(S]S) = (B-5-144)
[1.96 E-06 1.96 E—06 0 0 0 0 0 0 0 0 0
196 E-06 1.96E—-06 0 0 0 0 0 0 0 0 0
0 0 1.00E-04 O 0 0 0 0 0 0 0
0 0 0 2.50E-05 O 0 0 0 0 0 0
0 0 0 0 1.00E-04 O 0 0 0 0 0
0 0 0 0 0 1.00E-04 0 0 0 0 0
0 0 0 0 0 0 2.50E-03 0 0 0 0
0 0 0 0 0 0 0 2.50E-03 0 0 0
0 0 0 0 0 0 0 0 1.00E-02 0 0
0 0 0 0 0 0 0 0 0 1.00E-02 0
10 0 0 0 0 0 0 0 0 0 1.00 E1-02 |
The| calculation of ui%lpuHD(sys) for Experiment 1 yields eq. (B-5-15).
Uinput£D{SYS) = \/uéput+D(sys) = \/42.32W2 =651W (B-5-15)
Caldulated values for uj,,(ip (Sys) for each experiment are reported in Table B-5.2.2-1.
Uinp|it+p for Experimentil is the combined values of ujnpue.p (rnd) [eq. (B-5-11)] and ujnpueen (Sys) [eq.(B-5-15)] ps
followss:
Uinput+D = V2.97W? + 4232w = 45202 = 673 W (B-5-16)
Caldulated-values for ujn,,.p for each experiment are shown in Table B-5.2.2-1.

B-5

2:3-Estimated Intervals at Each Validation Set Point. The validation uncertainty, u,,;, is calculated by C0mbini1|lg

Unum [€Q. (B-5-3J] and Uinput+p 1€4- (B-5-10]] as a root-sum-square value, [see eq. (B-5-2)] as follows:

gyl = \/ Upum + Uinput+D = V4.90E — 03W? + 4520W2 = 4520w = 673 W

Calculated values for u,, for each experiment are reported in Table B-5.2.2-1.
Calculated values for E, Unym, Uinput+p(rNd), Uinpue+n(SYS), Uinput+p, aNd Uy, are reported in Table B-5.2.2-1. A plot of the
comparison error, E, with u,, as uncertainty bars is shown in Figure B-5.2.3-1.
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Table B-5.2.2-1
Comparison Error and Validation Uncertainty Estimated Using the Method of Sensitivity Coefficients

Model Comparison Error and Validation Uncertainty

Uinput+D
Simulation s o E Upums (rnd) (sys) Total Uya)
Case w w w % w w w w w %
1 98.61 77.87 20.74 21.03 0.07 1.72 6.51 6.73 6.73 6.82
2 104.00 99.67 433 416 0.07 1.82 6.96 7.19 7.19 6.91
3 108.22 107.08 1.14 1.05 0.07 1.87 7.25 7.49 7.49 6.92
4 118.66 125.09 -6.43 -5.42 0.07 2.00 7.97 8.22 8:22 6.93
5 132.31 142.05 -9.74 -7.36 0.07 2.19 8.89 9.16 9.16 6.92
6 141.12 157.24 -16.12 -11.42 0.07 2.32 9.51 9:79 9.79 6.94

Eiuuah W

Figure B-5.2.3-1
Comparison Error as a Function of Inflow Temperature With Bars Showing the Range of u,,,
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B-6 MULTIVARIATE METRIC
B-6.1 Multivariate Metric Calculated With Sensitivity Analysis

The multivariate metric, E,,,, is defined in eq. (B-6-1). It is the magnitude of the comparison error vector, E, over
multiple validation set points accounting for correlations between the set points.

2 T -1 B-6-1
Epy =E Vyq E ( )

where

S =Dy E;
E= = . (B_6_2)

2 (B-6B)

E is|the array of comparison errors. V,, is the validation covariance matrix.
Bechuse the magnitude of E,,, depends on the number of validation set points used to«Compute it (see section 4)fa

reference value, E ., is used for normalization. Paragraph 4.2.1 provides methods to caleplate E,¢. The ratio —* removgs
ref
the dependence on the number of validation set points and is used in this section as‘a metric for comparison of results afd

interpjretation.

B-6{1.1 Contributions to Validation Covariance Matrix. The validatien‘covariance matrix V., is a generalization jof

u%al tolmultivariate applications. Nonmandatory Appendix A explains that the approach to compute V, . depends on the
followiing:

(a) [whether the validation variable
(1) is directly measured (Case 1 of ASME V&V 20-2009)
(%) is aresultdefined by a data reduction equation where the measured variables share no error sources (Case 2 pf
ASME|V&V 20-2009)
(3) isaresultdefined by a datareduction equationyjwhere the measured variables share identical error sources (Cage
3 of ASME V&V 20-2009)
(4) comes from measured variables analyzed with a model (Case 4 of ASME V&V 20-2009)

(b) |[whether there are no common errofs between the validation set points or there are shared identical errofs
between the validation set points.

Thi§ logic flow is depicted graphically in Nonmandatory Appendix A, Figure A-1-1.

Like “3;11 , Vval has uncertainty contributions due to numerics, Vy,,m,, input parameters, Vi, and experimental data, Yp,
whichlare independent when th€ comparison data are directly measured. When the comparison data are calculated usipg
a data|reduction equation, like'heat flux gp for the fin-tube heat exchanger example, the uncertainties due to uncertajn
input parameters and Viypy and Vp are calculated together, Vi, ,,e..p- Therefore, for the fin-tube heat exchanger example,
Vyal is|defined in eq. (Bs6-4).

Vial = Voum + Vinput+D (B-614)

Tw¢ approaches are demonstrated for the calculation of the uncertainty due to input parameters, Viypyep. ORe
appropchses sensitivity coefficients that are valid for systems with locally linear behavior in the validation spade.
The ofthér-approach uses sampling that captures nonlinear behaviors. Because a linear model is sufficient fo
capture the elfects ol the systematic error mtroduced by the change In contact conductance for the In-tube heat
exchanger example, the results from the sensitivity coefficient approach and from sampling will be similar.

B-6.1.1.1 Numerical Uncertainty, V,,m. Two possibilities for calculation of V,,, are discussed in
Nonmandatory Appendix A, para. A-2.1. For the fin-tube heat exchanger example, uncertainty due to numerics,
Upnum, 1S Teported to be 0.07W for each of the simulation results and independence is assumed. Therefore, the diagonal
form is used in eq. (B-6-5) for calculating Vum-
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0072 0 - 0 490 E—03 0 .~ 0
v —| 0 o007 _| o 490E-03
num . .
0 0.072 0 4.90 E—03

B-6.1.1.2 Input Parameter Uncertainty, Viyput«p- Random and systematic input parameter uncertainti

(B-6-5)

es are

reported in Table B-3-2. Because random uncertainties are independent, the covariance array for random uncertainties,
Vyx(rnd), is diagonal. Systematic uncertainties may share common error sources and, therefore, may be dependent. The

c@variance array for systematic uncertainties, Vy(sys), will have nonzero off diagonal terms for contributions that
efror sources. Because of the potential differences in array structures, random and systematic uncertainti
adldressed separately in eq. (B-6-6).

Vinput+D = Vinput+D(rnd) + Vinput+D(sYs)

B-6.1.1.2.1 Random Uncertainties

(a) The method to calculate contributions to V,, from random error sources is found by, fellowing the flow 1
Npnmandatory Appendix A, Figure A-1-1 as follows:
(1) Choose from Case 1, Case 2, Case 3, or Case 4.
(2) Because heat flux is not directly measured, Case 1 does not apply.
(3) Because heat flux is a result defined by a data reduction equation, €ase’4 does not apply.
(4) Because random uncertainties are independent, Case 3 does not apply.
(5) Therefore, Case 2 applies.
(6) Choose from Case 2A or Case 2B.
(7) Because random error sources are independent, Case 2B{does not apply.
(8) Therefore, follow Case 2A.
(b) Case 2A. Vippur+p(rnd) is calculated as follows:

T
(Xs,1 = Xp,1) Vi, 1(md) (X5 1 — Xpy) O
Vinput+D(md) = 0 0
T
0 0 (Xs,n — Xp,n) VX,n(rnd)(XS,n — XD,n)

share
Es are

B-6-6)

bgic in

B-6-7)
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The sensitivity matrices Xg; and Xp; are defined in eq. (B-6-8).

T; s, [ 9ap,; |
For i
i oT;
0 an,t
oo,
aqS,z an ;
90 Qe
aqS,i an ;
ap ap
aqS,l 9y ;
Pac, CP ac,
g ;
Xs,i = | T dTo; and Xp ; = 0 (B-6:8)
qq ;
. S,i 0
9 i 0
0kf
'aqS,i 0
' om;
9, 0
6hf
g ; 0
° on,

wherd qs;and qp; are gs and g, for the ith experiment. The'covariance matrices, Vx;(rnd), for this example are identicl
Vy1(rmd) = Vy»(rnd) = ... = V, ,(rnd) = V,(rnd)-V,(rnd)-Vx(rnd) is given by eq. (B-5-8).
(-1)| Example: Set-Point Experiments 3 and 5. The\matrix to be calculated is shown in eq. (B-6-9).

T
(Xs,3 = Xp,3)" Vi 3(tnd)(Xs 3 — Xp 3) 0

T
0 (Xs,s — Xp,s)” Vx,s(md)(Xs,5 — Xp,s)

V;

1nput+D(rnd) = (B-6P)

Using values from Table B-4.1-1 and Table B-3-3, the sensitivity vectors Xg 3 and Xj, 3 and the difference vector X3 - Xj 3
for sef-point experiment 3 are_defined in the following set of equations [eq. (B-6-10)]:

152.68 [ 1943.85 ] —1791.17
0 —1836.78 1836.78
4137 107.08 —102.71
4.38 107.08 —102.70
437 107.08 —102.71
Xg3=| —4446 |W, Xp3= 0 W, andXg3— Xp3=| —4446 |W (B-6-10)
1.70 E—02 0 1.70 E—02
2.07 E—01 0 2.07 E-01
53.67 0 53.67
420 0 490
45.82 0 45.82

Vx(rnd) is given in eq. (B-5-9). The value of Viypuep(rnd)[1,1] is

(Xs,3 — Xp 3)" Vi 3(md)(Xs 3 — Xp 3) = 349 W* (B-6-11)
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Calculations for set-point experiment 5 are similar. The final matrix Vi,pue.p(rnd) is

349 0 2 -6-
Vinput+D(rnd) = [ 0 4.78]W (B-6-12)

B-6.1.1.2.2 Systematic Uncertainties

(a) The method to calculate contributions to Vinpu.p from systematic error sources is found from the flow logic in
Nonmandatory Appendix A, Figure A-1-1 as follows:

H—€hoosefromEase—+-€ase2€ase3;or€ase+4-

(2) Because heat flux is not directly measured, Case 1 does not apply.

(3) Because heat flux is a result defined by a data reduction equation, Case 4 does not apply.

(4) Because heat fluxis computed using the measured variables inflow temperature, T;, outflow tempernature, I, and
lumetric flow rate, Q, where the measured variables T; and T, share common systematic error sources*(e.g., mepsure-
ments in the same facility with the same instruments), Case 2 does not apply.
(5) Therefore, Case 3 applies.
(6) Choose from Case 3A or Case 3B.
(7) Because the validation set points may have common systematic error sources (e;g-measurements in th¢ same
facility with the same instruments), Case 3A does not apply.
(8) Therefore, follow Case 3B.

(b) Case 3B. Vinpue+n(sys) is calculated in eq. (B-6-13).

<

T -6-
Vinput+D = (Xg — Xp)" V(Xg — Xp) (B-6-13)

The sensitivity matrices Xs and Xp are defined in eq. (B-6-14).

o [\Nog, |
1. 10
T, T,
0 T 0@
0 oT,
945 %p
0Q oQ
P ,2
ap dp
91 dap
pan P de
(3qs
= — = © (B-6-14)
Xs ooaToo and XD
% 0
F ok,
dq
k f_S 0
oky
9ag 0
' oh;
(3qs
0
i
J
9 0
© 0h,

where g, and qp are vectors of the set point experiments being evaluated. The covariance matrix, V,(sys) is provided in
eq. (B-5-13).
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(-1) Example: Set-Point Experiments 3 and 5.Using values from Table 5.3-1 and Table 5-3, the sensitivity vectors for Xs
and Xp and the difference vector Xs — X for set-point experiments 3 and 5 are defined in eq. (B-6-15) as follows:

152.68  176.96 | 1943.85 2256.61 |
0 0 —1836.78 —2114.56
437 5.33 107.08  142.05
438 5.34 107.08  142.05
437 5.33 107.08  142.05
Xg=| —4446 —4465 (W, Xp= 0 0 W, and
2.07E—01 2.53 E—01 0 0
53.67 65.62 0 0
4.20 5.13 0 0
| 45.82 56.03 | L 0 0

[ —1791.17 —2079.65 |
1836.78  2114.56
—102.71 —136.72
—102.70 —136.71
—102.71 —136.72

Xg—Xp=| —4446  —4465 |W (B-6-1b)

1.70E—02 2.00 E—02

2.07E—01 2.53E—01

53.67 65.62
4.20 S.13
45.82 56.03
Vi(qys) is given in eq. (B-5-14). The matrix Vi pue.p(Sys) is obtained in eq. (B-6-16).
T 52.55 64472 -6-
Vipuep(55) = (X5 = Xp) Vs = XpI= | 3255 6447y (B-6-1f)

B-6/1.2 Calculation of Validation Covariance Matrix. The validation covariance matrix, V,,, is the sum of the covar-
iance matrices for uncertainty due to numerics, V,,um, and uncertainty due to uncertain input parameters, Vinput.p, S
eq. (B}6-4).

Forfet-point experiments 3 and 5, the V,,; matrix-calculated in eq. (B-6-17) using the method of sensitivity coefficienjts
is the|sum of eqgs. (B-6-4), (B-6-12), and (B-6-16):

Vyal = Vaum * Vigput+D = Voum + Vinput+D(rnd) + Vinput+D(5y5)

_ (B-6-17)
_[490E-03 0 ]Wz 4 [3.49 0 ]Wz + [52.55 64.47]W2= {56.04 64.47]W2

0 4.90E—-03 0 478 64.47 79.12 64.47 83.90

The| inverse of V,, is defined-in eq. (B-6-18):

{ 1.54 E—01 —1.18E—01] -2 (B-6-1B)

-1 _
Vval =|_ 198E—01  1.03E—01

va.

The| corresponding V., matrix calculated in eq. (B-6-19) using the sampling method is

_ _[490E-03 0 2 [6341 7553],2
Val = Voum + Vinput+D = [ 0 490 E—O3]W + [75.53 101.36]W

_[63.41 7553 ],,2
[75.53 101.36]

(B-6-19)

The inverse of V,, from sampling is defined in eq. (B-6-20):

{ 140 E-01 — 1.05 E—OI]W—Z (B-6-20)

vil=
— 105E—01 878 E—02

val =

NOTE: The inverse matrices are provided for checking purposes. When used for calculation of the multivariate metric below, all digits
from the matrix inversion function (e.g, minimum verse using Microsoft Excel, Office 365 ProPlus) are retained.
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B-6.1.3 Multivariate Metric Results. Calculation of the multivariate metric, E,,,, and the reference value, E,; is
demonstrated using the Method of Sensitivity Coefficients. In addition, the effect of neglecting correlations
between the set points is explored. Paragraph B-6.2 shows the results using sampling.

Comparison error E for the validation set points is reported in Table B-5.2.2-1. For set points 3 and 5, as examples, the
vector E is defined in eq. (B-6-21).

_ |53~ D3| _[10822 — 106.96],,, _ | 1.14 ], (B-6-21)
T |Ss — Ds| T |132.31 — 141.85 —9.74

B-6.1.3.1 Accounting for Correlation in the Comparison Errors. The matrix V,, for set points 3 and 5, which is
provided in eq. (B-6-17), is used to obtain eq. (B-6-22).

56.04 64.47 (B-6-22)
Vval = [64 47 83. 90]

The inverse matrix Vval ,

which is provided in eq. (B-6-15) gives eq. (B-6-23).
-1 1.54E-01 — 1.18 E—01}(;,,—2 B-6-23
Vval = [ LISE-01  1.03 E—OI]W ( )

E,%w is computed via matrix multiplication as follows:

2 _ gy g = [11s _9_74].{_ 1.S4E—01 —1.18 E—OIH 1.14 ] — 12.57 (B-6-24)

Emy 1.18 E—01 1.03E-01][—9.74

The value E,,, is obtained by taking the square root of E,%w in eg! (B-6-25).
E,y = \E2, = V12.5%:23.55 (p-6-25)

As discussed in para. B-6.1, the value of E,,,, is a function«of the rank of V,,;; therefore, a reference value, E,.; is ysed to
terpret E,,, relative to expected standard uncertainty-range on E,%w . Setting df (degrees of freedom) to the rankjof V,,

Here, df = 2), Erzef is calculated using eq. (4-16).
Bl =df+(\2df =2+ 22 =24+2=14 (p-6-26)

—
=

~

The value of E,¢ is obtained by taking/the square root of Erzef :
[-2 -6-
Eref= Ere =44 =2 (3627)

The ratio E,,,/E efis then-an indication of the extent to which the model, represented by E,,,,, conforms to the exjpecta-
tipn for E,,,, E e, withid one standard uncertainty on E,%,,,:

E,., _ 355
Eef 2

=178 (B-6-28)

The determination thatE,,,,/E..r> 1 is anindication that the model results show a significant systematic error relgtive to
tHe experiment due to missing model physics. For the fin-tube heat exchanger example problem, the missing physic} is the
miodification to the contact conductance at the fin-tube interface.

he fin-
tube heat exchanger problem is a common error shared by each of the validation set points. If the validation set points
were treated as independent, E,,, is calculated by the following:

Step 1. Use the validation matrix from eq. (B-6-22) setting the off-diagonal entries to zero [eq. (B-6-29)].

Vial =

va

56.04 0 2 (B-6-29)
[ 0 83.90]W
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Step 2. Calculate the inverse matrix Vv_a% as defined in eq. (B-6-30).

-1_ [1.78E—02 0 -2 (B-6-30)
Vval = [ 0 1.19E—02]W
Step 3. Calculate E,%w via matrix multiplication [eq. (B-6-31)].
2 _ T -1 5 . |1.78 E=02 0 | L4 | _ B-6-311
Egy=E Vi | E= [1.14 —9.74] { 0 1.19E_02] [_9.74] = 11§ ( )
Step) 4. Calculate E,, from the square root of E,Zm,.
Epp = VE5, = V115 = 1.07 (B-6-3¢)
Step 5. Compare to Ef
Emy _ 107 _ oy (B-6-3B)
Epef
The|interpretation of E,,,,/E;r< 1 is that there is no indication that the modelresults show a significant systematic errpr

relatiy
be mi

B-6.2

The)
evalua

to estimate experimental data uncertainty and simulation(input uncertainty, i.e., Vinpue+p, Will use sampling instead of a

sensit
B-6

were
20-20
Thel

copying data out of the printed documient. No sensitivity assessment was used to establish convergence of statistigs.

Anoth|
large 1
numb
statist]
Vinp
mean
ment

e to the experiment. The significance of the modification to the contact'conductance at the fin-tube interface woujd
sed.

Multivariate Metric Calculated With Sampling

multivariate metric does not change when sampling is i§ed. The same expression given in eq. (B-6-2) is used fo
te the metric for sampling. The same procedure is also used to compute the numerical uncertainty. The procedurgs

vity approach.

2.1 Input Parameter Uncertainty, Vinput.p.In'the sampling to estimate Vipye.p, twenty data points for qg. and g,
1 1

onstructed for each of set point conditions-using the Latin hypercube sampling approach described in ASME V&V
D9. The subscript i denotes the sample/index. These data are provided in Table B-6.2.1-1.
choice of 20 sample points is basedonproviding a relatively small data set that can be used as a practice problem lpy

er sample set with 320 samplepoints was constructed to show the difference in statistics between a small and a
ample set. Those data ane not reported. The sole requirement was that the large sample set have a much greatpr
br of samples than 20(Np justification of 320 is intended based on based concerns for rigorous convergence pf
iCs.
w+p 1S the covarianee of the variabilities of the sample comparison errors, E;, for set-point experiment i about its
value E;. Defining the deviation vector as El = E; — E; and the matrix of deviation vectors in a multivariate assegs-
hs E', V4 fs—given by eq. (B-6-34).

L _pTy (B-6-34)

Vinput+D = -1

where n, is the number of samples in the sample set.
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