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FOREWORD

In 2009, the ASME V&V 20 Committee published ASME V&V 20, Standard for Verification and Validation in Computa-
tional FluidDynamics andHeatTransfer. The Standardpresents a verification andvalidationapproach that quantifies the
modeling error of amathematical/computationalmodel for a specified quantity of interest at a specified validation point.
This means that the procedure presented in the Standard applies to pointwise validation variables. This Supplement
presents a technique to perform a global evaluation of themodeling error ofmultiple validation variables using the same
framework of the pointwise technique: comparison of simulation solutions with experimental data, and includes the
experimental, input-parameter and numerical uncertainties that contribute to the validation uncertainty. This multi-
variate metric can account for uncertainties shared by the multiple validation variables and indicates if discrepancies
between simulations and experiments are globally within the validation uncertainties or cannot be explained by the
validation uncertainties. Therefore, the interpretation of the results obtained from the multivariate metric requires the
knowledge of the validation uncertainties obtained from the pointwise technique; therefore, it works as a complement to
the pointwise technique and not as a replacement.
This supplement presents the following:
(a) a short description of the pointwise technique presented in the ASME V&V 20 Standard, to allow the use of this

supplement as a self-contained document
(b) the description of themultivariatemetric and the definition of a reference value tomake the outcome independent

of the number of validation variables selected
(c) a simple example illustrating the effect of correlation with discussion and caveats
(d) Nonmandatory Appendix A: a detailed description of the determination of the validation covariance matrix that

depends on the experimental, numerical, and input parameter uncertainties for the four types of validation variables
considered in the ASME V&V 20-2009 Standard
(e) NonmandatoryAppendix B: the application of themultivariatemetric to the example-problemof theASMEV&V20

Standard
(f) Nonmandatory Appendix C: examples of evaluation of the validation covariance matrix with discussion of the

assumptions required for its determination.
Richard Hills is the original author of the first draft of the main body of this document developing the multivariate

metric approach. In 2019, aworking group comprising LeonardPeltier, Urmila Ghia, Laura Savoldi, NimaFathi, andKevin
Dowding undertook the task of revising the draft and developing appendices tomature the document as an instructional
guide. In 2022, Luís Eça joined the working group. The group finalized the technical contents of this document and
ushered this document through review to become a supplement to the ASME V&V 20-2009 standard.
ASME VVUQ 20.1-2024 was approved as an American National Standard on February 26, 2024.
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CORRESPONDENCE WITH THE VVUQ COMMITTEE

General. ASME codes and standards are developed and maintained by committees with the intent to represent the
consensus of concerned interests. Users of ASME codes and standards may correspond with the committees to propose
revisions or cases, report errata, or request interpretations. Correspondence for this Standard should be sent to the staff
secretary noted on the committee’s web page, accessible at https://go.asme.org/VnVcommittee.

Revisions and Errata. The committee processes revisions to this Standard on a periodic basis to incorporate changes
that appear necessary or desirable as demonstrated by the experience gained from the application of the Standard.
Approved revisions will be published in the next edition of the Standard.
In addition, the committee may post errata on the committee web page. Errata become effective on the date posted.

Users can register on the committee web page to receive email notifications of posted errata.
This Standard is always open for comment, and the committee welcomes proposals for revisions. Such proposals

should be as specific as possible, citing the paragraph number, the proposed wording, and a detailed description of the
reasons for the proposal, including any pertinent background information and supporting documentation.

Cases
(a) The most common applications for cases are
(1) to permit early implementation of a revision based on an urgent need
(2) to provide alternative requirements
(3) to allow users to gain experience with alternative or potential additional requirements prior to incorporation

directly into the Standard
(4) to permit the use of a new material or process

(b) Users are cautioned that not all jurisdictions or owners automatically accept cases. Cases are not to be considered
as approving, recommending, certifying, or endorsing any proprietary or specific design, or as limiting in any way the
freedom of manufacturers, constructors, or owners to choose any method of design or any form of construction that
conforms to the Standard.
(c) Aproposedcase shall bewrittenasaquestionandreply in the same format as existing cases. Theproposal shall also

include the following information:
(1) a statement of need and background information
(2) the urgency of the case (e.g., the case concerns a project that is underway or imminent)
(3) the Standard and the paragraph, figure, or table number
(4) the editions of the Standard to which the proposed case applies

(d) A case is effective for use when the public review process has been completed and it is approved by the cognizant
supervisory board. Approved cases are posted on the committee web page.

Interpretations. Upon request, the committee will issue an interpretation of any requirement of this Standard. An
interpretation can be issued only in response to a request submitted through the online Inquiry Submittal Form at
https://go.asme.org/InterpretationRequest. Upon submitting the form, the inquirer will receive an automatic email
confirming receipt.
ASME does not act as a consultant for specific engineering problems or for the general application or understanding of

the Standard requirements. If, based on the information submitted, it is the opinion of the committee that the inquirer
should seek assistance, the requestwill be returnedwith the recommendation that such assistance beobtained. Inquirers
can track the status of their requests at https://go.asme.org/Interpretations.
ASMEprocedures provide for reconsideration of any interpretationwhen or if additional information thatmight affect

an interpretation is available. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME
committee or subcommittee. ASME does not “approve,” “certify,” “rate,” or “endorse” any item, construction, proprietary
device, or activity.
Interpretationsarepublished in theASMEInterpretationsDatabaseathttps://go.asme.org/Interpretationsas theyare

issued.
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Committee Meetings. The VVUQ Standards Committee regularly holds meetings that are open to the public. Persons
wishing to attend anymeeting should contact the secretary of the committee. Information on future committeemeetings
can be found on the committee web page at https://go.asme.org/VnVcommittee.
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PREFACE

The ASME VVUQ 20 Subcommittee for Verification, Validation, and Uncertainty Quantification in Computational Fluid
Dynamics andHeat Transfer is developing documents that describe techniques that allowusers ofmodelling and simula-
tion, particularly in computational fluid dynamics and heat transfer, to assess the modeling (validation) and numerical
(verification) accuracy of their simulations. The following are standards that have been issued or are being developed by
this committee as of the issuance of this supplement:

ASME V&V 20, Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer, presents
techniques to quantify modeling, numerical, and experimental accuracy for quantities of interest defined by a scalar
quantity. The techniques apply to a specified variable at a specified validationpoint and arebasedon the comparisonof
simulation results with experimental data. Simulations and experiments are assumed to have been performed for the
same conditions, i.e., same domain, boundary conditions, material properties, and heat transfer coefficients.

ASMEVVUQ20.1,MultivariateMetric forValidation, presents a technique that builds on thepointwise techniqueofASME
V&V 20 to make a global assessment of the discrepancies between multiple validation variables obtained from
experiments and simulations. Themetric can be applied to the same validation variable at different locations in space
and/or at different time instants, or to different validation variables at the same location and time instant, or even to a
combination of both. Furthermore, the multivariate metric can work with experimental, numerical, and input-
parameter uncertainties that are independent or shared by the multiple validation set points.

ASME VVUQ 20.2, Regression at an Application Point, extends the technique presented in the ASMEV&V 20 to validation
variables obtained at an application point where experimental data are not available. The regression is based on a
weighted least-squares approach that accounts for uncertainty in the data. The method can be used for both
interpolation and extrapolation to ensure that the validation range covers the domain of application. Themethodology
illustrates how to couple the concepts and procedures presented inASMEV&V20with standard statistical techniques.

The ASME VVUQ 20.1 and ASME VVUQ 20.2 supplementsmay be read as stand-alone documents, but the details of the
techniques to estimate experimental, numerical, and input-parameter uncertainties are only presented in ASMEV&V20.

ix
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MULTIVARIATE METRIC FOR VALIDATION

1 PURPOSE

This supplement presents amultivariatemetric to determine a global assessment of the discrepancies between experi-
ments and simulations based on pointwise results from multiple validation set points within an application domain. It
serves to extend the application of the pointwise or local assessment of the modeling error presented in ASME V&V 20-
2009.Asetpoint corresponds to the comparisonof simulatedandexperimental valueswith their respectiveuncertainties
obtained for a specified variable at a specified validation point.
A reference value is defined to account for the dependence of the multivariate metric on the number of validation set

points. The reference value is defined from the expected value of themultivariatemetric plus its standard uncertainty. As
a consequence, the comparison of the multivariate metric with the reference value indicates if modeling errors are
globally smaller than, equal to or larger than the validation uncertainty produced by experimental, numerical and
input parameters uncertainties. The application and interpretation of themultivariatemetric is similar to the application
of the pointwise technique at each of the multiple validation set points.
In this supplement, a summary of the ASME V&V 20-2009 pointwise metric is outlined (para. 4.1), followed by a high-

level description and example of the multivariate metric (para. 4.2 and section 5, respectively). To improve clarity in the
body of the document, the detailed formulation of themultivariatemetric is reserved for Nonmandatory Appendix A, and
a detailed example (i.e., fin-tube heat exchanger) covering multiple use-cases is outlined in Nonmandatory Appendix B.
Nonmandatory Appendix C presents examples of the choices required in the procedure for using themultivariatemetric.

2 SCOPE

The scope of this supplement is similar to the pointwise validation metric described in ASME V&V 20-2009 (see also
Eça, Dowding, andRoache, 2022). Therefore, themultivariatemetric applies to quantities of interest that are defined by a
scalar quantity. The present document describes the formulations of themultivariate metric for each of the four types of
validation variables presented in ASMEV&V20-2009: validation variables obtained froma directmeasurement (type 1),
a combination of other uncorrelated or correlatedmeasured variables in a data reduction equation (types 2 and 3), or in
an independent model or analytic equation (type 4).
Multiple set pointsmay be defined for the same validation variable at different locations in space and/or time instants,

or by different validation variables at the same location and time instant, or even by a combination of both. Furthermore,
the multivariate metric can work with experimental, numerical, and input uncertainties that are independent or shared
by the multiple validation set points.

3 MOTIVATION AND INTRODUCTION

ASME V&V 20-2009 presents a validation approach for estimating the model error, δmodel, considering experimental,
numerical, and input uncertainties in the reported comparison data from an experiment, D, and a simulation S (see also
Eça, Dowding, and Roache, 2022). The committee that developed ASME V&V 20-2009 limited its initial consideration to
validation for a single validation variable defined by a scalar quantity at a single validation set point. The validation
variable canbea single directlymeasuredvariable, a single dimensional variable determined fromacombinationof other
measured variables (a data reduction equation), or a single dimensionless variable (such as Nusselt number or friction
coefficient) determined from a combination of other variables (measured variables used in an independent model or
analytic equation to determine the validation variable). The ASME V&V 20-2009 approach characterizes an interval for
δmodel as δmodel ϵ (E−uval,E+uval). This interval is centered at the comparison error,E, and has awidth proportional to the
validationuncertaintyuval.E is thedifferencebetween the results of the simulation S andexperimentD (E= S−D), anduval
depends on the experimental uncertainty uD, the numerical uncertainty unum, and the input parameter uncertainty uinput
that characterize the experimental error δD, numerical error δnum and input error δinput, respectively.
This supplement presents a technique to extend the application of the pointwise or local assessment of the modeling

error (δmodel) presented in ASMEV&V20-2009 to a global assessment of δmodel based on pointwise results frommultiple
validation set points within an application domain. The approach introduces a multivariate r2 metric that is a weighted-

ASME VVUQ 20.1-2024
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sum-of-squares average of the comparison errors,Ei, where i denotes the ith set pointwithin themultiple set points, i= 1,
…, n, and the weights are related to the contribution to the single set-point validation uncertainties, uval,i. Use of the r2
metric is common in parameter estimation and other engineering disciplines (Beck and Arnold, 1977). It was introduced
as a validation metric by Hills and Trucano (1999). This metric has been used in several peer-reviewed articles (Hills,
2006;Hills andDowding, 2008; Pereira, Eça, andVaz, 2017) toprovide amoreholistic, global assessment ofmodel errors.
A multivariate metric is designed to quantify discrepancies between simulation results of a model and experimental

data at more than one validation set point. In its most basic form, the multivariate metric provides a weighted sum of
squares of the comparison errors obtained at eachof themultiple set points. The value of themultivariatemetric depends
on the number of set points considered and so a reference result is determined from the number of set points and
knowledge or assumptions about the modeling error at each of the multiple set points (see para. 4.2.1). The reference
result provides a threshold value to assess the statistical significance of the modeling errors when compared to the
validation uncertainty, i.e., experimental, numerical, and input-parameter uncertainties. However, one of the main
features of the multivariate metric is its ability to incorporate and assess the effect of correlations between the compar-
ison errors across the multiple validation set points. Correlation between simulation results and experimental data at
each set point through shared inputs to data reduction equations is also taken into account because it is already included
in the pointwise ASME V&V 20-2009 validation metric.
Themultivariate metric offers an objective assessment of model performance removing the subjectivity of traditional

approaches like comparing isolines from solutions, looking at the scatter of Ei, or comparing color plots which become
very complicated for cases with multiple physics of interest. Stated differently, the multivariate metric provides an
objective approach for the validation assessment based on the defined performance. For example, Pereira, Eça, and
Vaz (2017) calculated the flow around a ship using the time-averaged Navier-Stokes (RANS) equations with 13 different
turbulence models. For each of the 13 turbulence-model solutions, they quantified comparison error and validation
uncertainty of the velocity components at 654 locations in the propeller plane. These single set-point assessments
showed that selection of the optimum turbulence model depended on which set point was selected for assessment.
An alternate approach that assesses the overall performance of the 13models using the full set of 654 data points ismore
appropriate. As a simple example, onewould not compare howwell two straight lineswith different slopesmatch a set of
data that is linearby comparing the lines at each set point. A globalmetric is needed for thequestion,“Whichmodel fits the
entire set of data the best?” The multivariate metric provides such a global metric. Pereira, Eça, and Vaz used the multi-
variate metric to reduce the 654 comparison locations x 13 turbulence models set points to 13 values. This enables
ranking of the performance of the 13 turbulence models with an objective approach. Nonetheless, as discussed in
para. 4.2.1, comparison of different evaluations of the multivariate metric requires its normalization using a reference
value.
Use of the multivariate metric was a topic of workshops at the ASME Verification and Validation Symposiums in 2019

and 2020 (Eça, et al. 2019, 2020). The workshops participants were able to consistently demonstrate that the discre-
pancies between simulation results and experimental datawere globally larger than the validation uncertainty. As Eça et
al. (2020)discussed, at someof the validation set points, awide rangeof numerical uncertaintieswere estimated from the
samedata by thedifferent participants. Nonetheless, the result of themultivariatemetricwas not significantly affectedby
the variability in the estimationof thenumerical uncertainty for a fewvalidation set points. Theworkshopalso illustrated
that the multivariate metric enables a quantitative evaluation of the modeling error of alternative mathematical models
for the same problem, which is not easy to be achieved with local evaluation of the modeling error.
While the multivariate metric provides the ability to measure overall behavior of a model relative to a set of experi-

mental data, it does not replace single set-point assessments. For example, a validation data set with a change in physics,
such as laminar to turbulence transition, may have single set points exhibiting significant modeling errors that become
obscured when included into the multivariate metric. Thus, relying on the multivariate metric alone could lead to a false
sense of security in applying the model at other application points within the validation space. Furthermore, increasing
the validation uncertainty at the single set points will lead to a decrease of the multivariate metric, i.e., blindly including
poor validation cases yields false security. Useful insight is obtained by applying both multivariate metric and single set
point measures. Therefore, results of the multivariate metric should be interpreted as a demonstration of discrepancies
between simulations and experiments that cannot be explained by the validation uncertainty andnot as the solemeasure
of modeling credibility.
In this supplement, section 4 presents the procedure for development of the multivariate metric, and section 5 illus-

trates application of the procedure to a comprehensively described example. Section 6discusses someassociated caveats
for further clarification. Nonmandatory Appendix A presents the detailed formulation of the multivariate metric, and an
example based on the ASME V&V 20-2009 fin-tube heat exchanger is described in Nonmandatory Appendix B.
Nonmandatory Appendix C presents examples of the choices required in the procedure for applying the multivariate
metric.
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4 A MULTIVARIATE METRIC FOR RESULTS FROM MULTIPLE VALIDATION SET POINTS

A multivariate metric is designed to quantify the comparison of simulation results from computational models with
experimental data using data from more than one validation set point. The data can be from a variety of sources, for
example, multiple set points over time and space for a singlemultidimensional experiment, data from experiments using
the same apparatus at different set points (different flow rates), or data from a combination of variables from a single
experiment.
Themultivariatemetric introduced in para. 4.2 builds upon single set point validation quantification ofmodel compar-

ison error and validation uncertainty using the techniques of ASME V&V 20-2009 (see also Eça, Dowding, and Roache,
2022). Abrief overviewof the approachdescribed inASMEV&V20-2009 ispresented inpara.4.1. Adetaileddevelopment
of the multivariate metric follows in para. 4.2.

4.1 Overview of ASME V&V 20-2009

ASME V&V-20-2009 considers validation for a single validation variable defined by a scalar quantity (see also Eça,
Dowding, andRoache, 2022). Therefore, it ismainly focused on, but not limited to, deterministic simulations. An example
of its application to stochastic simulations that require theselectionof scalarquantities that characterize thedistributions
is presented in Eça, Dowding,Moorcroft, et al. (2022). The validationmetric presented in ASMEV&V20-2009 is based on
the comparison error, E, resulting from the comparison of a simulation solution value, S, to the corresponding value, D,
from an experiment.
If model inputs are known exactly, the numerical solution is exact (infinite grid iteratively converged to machine

accuracy in a machine with an infinite number of digits) and for an equally perfect experiment with exact controls
and configuration, then the experimentally observed/derived value is also exact; thus, E is the true model error
δmodel. In practice, these idealized conditions are impossible to achieve. The ASME V&V 20-2009 method accounts
for errors in the simulation results, S, due to uncertainties in the specification of the input parameters, δinput (e.g.,
uncertainties in boundary conditions, fluid properties, and/or heat transfer coefficients required to perform the simula-
tions), and due to numerical uncertainty, δnum (mesh/time-steps discretization error and iterative convergence error,
round-off errors and possibly statistical error if simulations are unsteady and/or stochastic) as well as errors in the
experimental outcomes,δD. Considering theerrors in the simulations (δmodel,δnum, andδinput) and in theexperiments (δD),
the relation between δmodel and E is as follows:

= = + +E S D Dmodel num input (4-1)

Inprinciple,E, S,D,δmodel,δnum,δinput, andδDare single-valuednumbers. Ifδnum,δinput, andδD areknown, the truemodel
error can be calculated from

= +( )E Dmodel num input (4-2)

Singlevalues canbecalculatedonly forE,S,andD. Anuncertainty is estimated tocharacterize theunknownerrors,δnum,
δinput, and δD, because the true values are not available. The ASMEV&V20-2009method characterizes each error source,
δX, using standard uncertainties ±uX and assuming that the expected value of all these errors is zero.

u unum num num (4-3)

u uinput input input (4-4)

u uD D D (4-5)

The standard uncertainty uX corresponds conceptually to an estimate of the standard deviation σ of the parent distri-
bution from which δX is a single realization.
In eq. (4-3), unum is a measure of the numerical uncertainty that is a consequence of discretization and iterative

convergence, round-off error, and possible statistical convergence in the determination of the simulation value, S. Tech-
niques to determine unum are presented in section 2 of ASME V&V 20-2009.
Also, in eq. (4-4), uinput is a consequence of the standard uncertainties uX in the input parameters required to perform

the simulation that determines S. It is calculated by propagating the standard uncertainties of the input parameters
through the model as discussed in section 3 of ASME V&V 20-2009.
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The determination of the experimental uncertainty uD is discussed in section 4 of ASME V&V 20-2009. Naturally, the
determination of uD depends on the definition of the validation variable. For example, if the validation variable is an
average value calculated from a subset of a population of measurements, uD will be different from the uD value corre-
sponding to a validation variable defined by the individual measurements.
Theuncertaintiesarecombined into thevalidationuncertaintyuval,which in thesimplest caseof independence, leads to

= + +u u u uDval
2

input
2

num
2 (4-6)

Changes to eq. (4-6) required by shared contributions to these uncertainties are presented in ASME V&V 20-2009.
The outcome of the ASME V&V 20-2009 method is an interval that should contain the model error δmodel,

+E k u E k u( , )model val val (4-7)

where the coefficient k is a coverage factor that defines the desired level of confidence. Values for k are typically in the
range of 2 to 3 for 95% confidence (ASMEV&V20-2009), but the determination of k requires the knowledge (or assump-
tions) of the type of distributions that characterize the experimental input-parameters, and numerical errors.
ASMEV&V20-2009 also provides an example to illustrate the application of the pointwisemetric to ten set points. The

results are shown in Figure 4.1-1. Experimental data, Tmeas, are presented as solid circles with data uncertainty uD added
as error bars. A corresponding simulation result, Tmodel, is shown as a solid line. Its range of uncertainty due to numerical
and input uncertainties, ±unum+input, is shownusingoffset dotted lines. For this example,unum+input is calculated fromunum
and uinput assuming independence,

= ++u u unum input input
2

num
2 (4-8)

Figure 4.1-1
Temperature T as a Function of Time
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Following theASMEV&V20-2009method, amodel comparisonerrorEiandavalidationuncertaintyuval,iare calculated
for each of the ten set points (i = 1 to 10) where an experimental value is available for comparison,

+E k u E k u( , )i i i i imodel, val, val, (4-9)

The validation results are plotted in Figure 4.1-2with uncertainty evaluated at one standard uncertainty (k= 1). For all
ten validation comparisons,E is negative. However, for seven of the ten set points, the validation uncertainty uval is larger
than the comparison error E, and so it is not possible to identify the sign of the modeling error δmodel (Eça, Dowding, and
Roache, 2022), because the limits of the intervals (E − uval and E + uval) have opposite signs. Therefore, at these seven set
points, the conclusion is |δmodel| < |E − uval|. The fact that seven out of ten of the estimated intervals contain E = 0 does not
imply that there is approximately a 7 in 10 chance that themodel simulations are statistically consistentwith the data to a
range of ± one standard uncertainty. The seven intervals are not centered atE=0, and the ten evaluations of themodeling
error share at least uncertainties in the input parameters and perhaps in the numerical and experimental uncertainties.
Therefore, validation uncertainties estimated at the ten set points are correlated because they share the same source of
uncertainty and so their valuesmay not be independent. Note that in this case, the correlation is between uncertainties at
the ten different set points and not between experimental, input, and numerical uncertainties at a given set point.
The multivariate metric proposed in this supplement provides a global quantitative assessment that indicates if

comparison errors are globally smaller than, equal to, or larger than the validation uncertainties using the framework
proposed in ASME V&V 20-2009.

Figure 4.1-2
Comparison Error E as a Function of Time
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4.2 Development of Multivariate Metric Emv
2

Themultivariate metric presented in this supplement can account for possible correlations of experimental measure-
ments, input-parameters, and numerical errors at the multiple validation set points. The correlation is quantified by a
linear correlation coefficient described in this paragraph.
Correlationmay exist between experimentalmeasurement errors at themultiple set points. The specific techniques to

experimentally quantify the correlation are beyond the scope of this supplement. The reader should consult references
(e.g., Coleman and Steele, 2009; Moffat and Henk, 2021) for experimental measurement uncertainty for techniques to
quantify correlation. While measurement correlation is difficult to quantify, the metric can be used to investigate two
common cases (independent or perfectly correlated). The dependence of themetric on correlation can be identified. The
outcome provides direction on how resources for quantifying the correlation could change the metric.
The comparison errors (and validation uncertainties) for data taken over multiple set points from an experiment or

series of experiments using the same apparatus are often correlated, even if there is no correlation between the errors in
the measured data. For example, a transient model that overpredicts temperature at one time is likely to overpredict
temperature at an adjacent time, see Figure 4.1-2. One would also expect correlation to exist between these comparison
errors (and validation uncertainties) evaluated at different spatial locations from the same experiment.
Simulation solution values at multiple set points are always correlated through the input parameter uncertainty.

Uncertainty propagation techniques account for the linear correlation of the simulation solution values at multiple
validation set points. The correlation of the numerical solution uncertainty, such as the experimental measurement
uncertainty, is challenging to quantify. Two common situations, independent (correlation coefficients equal to 0)
or perfectly correlated (correlation coefficients equal to 1), can be used to investigate the correlation of the numerical
uncertainty at the multiple set points.
Multiple experiments performed using the same apparatus can also lead to correlated comparison errors (and valida-

tion uncertainties). Consider the case of data from heat exchanger tests at multiple flow rates. Bias in data over multiple
testsmay be present due to sensor installation uncertainty (i.e., position errors, thermal contact effects, heat losses from
the sensor leads), sensor calibration errors, and environmental biases. Simulation models for the experiment contain
uncertainty due to uncertainty in the model parameters, which represent material properties and other characteristics.
Unless comparison errors (and validation uncertainties) are taken from independent experiments with the corre-
spondingmodel solution evaluated at independent values for themodel parameters (e.g., independent conditions, prop-
erties), the validation data at the different set points will be correlated.
The multivariate metric defined and evaluated in this supplement is based on Least Squares Regression and is

commonly called an r2 metric. This approach takes correlation into account by using a weighted sum of squares of
the comparison errors with the weights defined by the inverse of a covariance matrix (Hills and Trucano, 1999).
The metric is a summation of the squares of the comparison errors (E = S − D) normalized by the uncertainty in
the errors represented by the validation uncertainties. The normalized quantities allow for the metric to be compared
toa referencevalue to indicatewhether the comparisonerrorsare consistent inmagnitudeandcorrelationstructurewith
the validation uncertainties.
Specifically, the metric is

=E E V Emv
T2

val
1 (4-10)

Here, E is the vector of comparison errors, E = [Si − Di] = [Ei], and Vval is the covariance matrix that characterizes the
correlation structure between the multiple validation variables.
The covariance matrix Vval can be written in an alternative form

µ

=
…

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
V

u u u

u u u

n n

n n n

val

val,1
2

1, val,1 val,

,1 val, val,1 val,
2

(4-11)

The off-diagonal terms include the product of the correlation coefficient and the uval’s at the respective validation set
points. The correlation coefficient is defined in introductory statistics textbooks (Peck, Olsen, and Devore, 2019). The
correlation coefficient is estimated by assessing the effect of errors at the respective set points. Errors that are identically
shared between the set points have a correlation coefficient equal to 1. Errors that are independent between set points
have a correlation coefficient equal to 0. Techniques are provided in Nonmandatory Appendix A to incorporate the effect
of correlation due to shared or independent errors at the multiple validation set points.
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For illustrative purposes, it is useful to consider a two set-point example. After performing the matrix operations of
eq. (4-10), the two-set points result can be expressed as the following equation for an ellipse in the (E1, E2) space:

= +
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
E

E

u

E

u

E E

u u
1

1
2mv

2

1,2 2,1

1
2

val,1
2

2
2

val,2
2

1,2 2,1 1 2

val,1 val,2
(4-12)

Considering eq. (4-12), one can see that Emv
2 is the global length of the multivariate vector for Ei, weighted by signifi-

cance, i.e., more certain validation experiments areweightedmore heavily than less certain validation experiments. This
weighting renders the metric dimensionless (because uval,i has the same dimension as Ei), allowing information from set
points with different validation variables to be used in the global assessment.
Eq. (4-12) also shows that selecting two points with identically shared errors (i.e., perfectly correlated, ρ1,2 = ρ2,1

= 1)will lead to a singular covariancematrix. For this condition between two set points, themultivariatemetric is finite if
and only if E1 = E2 and uval,1 = uval,2. For conditions where all set points have perfectly correlated errors, it is not appro-
priate to apply a multivariate metric.
On the other hand, for the special case where E1 and E2 are uncorrelated (ρ1,2 = ρ2,1 = 0), eq. (4-12) reduces to

= +

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
E

E

u

E

u
mv
2 1

2

val,1
2

2
2

val,2
2

(4-13)

=E Emv mv
2 is a dimensionless quantity that scales with the number of set points, and so it is necessary to introduce a

reference value Eref, which has two main purposes as follows:
(a) enabling the comparison of Emv values obtained from different number of validation set points
(b) estimating the discrepancy between simulations and experiments that can be explained by the validation uncer-

tainty, i.e., the experimental, input, and numerical uncertainties

4.2.1 EstimatingaReferenceValue,Eref, for theMultivariateMetric.The referencevalue squaredEref
2 is the expected

value of Emv
2 , denoted 〈 Emv

2 〉 plus its standard uncertainty. Standard uncertainty is included to handle the special case for
which 〈Ei〉 equal tozero.This casewouldoccur if thesimulationmodelperfectly represents thephysicsof theexperiments,
if the uncertainties in δmodel at each set point are represented by symmetric distributions, if one knew and used the true
values for the model parameters and quantities measured to evaluate the Ei, and if the numerical uncertainty associated
with the simulation is zero.Note that othermeasuresof central tendency such asmodeormedian couldhavebeenused to
define 〈Emv

2 〉.
The evaluation of 〈Emv

2 〉 and its standard uncertainty uEmv
2 requires knowledge of the underlying distributions for a

population of possible comparison errors Ei. The estimation of this standard uncertainty based on normally distributed
comparison errors and the use of sampling techniques formore general distributions are presented in paras. 4.2.1.1 and
4.2.1.2, respectively.
Two methods are described in paras. 4.2.1.1 and 4.2.1.2 for calculating a value for Eref

2 . For normally distributed
comparison errors (para. 4.2.1.1), the reference value is derived from the χ2 distribution. A samplingmethod is proposed
if the comparison errors cannot be reasonably described using a normal distribution (para. 4.2.1.2).

4.2.1.1 Normally Distributed Comparison Errors (Sensitivity Approach). If the comparison errors Ei at the multiple
set points can be represented by a normal distribution, then Emv

2 is distributed as Chi-squared, χ2(df), with the degrees of
freedom,df, equal to the rankofVval (Hills, 2006). If themeasurements are independent, the rankofVvalwill beequal to the
number of measurements. There is no restriction on the independence of the differences, nor requirements for uniform
means and standard uncertainties since the differences will be normalized by Vval in eq. (4-10). The expected value and
variance of the χ2(df) distribution are

= =E df df( )mv
2 2 (4-14)

= = =( ) ( )u E df dfvar var ( ) 2
E mv2 2 2

mv
2 (4-15)
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TheChi-squared distribution, χ2(df), is tabulated inmost statistical textbooks (NIST/SEMATECHe-Handbookof Statis-
ticalMethods) and canbeevaluatedusing internal routines fromseveral softwarepackages, e.g.,Microsoft Excel. The sum
of the expected value and the standard uncertainty (i.e., square root of the variance) of the χ2(df) distributionwill be used
as a reference value to represent a standard uncertainty range on Emv

2 for normally distributed comparison errors.

= + = +( )E E E df dfvar 2ref mv mv
2 2 2 (4-16)

4.2.1.2 Nonnormally Distributed Comparison Errors (Sampling Approach). If the uncertainty in each set point for
δmodel is not normally distributed, Emv

2 will not be represented by χ2(df). In this case, a sampling approach is proposed to
estimate contributions to Eref.
A general approach to uncertainty quantification is based on Monte Carlo sampling, as presented in ASME V&V 20-

2009. This approach allows one to fully account for the effect of nonlinearities in themodel and various forms of correla-
tion between the data, between the simulation results, and between data and the simulation results. The sampling
approach generates j samples for the differences Ej,i between the simulation and experiment for each validation
set point, i, due to the uncertainties represented by the probability distributions associated with uD, unum, and uinput.
These samples are used to estimate 〈 Emv

2 〉 and Eref
2 .

4.2.1.2.1 Estimationof theExpectedValue Emv
2 .Toestimate 〈Emv

2 〉 by sampling, adistributionof themeanvalues
〈Ej〉,iof thedifferencesEj, i for eachvalidation set point is calculated andcollected into thevector 〈E〉. Themagnitudeof this
vector accounting for covariances between thevalidation set points is the estimateof Emv

2 . It is calculatedusing eq. (4-10).
The following procedure is used to calculate Emv

2 .
Step1.Using the samplesEj, ideveloped fromthemethodologydefined inASMEV&V20-2009 foreachof thenvalidation

set points i = 1, …, n, evaluate the vector of expected values (means) of the differences

= =
Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑ

Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑ

E E E Ej j n j i,1 , ,
(4-17)

Step 2.Estimate the covariancematrixVval for correlations between elements 〈Ej〉,iof 〈E〉 using the approach outlined in
Nonmandatory Appendix A.
Step 3. Evaluate 〈Emv

2 〉 using eq. (4-10) using E = 〈E〉.

4.2.1.2.2 Estimation of Eref
2 . An estimate of the reference value Eref

2 by sampling is developed to understand the
significance of Emv

2 . Eref
2 is calculated from an “ideal” distribution, i.e., one with zero model comparison error. Assuming

that the distribution of differences for the “ideal” population about a zero mean value is the same as the distribution of
population of Ej,i about 〈Ej〉,i, Eref

2 can be calculated from the deviations of Ej,i from 〈Ej〉,i.
The following procedure is used to evaluate Emv

2 and thus Eref
2 :

Step 1. Subtract the corresponding set point expected values (means) from each of the j samples of the differences for
each validation set point i.

=
Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑE E E( ) j i i j j iref , , (4-18)

Step 2. Evaluate [ Emv
2 ],i for each set point i, separately, using eq. (4-10)with E replaced by (Eref) j,i. This step provides a

distribution of Emv
2 for our hypothetically perfect physics model, given the distributions associated with uD, unum, and

uinput.
Step 3. Evaluate the expected value (i.e., 〈 Emv

2 〉) and variance [i.e., Emv
2 ] of this sampled population for Emv

2 .

Step 4. Estimate Eref
2 with eq. (4-16) using 〈 Emv

2 〉 and ( )Evar mv
2 . The value of Emv

2 can be compared to Eref
2 to compile

evidence that the discrepancies can be explained by the estimated uncertainties in its value.
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4.2.2 Interpretation of Emv
2 . Figure 4.2.2-1 offers a simple demonstration of the interpretation of themetric Emv

2 . The
solid horizontal line indicates 〈 Emv

2 〉 given that the expected value for Ei is zero, i. e., 〈Ei〉 = 0, i = 1, …, n. Note that 〈 Emv
2 〉 is

nonzero as the value of any realization of Emv
2 cannot be negative. The dashed line represents Eref

2 , i.e., 〈 Emv
2 〉 plus its

standard uncertainty uEmv
2 .

Consider three scenarios of themetricEmv
2 asquantifiedbyeq. (4-10) in Figure4.2.2-1. The results for Scenarios1 and2

indicate that the weighted differences between simulations and measurements, Emv
2 , are within the expected value and

one standarduncertainty of 〈 Emv
2 〉, i.e., < +E E umv mv E

2 2
mv
2 . Nonetheless, Scenario 1 is below 〈 Emv

2 〉whereas Scenario 2

is between 〈 Emv
2 〉 and Eref

2 . This suggests that the comparison errors are consistent with the uncertainties as char-
acterized byVval. In contrast, Scenario 3 results in a value for Emv

2 that is several standard uncertainties larger than 〈 Emv
2 〉,

providing evidence that the comparison errors are significant relative to the uncertainties. Furthermore, Scenario 3
provides a global measure of the ratio between comparison error and validation uncertainty.
The dependence of Emv

2 on the number of selected set points hinders the comparison presented in Figure 4.2.2-1when
using different numbers of set points.
A solution that improves interpretability is obtained from the ratio ofEmv toEref, which does not dependon thenumber

of selectedsetpoints.Emv/Eref is aquantitativemeasureof themodelingerror that indicatesvalidationassessmentsbased
on global differences between experiments and simulations. Obtaining Emv/Eref < 1 only means that modeling errors are
globally smaller than the validation uncertainties. Therefore, the interpretation of the value of Emv/Eref requires knowl-
edge of the validation uncertainty and comparison errors at each of the set points. As for the pointwise validationmetric
(ASME V&V 20-2009; Eça, Dowding, and Roache, 2022), the level of the modeling errors can be as high as the sum of
comparison errors and validation uncertainties. On the other hand, when the ratio Emv/Eref is much larger than unity, it
provides quantitative assessment of the global level of themodeling errorswhen compared to the validation uncertainty.
Note that the confidence level used in the pointwise evaluation of the numerical, input, and experimental uncertainties is

Figure 4.2.2-1
Assessment of Three Scenarios
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embedded in the determination of the contributions to the covariancematrix, and so it is also reflected in the outcome of
the multivariate metric.
Therefore, for analysis purposes, it is recommended touse the ratioEmv/Eref for quantitative assessments as it removes

the dependence on degrees of freedom, i.e., the number of validation set points.

5 EXAMPLE OF THE APPLICATION OF THE MULTIVARIATE METRIC SHOWING THE EFFECTS OF
CORRELATION

This section steps through an example for determining themultivariatemetric to objectively assess simulation results
from a very simple two-parameter linear algebraic model using validation measurement data from a test facility at
multiple correlated set points in time. The data may be values for time instants from a time series of temperature,
velocity magnitude, or any other scalar quantity. There are no restrictions on whether the data are instantaneous
values or statistics such as averages or variances; however, such details are fundamental to estimate the uncertainty
in the reported measurement data, uD, and input uinput, and numerical unum uncertainties in the simulation results. The
main purpose of this section is to illustrate the use of the multivariate metric in a simple example and to point out the
consequences of ignoring correlation between the multiple validation set points.
A second purpose of this section is to illustrate the use of the multivariate metric to objectively compare simulation

results to experimental measurement data across multiple sources of simulation or experimental data, which can be
multiple mathematical models as illustrated in Pereira, Eça, and Vaz (2017) or multiple test facilities as in the present
example. The sensitivity coefficients technique based on a linearity assumption is illustrated in para. 5.1, whereas para.
5.2 presents the application of the sampling approach that handles nonlinearities.
Consider evaluation of the multivariate metric for a very simple example of a two-parameter linear algebraic model

using validation measurement data at multiple set points. The simulation model consists of the following equation:
= +S t a bt( ) (5-1)

where S represents the result computed from the simulation model, and a and b are input parameters in the model. The
result, S, is to be comparedwith themeasured quantity,D, at validation set points defined by time, t. For this example, the
mean values of the model input parameters a and b and their measurement uncertainties are assumed to be normally
distributed and independent, and their means and standard uncertainties are as listed in Table 5-1.
The assumption that a and b are independent implies that the off-diagonal elements in their covariancematrix, VX, are

zero. Note that the parameters a and b will be correlated if a least-squares procedure is used to estimate the two
parameters simultaneously. In that case, standard statistical packagesprovide estimates of the corresponding covariance
matrix of the simulation inputs. This correlation affects estimation of the covariance matrix VX; see
Nonmandatory Appendix A.
The simulationmodel [eq. (5-1)] is tobe testedusingdata fromeachof three test facilitieswithmeasurements available

at two times, t1 and t2, from each facility. Because of differences in experimental approaches, equipment, personnel, and
environmental conditions, onewould reasonably expect variability across the three facilities. Themultivariatemetric, eq.
(4-10), will be evaluated using the data from each facility to assess the variability of themeasured results from facility to
facility.
Measurements are takenat the two times, t1 =1.0 sec and t2 =3.0 sec. The correspondingdata for the three facilities and

their standard uncertainties are listed in Table 5-2.
The simulated quantities, Si, and the corresponding differences, Ei, are evaluated using the mean values of the input

model parameters from Table 5-1 in eq. (5-1), and are listed in Tables 5-3 and 5-4, respectively.

Table 5-1
Simulation Model Parameters a and b

Statistic a b
Mean 1.00 0.50

Standard uncertainty 0.05 0.10

GENERAL NOTE: Parameters a and b are independent and normally distributed.
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Table 5-2
Experimental Data D at Two Measurement Times From Three Independent Facilities

Facility
(Di at Time ti)

D1
(for t1 = 1.0 s)

D2
(for t2 = 3.0 s) Standard Uncertainty, uD

1 1.65 2.90 0.05
2 1.35 2.55 0.05
3 1.45 2.65 0.05

Table 5-3
Mean Simulation Results, Si

ti Si
t1 1.5
t2 2.5

Table 5-4
Comparison Error, Ei, at Two Measurement Times From Three Facilities

Facility
E1

(for t1 = 1.0 s)
E2

(t2 = 3.0 s)
1 −0.15 −0.40
2 0.15 −0.05
3 0.05 −0.15

5.1 Sensitivity Approach

The covariance matrix Vval for the multivariate matrix is estimated from contributions due to Vnum, the numerical
uncertainty in the simulations; Vinput, the input-parameters uncertainty in the simulations; and VD, the uncertainty in the
experimentaldata. Themethoddescribed indetail inNonmandatoryAppendixA is anextensionof thatdescribed inASME
V&V 20-2009 for the calculation of uval from estimates of unum, uinput, and uD for a single set point. Accordingly,

= + +V V V VDval num input (5-2)

In eq. (5-1), Vnum is zero since the simulation model, eq. (4-18), is a simple algebraic equation, which in this simple
example is not affected by round-off errors. Therefore,

=
Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑV 0 0

0 0num (5-3)

The validation variable,D, is directlymeasuredand since the same input parameters areused for each facility, there are
identical shared errors between the validation set points for the simulation inputs. Therefore, errors in the input pa-
rameters will have the same effect on the simulation of each facility. Furthermore, this example corresponds to Case 1B
presented in Nonmandatory Appendix A. In the sensitivity method, that is based on a linear approach, the input pa-
rameters covariancematrix Vinput is estimated from thematrix of sensitivity coefficients XS and the covariancematrix for
the input parameters VX (see Nonmandatory Appendix A) using the following:

=V X V XS X S
T

input (5-4)

For this simple example, the simulationmodel is linear, and so it is straightforward to determine the sensitivitymatrix
of S with respect to the parameters X1 = a and X2 = b for the two-time instants:

= = =

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑ

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑX

t
t

1
1

1 1
1 3S

S
a

S
b

S
a

S
b

1
2

1 1

2 2
(5-5)

ASME VVUQ 20.1-2024

11

ASMENORMDOC.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ASME VVUQ 20
.1 

20
24

https://asmenormdoc.com/api2/?name=ASME VVUQ 20.1 2024.pdf


The covariancematrix VX for a and b is evaluated using the standard uncertainties given in Table 5-1. Since a and b are
independent, the off-diagonal elements of this matrix are zero.

=
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
V

(0.05) 0

0 (0.10)
X

2

2
(5-6)

Evaluation of Vinput using eq. (5-4) gives

= =
Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑV X V X. 0.0125 0.0325

0.0325 0.0925S X S
T

input (5-7)

The nonzero off-diagonal terms in eq. (5-7) signify that the two simulated values S1 and S2 are correlated.
The standard uncertainty, uD, for themeasurements fromeach test facility is listed in Table 5-2. Themeasurements are

taken at different facilities and do not share error sources at the two-time instants. The covariance matrix, VD, for the
measurements (Case 1A of Nonmandatory Appendix A) is given by

=
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ
V

(0.05) 0

0 (0.05)
D

2

2
(5-8)

Given theestimatesofVnum [eq. (5-3)],Vinput [eq. (5-7)], andVD [eq. (5-8)], thematrixVVal is calculatedusingeq. (5-5), as
= + +

= + +

=

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÄ
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ

V V V V

0 0
0 0

0.0125 0.0325
0.0325 0.0925

(0.05) 0

0 (0.05)

0.0150 0.0325
0.0325 0.0950

Dval num input
2

2 (5-9)

Note that VVal is applicable for all three facilities because the standard deviations of themeasurements at the two-time
instants are identical in all facilities, and so VD is equal for the three facilities.
The standard validation uncertainty, uval, for eachmeasurement time is the square root of the corresponding diagonal

term of thematrix in eq. (5-9). The comparison error, E, and validation uncertainty, uval, are shown in Figure 5.1-1 at the
two measurement times t1 = 1 sec and t2 = 3 sec, and the ratio E/uval is presented in Table 5.1-1.
For comparison of results from the sensitivity approach described in this paragraph and from the sampling approach,

which is described in the next paragraph, values for =E Emv mv
2 are listed in Table 5.3-1 for Vinput calculated using the

sensitivity analysis (para. 5.1) and using sampling, which is described in para. 5.2. The value of Eref for the sensitivity
approach is calculated from eq. (4-16) using df = 2, yielding Eref = 2.

5.2 Sampling Approach

This approach applies the samplingmethodology described inNonmandatoryAppendix A to the linear example for the
three facilities and the two time-instants listed in Table 5.1-1. The comparison error, E, is calculated from the difference
between simulations and the measurements.

= =
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ

Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑE S D Emean meanj i j i j j i j, , , (5-10)

Latin Hypercube sampling (LHS) is used (see ASME V&V 20-2009)with nr = 1,000 realizations to estimate the effect of
model parameter uncertainty andmeasurement error on the simulation and experimental data, respectively. The simu-
lation values are estimated by sampling the following model input parameters:

= ( )S S a b,i j i j j, (5-11)

The uncertainty in the model parameters is defined with normal distributions using statistics from Table 5-1.
= [

]
a b N a a

N b b

, LHS (mean( ), standard uncertainty( );

(mean( ), standard uncertainty( )
j j (5-12)
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Figure 5.1-1
ASME V&V 20-2009 Validation Metric (E ± uval) at the Two Times for the Three Facilities

Table 5.1-1
Ratio of Comparison Error, E, to Validation Uncertainty, uval, at the Two Time Instants for the Three Facilities

Time, s
E/uval, Ratio of Comparison Error to Validation Uncertainty

Facility 1 Facility 2 Facility 3
1.0 −1.225 1.225 0.408
3.0 −1.298 −0.162 −0.487

Latin Hypercube sampling is also used to estimate the effect of measurement error for the experimental data.
= +D D di j i i j, , (5-13)

= [ ]d N DLHS (0, standard uncertainty( )i j i, (5-14)

The experimental data,Di at themeasurement times, ti , are listed in Table 5-2. The statistics of themeasurement error
are also listed in Table 5-2.
The covariance matrix VVal is estimated by

= +V V Ecov( )sval num (5-15)

where (Es) are the sampled values for the comparison errors.
Thequantity Emv

2 is calculatedusing eq. (4-10) and the covariancematrixVVal is estimated fromeq. (5-15). The value for
Eref for the sampling approach is calculated as described in para. 4.2.1.2 for nonnormally distributed comparison errors.

5.3 Comparison of Results from Sensitivity and Sampling Approaches

Table 5.3-1 lists the values of =E Emv mv
2 andEref calculated using the sensitivity and sampling approaches. The small

differences observed between the Latin Hypercube results (“Sampling Approach”) and the sensitivity-based results in
Table 5.3-1 can be reduced by including a larger number of samples. The present example is linear and normal
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distributions are assumed for input and experimental uncertainties and so statistical convergence will lead to the same
results of the sensitivity approach. For the present number of samples, the results are nearly the same.
Figure 5.3-1 schematically shows the multivariate metric for the three facilities. If Emv ≫ Eref, then the weighted

comparison errors are significantly greater than the validation uncertainties at the multiple set points, given that
〈Ei〉 = 0, i = 1, … , n. The results indicate that the value of the multivariate metric for test Facility 1 and Facility 3
lie within the reference bound Eref, and that for Facility 2 lies outside this bound. Therefore, Facility 2 is the only
one forwhich thediscrepancies betweenexperiments and simulations are globally larger than the validationuncertainty.
Note that, in this example, the level ofuval at the twovalidation setpoints is similar for the three facilities (seeFigure5.1-1)
and so the multivariate metric is showing that the data of Facility 2 produces the larger modeling errors.
Figure 5.3-2 illustrates the impact of the correlation characterized by Vval on Emv. The ellipses shown in Figure 5.3-2

represent curvesof constantEmv
2 . The solid curve corresponds to theexpectedvalueof < >( )E Emv mv

2 2 and thedashedcurve

corresponds to the reference value, Eref
2 . The corresponding equations for the ellipses in Figure 5.3-2, illustration (a) are

presented in eq. (5-16).

= [ ]

= [ ]

= + +

Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ
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Ç
ÅÅÅÅÅÅÅÅÅ
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ÑÑÑÑÑÑÑÑÑÄ

Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ
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Ç
ÅÅÅÅÅÅÅÅÅ
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Ö
ÑÑÑÑÑÑÑÑÑ

E E E
E
E

E E
E
E

E E E E

0.0150 0.0325
0.0325 0.0950

257.6 88.14
88.14 40.68

257.6 2 ( 88.14) 40.68

mv
2

1 2
1

1
2

1 2
1
2

1
2

1 2 2
2

(5-16)

where E1 and E2 are the comparison errors at t1 = 1 and t2 = 3, respectively.
The inclination of themajor axis of the ellipse and the relative length of themajor andminor axes provides a graphical

representationof the correlationbetween thecomparisonerrorsat the twovalidationsetpoints (E1at t1=1 sandE2at t2=
3 s). For the case of normally distributed differences, these ellipses correspond to curves of constant joint probability of
comparisonerrors, assuming 〈Ei〉 =0, i=1, 2. For thepresentmodel [Figure5.3-2, illustration (a)], highvalues ofE1 tend to
correspond to high values for E2. Likewise, low E1 tends to correspond to low E2. This means that the errors in the
estimation of δmodel,1 and δmodel,2 are positively correlated, which affects the global evaluation of the comparison errors
and validation uncertainties obtained at the two set points.
Figure 5.3-2 presents also the two comparison errors for the three test facilities as listed in Table 5-4, where the

difference E1 (at t = t1 = 1) is plotted along the abscissa, and E2 (at t = t2 = 3) is plotted along the ordinate. As for the
comparison presented in Figure 5.3-1, the point corresponding to Facility 1 is within the solid ellipse (Emv

2 ), that for
Facility 3 is within the dashed ellipse (Eref

2 ), and the point for Facility 2 is outside both ellipses. Because of the correlation
induced by the simple linear simulation model, the Emv

2 for Facility 1 is lower than that for the other two facilities, even
though this point is more than twice the Euclidian distance from =E 0mv

2 (e.g., E1 = 0, E2 = 0).

Table 5.3-1
Validation Results for Normally Distributed Simulation Model Parameters

Facility
Sensitivity Approach Sampling Approach

Emv Eref Emv Eref
1 1.315 2 1.313 1.992
2 2.687 2 2.793 1.992
3 1.698 2 1.758 1.992
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The discrepancy introduced by ignoring this correlation is illustrated in Figure 5.3-2, illustration (b) that presents the
results obtained ignoring correlation, i.e., setting all the off-diagonal terms in Vval to zero. In that case, eq. (4-10) becomes

= [ ] = +
Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

E E E
E
E

E E0.0150 0
0 0.0950 0.015 0.095mv

2
1 2

1
1
2

1
2

2
2

(5-17)

The ellipses that represent the expected value of Emv
2 and the reference value Eref

2 have the two axes parallel to the E1
and E2 axes and so they lead to a different ordering of the comparison between the simulations and the test facilities.
Figure 5.3-2, illustration (b) indicates that the agreement between the measurements and simulation results is best for
Facility 1when correlation is considered, butworstwhen correlation is ignored. In this examplewith only two set points,
it is possible to see that the evaluation of Figure 5.3-2, illustration (b) that ignores correlation (by setting the off-diagonal
terms to zero) matches the assessment based on the pointwise intervals presented in Figure 5.1-1. Facility 1 is the only
one that shows two intervals indicating a negative δmodel (uval is the same for the three facilities), which agrees with the
positive correlation between the two validation set points. However, Facility 1 also leads to the largest values of compar-
ison errors at the two validation set points. Therefore, if correlation is ignored, the largest discrepancies between simula-
tions and experiments are obtained for Facility 1.

5.4 Summary

A validation metric presented is designed to characterize modeling errors when data is considered from multiple
validation set points. Correlation in comparison errors across multiple validation set points is induced by simulation
models that possess more than one uncertain model parameter and may be present even if the measurements are not
correlated.Examplesof correlated comparisonerrors includemeasurements fromdifferent spatial locationsordata from
time responses. Although not demonstrated, themetric presented can be applied without modification tomultiple types
of measurements as well as measurements of the same type at the same ormultiple set points. The normalization by the
inverseof the covariancematrixhas theeffectof scaling thecomparisonerrors, in addition tomaking themdimensionless.
For example, onemaymeasure temperature andpressureat the sameorat different set points for simultaneoususe in the
metric. Observed pressure comparison errors and observed temperature comparison errors are expected to be corre-
lated, for example, if they are associated with the same constitutive model (e.g., the ideal gas law).
The example presented illustrates the importance of accounting for correlation. Ignoring correlation can lead to

incorrect conclusions about the observed comparison errors. Incorporating correlation allows one to address integrated
effects at multiple set points and multiple measurement types. A more detailed example of the application of the multi-
variate metric using validation results from multiple set points is presented in Nonmandatory Appendix B.
Nonmandatory Appendix A presents the equations required to calculate the covariance matrix for all the definitions
of validation variables considered in ASME V&V 20-2009.
The correlation structure induced by even the simplest models (linear in this case) complicates the multivariate

comparison of measurement data with model simulation results because equally probable measurement-simulation
differences (comparison errors) do not lie at a constant distance from the origin, i.e., they are represented by ellipses that
have orientations of the major andminor axes that depend on the correlation between the results at different validation
set points. The normalization by Vval accounts for the shapes of these ellipses.
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Figure 5.3-1
Schematic Representation of Emv for Three Facilities (Symbols) Using Sensitivity Approach

GENERAL NOTE: The solid line represents the expected value while the dashed line is offset by uncertainty.
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Figure 5.3-2
Correlated Errors in Estimates of the True Differences and the Effect of Ignoring Correlation
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6 DISCUSSION AND CAVEATS

Different approaches canbeused to compare simulation resultswith experimentalmeasurementsobtainedatmultiple
set points. Themethodology presented herein represents an approach to define amultivariatemetric for such a compar-
ison. The methodology chosen utilizes the concepts and procedures presented in ASME V&V 20-2009, coupled with
standard statistical techniques.
Amultivariatemetric allows one to characterize the comparison errors relative to the uncertainties atmultiple valida-

tion set points. The weightedmultivariatemetric, Emv
2 , is a standard regressionmeasure of distance between simulation

model results,Si, andexperimentaldata,Di, atmultiple setpoints,with theuncertainty in thevalidationdatacharacterized
by a covariance matrix Vval. ASME V&V 20-2009, section 4, and Nonmandatory Appendix A of this supplement provide
methodology to estimate the covariance matrix of these validation differences (comparison errors) at the multiple
validation set points.
(a) Evaluating themultivariatemetric for application tomultiple validation set points requires the following informa-

tion:
(1) comparison errors E at each set point, i.e., the difference between the simulation results and the experimental

data at each of the multiple validation set points.
(2) thecovariancematrix (Vval) for thesecomparisonerrors.Thecovariancematrixdependson thenumerical, input,

and experimental uncertainties, and the knowledge if errors at the multiple set points are shared (correlated) or not
shared (independent). Note that the existence of correlation between input and experimental uncertainties at a given set
point also influences the calculation of Vval, as described in Nonmandatory Appendix A.
(b) The procedure to obtain Vval depends on the following two considerations:
(1) which of the four cases addressed in ASME V&V 20-2009 defined the validation variables: direct measurement

(Case1); result of a data reduction equation using several uncorrelated or correlatedmeasured variables (Cases 2 and3);
or the outcome of measured variables analyzed with a model different from that used in the simulations (Case 4)

(2) the relationshipbetweencomparisonerrors (i.e., differencesbetween thenumerical andexperimental values)at
the multiple validation set points, i.e., if these errors are assumed to be independent (not shared) or identical (shared)

The first considerationwasalreadyaddressed inASMEV&V20-2009,whereas thesecondone is aconsequenceof the
assessment performed atmultiple validation set points. Itmust be emphasized that the use of the appropriatemethod for
calculating the covariance matrix is essential for the outcome of the procedure. The “simplest approach” that ignores
correlation and input uncertainty may lead to a misleading conclusion, whereas including correlation when none exists
may lead to an equallymisleading conclusion. Therefore, the determination of the covariancematrixmust be carried out
with great care, i.e., selecting the most appropriate choice to take into account uncertainties and possible correlations.
This is not always a trivial exercise, and itmaydependon thedefinitionof thedifferentvalidationvariables included in the
multivariate metric.
(c) Themultivariatemetric Emv

2 produces aweighteddistance that is compared to a reference value Eref
2 obtained from

theexpectedvalueofEmv
2 plus its standarddeviation.Theratiobetween these twoquantitiesprovidesaglobal assessment

of the error in the simulationmodel result. If the ratio is smaller than or close to unity, the comparison errors at multiple
set points may not be significant relative to validation uncertainty. The estimation of modeling errors depends on
comparisonerrorsandvalidationuncertainties. On theotherhand, if the ratio ismuch larger thanunity, thediscrepancies
between simulations and experiments are mainly due to modeling errors and may indicate significant model bias.
It must be emphasized that the metric is not a quantity that provides a pass/fail outcome of a validation exercise.

ObtainingEmv/Eref <1 isnot thegoalof themultivariatemetric.Whenthemetricprovidesan indicationofmodelingerrors
significantly larger than validation uncertainties (i.e., the ratio Emv/Eref is significantly larger than 1), it must be comple-
mented with the pointwise information (ASME V&V 20-2009) of the level of validation uncertainties (main-diagonal
entries of the covariance matrix) to obtain a global estimate of the modeling error.
A criticism of any Emv

2 -basedmetric, whether weighted or not, is that this measure of distance is more sensitive to the
larger differences betweenmodel prediction and experimental data because the E’s at the different validation set points
are squared. Another issue that occurs in regression is that an Emv

2 -basedmetric has a known distribution (χ2) only if the
differences are normally distributed. For the case of the multivariate metric, the requirement for normally distributed
differences can be removed if one utilizes the sampling approach discussed in para. 4.2.1.2 andNonmandatory Appendix
A to evaluate the corresponding distribution for the Emv

2 based metric.
There is a significant advantage in accounting for the covariance between the E’s at different validation set points. The

approach presented in para. 4.2 transforms the comparison errors across multiple set points into a single measure by
accounting for correlation. This results in an increased ability to resolve the effect of model error when compared to set-
point by set-point evaluation asdefined inASMEV&V20-2009. As a result, one ismore likely to resolvediscrepancies that
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are not explained by the validation uncertainty using a properly defined multivariate metric, compared to measures
applied at individual validation set points, as illustrated in the example presented in section 5.
However, because thevalidationdifferencesare combinedappropriately into a singlemeasurebasedon thecovariance

matrix (i.e., linear correlation), the combined representation is approximate if the correlation isnonlinear acrossmultiple
set points. For example, if system physics changes between two time-measurements, resulting in a nonlinear relation
between the errors at these times, the combining may not be appropriate. In such cases, one can apply the multivariate
metric evaluation to subsets of the full domainwhere the subset is chosenbasedonsimilarphysics. Similar situationsmay
appear in transient responses, for example, in the heating of a liquid that leads to evaporation. In that case, the multi-
variate metric may be applied to different windows of time that correspond to the same physics.
Recall that thepresentmultivariatemetric is an extensionof the pointwise estimates of themodeling error providedby

the ASME V&V 20-2009 procedure. It provides a global quantification of the differences between experiments (physical
reality) and simulations (modeling) that can deal with possible correlations between the n set points used in its evalua-
tion. The ratio between the multivariate metric and a reference value (also discussed in this supplement) leads to the
ability to identify discrepancies between simulations and experiments that are globally larger than the numerical, input,
and experimental uncertainties.
However, to have a global quantification of themodeling error, the level of the pointwise validation uncertaintiesmust

be considered. Increasing the validation uncertainty at the single set points leads to a decrease of themultivariatemetric,
but this decrease is not caused by an improvement inmodeling accuracy. As for the pointwisemetric (Eça, Dowding, and
Roache, 2022), it should be emphasized that the goal of the multivariate metric is not to obtain a value smaller than the
reference value (ratioEmv/Eref smaller than unity). If the level of the validation uncertainties is unacceptably large, a ratio
smaller than unity only indicates that, globally, the modeling error should be smaller than the sum of comparison errors
and validation uncertainties. The ratio Emv/Eref should not be used as a pass/fail threshold of the validation exercise. The
metric doesprovide aquantitative global assessment of themodeling errorwhen it ismuch larger thanone. Attributionof
the source or sources of the globalmodeling error can only bemade through the validation uncertainties (that depend on
numerical, input, and experimental uncertainties at each set point realization and on the associated confidence level).
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NONMANDATORY APPENDIX A
METHODOLOGY TO EVALUATE THE VALIDATION COVARIANCE

MATRIX, Vval

A-1 INTRODUCTION

Thepurposeof thisAppendix is topresent the two techniquesavailable toevaluate thevalidationcovariancematrixVval
[para 4.2, eq. (4-9)], which includes contributions from the numerical input parameters and experimental uncertainties.
The first technique is basedon the sensitivity coefficients approach and the secondon samplingmethods. The application
of these two techniques to a single set point is presented in sections 3-2 and 3-3 of ASME V&V 20-2009. This Standard
presents the application of these techniques to the multivariate metric applied to n validation set points.
The validation covariance matrix characterizes the correlation structure due to input, numerical, and measurement

errors for the comparison errors Ei obtained at n validation set points that are defined by eq. (A-1-1),

µ µ µ= =E S x x x D x x x i n( , , , ) ( , , , ), 1, ,i i m i m1 2 1 2 (A-1-1)

Si and Di are the values of the validation variables at the n validation set points obtained from experiments (Di) and
simulations (Si) containing m input variables.
The specific form of the equations to evaluate the validation matrix contributions depends on the following:
(a) the determination of the validation variables. Four cases are considered in ASME V&V 20-2009:
(1) Case 1: validation variable is directly measured.
(2) Case 2: validation variable is a result defined by a data reduction equationwith no shared error sources between

the measured variables.
(3) Case3: validationvariable is a result definedbyadata reduction equationwith sharederror sources between the

measured variables.
(4) Case 4: the result of a simulation is compared to a validation variable evaluated from measured variables

analyzed with a model.
These four cases are described in this Appendix.

NOTES:
(1) For the four cases, the sharing of error sources mentioned above is related to the experimental data and input parameters of the

simulations at each set point.
(2) In Case 4, the model used in the simulations is independent from the model applied to the measured variables to obtain the

experimental validation variable.
(b) theexistenceof sharednumerical inputparametersor experimental errorsat thenvalidation setpoints included in

the determination of Vval. Two bounding cases are considered:
(1) no common (shared) errors in the simulation (Si) and/or in the experimental measurements (Di) at the n

validation set points.
(2) errors are identically shared at the n validation set points in the simulation (Si) and/or in the experimental

measurements (Di), i.e., errors are the same at the n validation set points.
These two assumptions are bounding for the relationship between errors at the multiple validation set points, as the

case of no shared errors has a correlation coefficient of zero, whereas the case of identical shared errors has a correlation
coefficient of one. The error sharing between the n validation set points is different from the error sharing that distin-
guishes the four cases described in ASMEV&V20-2009. It is a consequence of the application of themultivariatemetric to
multiple set points and so it is not addressed in ASME V&V 20-2009.
The flowchart in Figure A-1-1 provides a decision tree to identify the appropriate cases and bounding assumptions for

the relationship between errors at the validation set points. Note that this flowchart does not cover all the possible
situations of a validation exercise. For example, it is assumed that the direct measurement of a validation variable
guarantees that numerical input parameters and experimental contributions to the validation covariance matrix
are independent. Naturally, such assumption may not always apply to directly measured validation variables.
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However, it isnotdifficult toadjust eachsituationusing theseveralpossibilitiesdescribed in the flowchart ofFigureA-1-1.
The equations that define the validation covariancematrixVval and its contributions are presented in this Appendix for

all the cases included in Figure A-1-1. To avoid unnecessary repetitions, the equations are organized per contribution to
Vval. Section A-2 is dedicated to the sensitivity coefficients approach with the different contributions to Vval organized as
illustrated in Table A-1-1. The sampling technique is described in section A-3. Finally, section A-4 presents important
remarks about the calculation of Vval for the strong version of simulation models, i.e., for the cases that assume that all
input parameters are hard wired, so there is no input uncertainty.
The calculation of the validation covariance matrix Vval is presented using standard uncertainties to characterize the

numerical inputparameters andexperimental errors (unum,uinput, anduD). Equivalent equationsareobtained if expanded
uncertainties (unum, uinput, and uD) are adopted. Section 6-3 of ASME V&V 20-2009 discusses the determination of the
coverage factors required to transform standard uncertainties in to expanded uncertainties.

Figure A-1-1
Logic Flow for Choosing Approach to Calculate the Validation Uncertainty Matrix, Vval

Validation variable is
directly measured

 No

Validation variable is a
result defined by a

data reduction equation

 No

 NoMeasured variables
share no error sources

Validation variable
comes from measured
variables analyzed with

a model

Yes

Yes No Yes No

Case 1, ASME V&V 20-2009

Validation set points
share no common

errors

Case 2, ASME V&V 20-2009

Validation set points
share no common

errors

Case 3, ASME V&V 20-2009

Validation set points
share no common

errors

Case 4, ASME V&V 20-2009

Validation set points
share no common

errors

Yes No Yes No

Case 1A Case 1B Case 2A Case 2B Case 3A Case 3B Case 4A Case 4B

Yes Yes

Table A-1-1
Contributions to the Covariance Validation Matrix, Vval, in the Sensitivity Coefficients Approach

Paragraph Case Contribution to Vval
A-2.1 1A, 1B, 2A, 2B, 3A, 3B, 4A,

4B
Numerical uncertainty, Vnum

A-2.2 1A, 1B Input parameters uncertainty, Vinput
A-2.3 1A, 1B Experimental uncertainty, VD
A-2.4 2A, 2B, 3A, 3B Correlated experimental and input parameters uncertainty, Vinput+D
A.-2.5 4A, 4B Input parameters uncertainty of the simulations, VS,input, and of the model that handles the

experimental data, VD,input

ASME VVUQ 20.1-2024

22

ASMENORMDOC.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ASME VVUQ 20
.1 

20
24

https://asmenormdoc.com/api2/?name=ASME VVUQ 20.1 2024.pdf


A-2 Sensitivity Coefficients Approach

(a) The four different cases illustrated in Figure A-1-1 lead to the following equations:
(1) Cases 1A and 1B: validation variable directlymeasuredwith no shared error sources between experiments and

simulations.

= + +V V V VDval num input (A-2-1)

(2) Cases 2A, 2B, 3A, and 3B: validation variable computed from a data reduction equation.

= + +V V V Dval num input (A-2-2)

(3) Cases 4A and 4B: validation variable is evaluated from measured variables analyzed with a model.

= + + +V V V V VD Dval num input ,num ,input (A-2-3)

In case 4, Vnum and VD,num correspond to numerical uncertainties from two different models: Vnum refers to the model
used to obtained the results of the simulations Si, whereas the VD,num contribution comes from the model applied to
measured quantities to obtain Di.
(b) These equations have a companion definition of the validation uncertainty uval for a single set point taken from

ASME V&V 20-2009.
(1) Case 1

= + +u u u uDval
2

num
2

input
2 2 (A-2-4)

(2) Cases 2 and 3

= + +u u u Dval
2

num
2

input
2 (A-2-5)

(3) Case 4

= + + +u u u u uS S D Dval
2

,num
2

,input
2

,num
2

,input
2 (A-2-6)

The expressions to determine the different contributions to the validation covariancematrix Vval are presented below
for the two limiting cases: validation set points donot shareerror sources (correlation coefficients equal to zero, cases 1A,
2A, 3A, and 4A); validation set points share error sources (correlation coefficients equal to one, cases 1B, 2B, 3B, and 4B).
Recall that this choice is related to the conditions at the n validation set points and not to theway each validation variable
is determined.

A-2.1 Contribution of the Numerical Uncertainty, Vnum and VD,num (Cases 1, 2, 3, and 4)

Thecontributionof thenumericaluncertainty in cases1, 2, and3 leads toVnum,whereas twocontributionsexist for case
4,Vnum andVD,num. The expressions for the determination of these twomatrices are similar. Therefore, only the equations
for Vnum are presented. Expressions for VD,num are easily obtained replacing the numerical standard uncertainty at each
set point unum,i by uD,num,i.
(a) No Shared Errors Between the n Validation Set Points (Cases 1A, 2A, 3A, and 4A). The standard uncertainty of the

numerical errorat eachsetpoint,unum,i, canbeobtainedwith the techniquesdescribed inASMEV&V20-2009.When there
are no shared errors between the n validation set points, the contribution of the numerical uncertainty to the validation
covariance matrix Vnum is defined by eq. (A-2-7).
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(b) Shared Identical Errors Between the n Validation Set Points (Cases 1B, 2B, 3B, and 4B). For the case the numerical
errors are shared by the n set points, the contribution of the numerical uncertainty to the validation covariance matrix
Vnum is defined by eq. (A-2-8).

µ
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u u u u u

u u u u u

n

n
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num,1
2

num,1 num,2 num,1 num,

num,2 num,1 num,2
2

num,2 num,

num, num,1 num, num,2 num,
2

(A-2-8)

A-2.2 Contribution of the Input Uncertainty, Vinput (Case 1)

In case 1, the contributions of the numerical input and experimental uncertainties to the validation uncertainty is
independent and so Vinput depends only on uncertainties of the m input parameters uinput,j.
(a) No Shared Errors Between the n Validation Set Points (Case 1A).When there are no input errors shared by the n

validation set points, Vinput is obtained from eq. (A-2-9).

µ
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Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
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X V X

X V X

X V X

0 0

0 0

0 0 S n X n S n
T

input

S,1 X,1 S,1
T

S,2 X,2 S,2
T

, , ,

(A-2-9)

where XSi is the sensitivity matrix for the simulation and VX,i is the covariancematrix of the simulation inputs, both at set
point i. Since there are no shared errors, off-diagonal entries in eq. (A-2-9) are identically 0. The sensitivity coefficients
vector originated by the m input variables at each set point i, XSi, is a line vector (1 × m) defined by eq. (A-2-10).

µ=
Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

XS i
S
x

S
x,

i i

m1
(A-2-10)

The covariancematrixVX,i is an (m×m)matrixdefinedby the standarduncertainties of the input parameters at each set
point i as presented in eq. (A-2-11).
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2 (A-2-11)

(b) Shared Identical Errors Between the n Validation Set Points (Case 1B). If input parameter errors are shared by all
validation set points, i.e., the n VX,i matrices are all equal, the contribution of the input uncertainty to the validation
covariance matrix is defined by eq. (A-2-12).

= X V XV S X S
T

input (A-2-12)
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XS is a (n×m)matrix containing them sensitivity coefficients at then set points definedbyeq. (A-2-13), andVX is am×m
diagonal matrix including the standard uncertainties of the m input parameters xj squared.
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(A-2-13)

Vx is defined by eq. (A-2-11) and can be calculated for any of the n set points.

A-2.3 Contribution of the Experimental Uncertainty, VD (Case 1)

When the experimental measurement does not share any errors with the simulation and the validation variables are
directlymeasured, the contribution of the experimental uncertainty to the validation covariancematrix is independent of
the input uncertainty. The standard uncertainty of the measurement, uDi, can be obtained at each set point using the
techniques described in ASME V&V 20-2009.
(a) No Shared Errors Between the n Validation Set Points (Case 1A). For the case that the validation set points do not

share experimental errors, VD is defined by eq. (A-2-14).
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(A-2-14)

(b) Shared Identical Errors Between the n Validation Set Points (Case 1B). If the experimental errors are shared at the n
validation set points, the contributionof the experimental uncertainty to the validation covariancematrixVD is definedby
eq. (A-2-15).
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(A-2-15)

A-2.4 Combined Contribution of Input and Experimental Uncertainties, Vinput+D (Cases 2 and 3)

When the validation variable is a result defined by a data reduction equation, the contribution of input parameters and
experimental uncertainties to the validation covariance matrix is done simultaneously. There are slight differences
between the cases with (case 3) and without (case 2) shared errors between the measured quantities that will be
pointed out below. Recall that the distinction between cases 2 and 3 is different from the possible correlations
between the n validation set points used in the multivariate metric.
(a) No Shared Errors Between the n Validation Set Points (Cases 2A and 3A). The contribution of the combined effect of

input parameters and experimental uncertainty to the validation covariance matrix Vinput+D when the n validation set
points do not share errors is defined by eq. (A-2-16).
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with

=+V X X V X X( ) ( )D S i D i X i S i D i
T

(input ) , , , , ,i i,
(A-2-17)

The vector containing the sensitivity coefficients of the simulations XS,i is defined by eq. (A-2-10),whereas the vector of
sensitivity coefficients of the experiments XD,i is given by eq. (A-2-18).
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(A-2-18)

The covariance matrix VX,i depends on the existence of shared errors between the measured quantities required to
obtain the validation variable. For the case of no shared errors (case 2), VX,i is defined by eq. (A-2-11). On the other hand,
for shared error between the measured quantities (Case 3), VX,i is determined from eq. (A-2-19).
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(b) Shared Identical Errors Between the n Validation Set Points (Cases 2B and 3B). In the case the n validation points
share identical errors, the contribution of the combined effect of input and experimental uncertainties to the validation
covariance matrix Vinput+D is determined from eq. (A-2-20).

=+V X X V X X( ) ( )D S D X S D
T

input (A-2-20)

XS and XD are (n × m) matrices that contain the m sensitivity coefficients at the n validation set points. eq. (A-2-13)
defines XS and XD is determined from eq. (A-2-21).
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(A-2-21)

The definition of the (m ×m) matrix VX is equivalent to the previous section, i.e., VX is defined by eq. (A-2-11) for case 2
(no shared errors between the measured variables), and VX is determined from eq. (A-2-19) in case 3 (shared errors
between themeasuredvariables).We recall that this distinctionbetween cases2 and3 is related to theway the validation
variables are determined and not to sharing of errors between the n validation set points.

A-2.5 Contribution of Input Uncertainties When Experimental Value Comes From Measured Variables
Analyzed With a Model, Vinput, VD,input

In this case there are contributions coming from them input parameters xj required for the simulation Vinput and from
the l experimental variables, yk used in the model that produces the experimental results Di, VD,input. Note that the model
used to post-process the measured variables is independent from the model used in the simulations.
The determination of the Vinput matrix is presented in para. A-2.2 and the determination of VD,input is similar. None-

theless, for the sake of clarity, the definitions of Vinput and VD,input are presented below.
(a) No Shared Errors Between the n Validation Set Points (Case 4A).When there are no shared errors between the n

validation set points, the (n × n) matrices Vinput and VD,input are defined by eqs. (A-2-22) and (A-2-23).
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The (1 × m) line vector of sensitivity coefficients of the m input parameters of the simulation XS,i is defined by
eq. (A-2-10), whereas the (1 × l) line vector of sensitivity coefficients of the l measured variables used in the
model that produces Di is defined by eq. (A-2-24).
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(A-2-24)

The (m × m) matrix that defines VX,i is defined by eq. (A-2-11) if the m input parameters of the simulations are not
correlated andby eq. (A-2-19) if they are correlated. The (l× l) covariancematrixVD,i is determinedby similar definitions,
i.e., for l independent measured variables used in the model that produces Di, VD,i is defined by eq. (A-2-25).
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On the other hand, if the l measured variables are correlated VD,i is determined from eq. (A-2-26).
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(b) Shared Identical ErrorsBetween thenValidation Set Points (Case4B).When theerrors are sharedby thenvalidation
set points, Vinput is defined by eq. (A-2-27),

=V X V XS X S
T

input (A-2-27)

and VD,input given by eq. (A-2-28).

=V X V XD D D D
T

,input (A-2-28)

The (n × m) XS matrix is defined by eq. (A-2-13) and the (n × l) XD matrix is determined from eq. (A-2-29).
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The (n×n) covariancematrixVX is definedby eq. (A-2-11) if there is no correlationbetween them input variables of the
simulation and by eq. (A-2-19) if them input variables are correlated. Similarly, for independent measured variables for
the determination of Di, VD is defined by eq. (A-2-25), whereas the case of correlated measured variables leads to VD
determined by eq. (A-2-26).

A-2.6 Summary of Equations Required To Determine Vval With Sensitivity Analysis

TableA-2.6-1 summarizes all the equations required to calculateVval for the eight cases included in the chart presented
in Figure A-1-1. The matrix is followed by the corresponding equation number.

A-3 PROCEDURETOEVALUATEVALIDATIONCOVARIANCEMATRIX,Vval, THROUGHRANDOMSAMPLING

When the distributions that characterize the uncertainties of the input parameters and the experimental data are
known, Monte Carlo sampling can also be used to estimate the covariance matrix Vval. If the propagation of the input
uncertainties through the model used in the simulations is independent of the numerical uncertainty, the sampling
methodology described in ASME V&V 20-2009 leads to eq. (A-3-1) for the definition of each entry of the validation
covariance matrix.

[ ] [ ] +
= =

V V E E E E( )( )i k i k n
I K

n

i I i k K kval , num ,
1

1
1, 1

, ,
r

r

(A-3-1)

Vnum is obtained fromtheequationspresented inpara.A-2.1;nr is thenumberof randomsamplesoverpopulation;Ei,l is
the lth sample fromthepopulationvaluesassociatedwith theuncertainties,uinput anduDof setpoint i;Ek,K is theKth sample
from the population values associated with the uncertainties, uinput and uD at set point k; Ei and Ei are the mean values
over the nr samples at set points i and k; and the subscripts i, k indicate the ith, kth element of the corresponding matrix.
Equation (A-3-1) estimates the contribution to Vval of two validation set points, i and k. Details of the sampling tech-

niques applied at each set point (i and k) for cases 1, 2, 3, and4 are described in section5 of ASMEV&V20-2009. However,
as described in the previous section using sensitivity analysis, the relationship between the errors at the n validation set
points also affects the sampling approach.
The sampling approach accounts for correlation between the errors characterized by uD and uinput and allows for

nonnormally distributed experimental data and simulationmodel parameters. The samplingmethod does notmake any
assumption about the properties of the model used in the simulations.

Table A-2.6-1
Summary of Equations Required to Calculate the Validation Uncertainty Matrix, Vval

Case Equations Required Comments
1A Vval: (A-2-1); Vnum: (A-2-7); Vinput: (A-2-9); XS,i: (A-2-10); VX,i: (A-2-11); and VD: (A-2-14) Vval is adiagonalmatrix
1B Vval: (A-2-1); Vnum: (4-11); Vinput: (A-2-12); XS,i: (A-2-13); VX,i: (A-2-11); and VD : (A-2-15) Vval is a full matrix
2A Vval: (A-2-2); Vnum: (A-2-7); Vinput+D: (A-2-16); XS,i: (A-2-10); VX,i: (A-2-11); and XD,i: (A-2-18) Vval is adiagonalmatrix
2B Vval: (A-2-2); Vnum: (A-2-8); Vinput+D: (A-2-20); XS,i: (A-2-13); VX,i: (A-2-11); and XD,i: (A-2-21) Vval is a full matrix
3A Vval: (A-2-2); Vnum: (A-2-7); Vinput+D: (A-2-16); XS,i: (A-2-10); VX,i: (A-2-19); and XD,i: (A-2-18) Vval is adiagonalmatrix
3B Vval: (A-2-2); Vnum: (A-2-8); Vinput+D: (A-2-20); XS,i: (A-2-13); VX,i: (A-2-19); and XD,i: (A-2-21) Vval is a full matrix
4A Vval: (A-2-3); Vnum, VD,num: (A-2-7); Vinput: (A-2-22); VD,input: (A-2-23); XS,i: (A-2-10); XD,i: (A-2-24);

VX,i: (A-2-11) or (A-2-19); VD,i: (A-2-25) or (A-2-26)
Vval can be diagonal or
full matrix

4B Vval: (A-2-3); Vnum, VD,num: (A-2-8); Vinput: (A-2-27); VD,input: (A-2-28); XS,i: (A-2-13); XD,i: (A-2-29);
VX,i: (A-2-11) or (A-2-19); VD,i: (A-2-25) or (A-2-26)

Vval is a full matrix
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A-3.1 No Shared Errors Between the n Validation Set Points (Cases 1A, 2A, 3A, and 4A)

When there are no shared errors between the n validation set points, the samples over the input parameters are
independently generated to obtain the distributions of comparison errors. As an example, the input parameter uncer-
tainties of the m input parameters at the n validation set points are sampled as illustrated in eqs. (A-3-2) and (A-3-3).

= … … = …E S x x x D x x x i n( , , , ) ( , , , ), 1, ,i I i I I I m I i I I I m I, , 1, 2, , , 1, 2, , (A-3-2)

= … … = …E S x x x D x x x i n( , , , ) ( , , , ), 1, ,k K k K K K m K i K K K m K, , 1, 2, , , 1, 2, , (A-3-3)

The samples of the input parameter uncertainties are independently generated, i.e., independent sample sets [x1,l , x2,l …
xm,l] and [x1,K , x2,K … xm,K] are generated to evaluate the comparison error at the two validation set points i and k.

A-4 TWO SHARED IDENTICAL ERRORS BETWEEN THE n VALIDATION SET POINTS (CASES 1B, 2B, 3B, and
4B)

When there are shared identical errors between the validation set points, the samples over the input uncertainties
would be identical, whichmeans that the same sampling of them input variables is used at all the n validation set points,
i.e., I ≡ K in eq. (A-3-1).

A-5 VALIDATION COVARIANCE MATRIX, Vval, FOR THE STRONG VERSION OF THE MODEL

The strong version ofmodel absorbs all errors of the input parameters in δmodel, i.e. all input parameters are hardwired
to the model and so δinput is merged with δmodel. This leads to a validation uncertainty uval

2 defined by eq. (A-5-1).

= +u u uDval
2

num
2 2 (A-5-1)

Therefore, the validation covariance matrix defined by eq. (A-5-2) includes only numerical uncertainty (Vnum) and
experimental uncertainty (VD), which have been presented in paras. A-2.1 and A-2.3.

= +V V VDval num (A-5-2)

If the errors are not shared at the n validation set points, the validation covariancematrix Vval is defined by eqs. (A-2-7)
and (A-2-14). However, if the errors are identically shared at the n validation set points, the threematrices, Vnum, VD, and
Vvalwill be singular (haveazerodeterminant). Therefore, themultivariatemetric cannotbe calculated. In suchconditions,
themodeling error at the n set points should lead to similar comparison errors (E) and validation uncertainties (Uval) and
so a multivariate metric is not required to assess the global modeling error.
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NONMANDATORY APPENDIX B
EXAMPLE PROBLEM: FIN-TUBE HEAT EXCHANGER

B-1 INTRODUCTION

The purpose of this Appendix is to illustrate the application of the multivariate metric to quantitatively compare a
computational model to experimental data at multiple set points. The multivariate metric discussed in section 4 is used.
Example calculations are shown.
A set number of significant digits from the calculation inputs have not been tracked. Theprecision of the input data is as

presented in the following tables. Example calculations are performed using Excel (Microsoft Office 365 ProPlus, version
1803) with default precision. Results are rounded to two digits after the decimal point except for small numbers (< 1),
which are reported using scientific notation rounded to two digits past the decimal point.
The organization of this Appendix is as follows:
(a) Section B-2: reporting of the validation case
(b) Section B-3: reporting of the experimental data
(c) Section B-4: reporting of simulation model
(d) Section B-5: evaluation of the pointwise ASME V&V 20-2009 metric
(e) Section B-6: evaluation of the multivariate metric E

B-2 VALIDATION EXAMPLE

The validation case is the fin-tube heat exchanger used as an example problem in ASME V&V 20-2009. Figure 1-4-1 of
ASME V&V20-2009 provides a schematic of the geometry identifying relevant geometric features and parameters.
The experimental data used in this Appendix are synthetic values generated per para. 7-3.2 of the ASMEV&V 20-2009.

Use of synthetic rather than experimental data facilitates “teaching” because dependencies can be controlled to provide
“clean” results to demonstrate and document effects.

B-3 EXPERIMENTAL DATA AND UNCERTAINTIES

Sixexperiments are conducted that vary the inflowtemperature,Ti, from~70°C to~92°C.Theoutflow temperature,To,
and the ambient temperature, T∞, are measured. See Table B-3-1.
The data reduction defined in eq. (B-3-1) is used to calculate the heat transfer rate, qD, from themeasured valuesTi and

To given the fluid flow rate, Q, the fluid density, ρ, and the specific heat, Cp. For a given flow condition, an increase in the
inlet temperature yields an increase in the fluid temperature thus an increase in theoutlet temperaturemeasurement. Set
point conditions and results for each experiment are summarized in Table B-3-1.

=q QC T T( )D p i o (B-3-1)

The Fin-Tube Heat Exchanger example assumes that replicate experiments are not performed to quantify data and
parameter uncertainties. Instead, the experimental apparatus and data collection are assumed to be well characterized
and to have well characterized uncertainties. Estimates of the random and systematic uncertainties for the input pa-
rameters, Xi = {Ti, To, Q, ρ, and Cp}, are reported in Table B-3-2. Additional parameters, Xi = {T∞, kt, kf, hi, hf, and ho}, are
included in Table B-3-2 to support discussion of the simulation model in section B-4. The variables kt and kf are the
thermal conductivities of the tube and fin. The variables hi,hf, andho are convective heat transfer coefficients for the inner
surfaceof the tube, fin, andouter surfaceof the tube, respectively. The flowtemperaturesTiandTohave shared systematic
sources.
Because theheat transfer rate,qD, is calculated fromthedata reductioneq. (B-3-1), datauncertainty,uqD, is quantifiedas

input parameter uncertainty from uncertain inputs when propagated through the data reduction equation. For this
example, uqD is calculated using the method of sensitivity coefficients described in para. 4-2.2 of ASME V&V 20-
2009; see para. 5-2.1.
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Thesensitivity coefficients,Xi
q

X
D

i
, forparametersXiarecalculatedanalytically ineq. (B-3-2)using thedata reductionof

eq. (B-3-1).
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(B-3-2)

An example of the calculation of the sensitivity coefficient for parameterTi for Experiment 1 of Table B-3-1 is defined in
eq. (B-3-3).
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(B-3-3)

The computed sensitivity coefficients, Xi
q

X
D

i
, for each experiment are reported in Table B-3-3.

B-3.1 Experimental Data Uncertainty

Data uncertainty, uqD, for the heat transfer rate, qD, for each experiment is computed rigorously using the method of
sensitivity coefficients as described in para. 4-2.2 of ASMEV&V20-2009. Per eq. (4-2-4) of ASMEV&V20-2009, uqD is the
root-sum-square of uncertainties from random, sqD, and systematic, bqD, sources.

= +u s bq q q
2 2 2
D D D

(B-3-4)

Equation (4-2-6) of ASME V&V 20-2009 provides the propagation equation for random uncertainty, sqD. The equation
in matrix notation is

=s X V rnd X( )q D
T

X D
2
D

(B-3-5)

XD is thematrix of sensitivity coefficients for an experimental result aswritten in eq. (B-3-2). VX (rnd) is the covariance
matrix for the randomuncertainties in the input parameters. Because cross-correlations of randomparameters are zero,
VX (rnd) is a diagonal matrix with entries sX

2
i along the diagonal [eq. (B-3-6)].
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(B-3-6)
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Using sensitivity coefficients from Table B-3-3, XD for Experiment 1 is defined in eq. (B-3-7).
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X W
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77.87
77.87
77.87

D (B-3-7)

Similar expressions are used for each experiment. Using uncertainties from Table B-3-2, VX (rnd) is defined in eq.
(B-3-8).
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The calculation of sq
2
D
for Experiment 1 is defined in eq. (B-3-9).

= [ ] × ×

=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
s W

W

1810.18 1732.32 77.87 77.87 77.87

4.90 E 07 0 0 0 0
0 4.90 E 07 0 0 0
0 0 2.50 E 05 0 0
0 0 0 0 0
0 0 0 0 0

1810.18
1732.32
77.87
77.87
77.87

3.23

q
2 2

2

D (B-3-9)

which yields eq. (B-3-10).

= = =s s W W3.23 1.80q q
2 2

D D
(B-3-10)

Calculated values for sqD for each experiment are reported in Table B-3.1-1.
The propagation equation for systematic uncertainty, bqD, is provided in eq. 4-2-5 of ASME V&V20-2009. The equation

in matrix form is defined in eq. (B-3-11).

=b X V X(sys)q D
T

X D
2
D

(B-3-11)

VX (sys) is the covariance matrix for systematic uncertainties with non-zero off-diagonal terms for correlated pa-
rameters as follows:
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(B-3-12)

Ti andTo are correlated because they share identical systematic error sources. Using uncertainties fromTable B-3-2,VX
(sys) is
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X (B-3-13)
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The calculation of bq
2
D
for Experiment 1 is
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(B-3-14)

which yields eq. (B-3-15).

= = =b b W W1.38 1.17q q
2 2

D D
(B-3-15)

Calculated values for sqD for each experiment are reported in Table B-3.1-1.
uqD for Experiment 1 is the combined value of sqD [eq. (B-3-10)] and bqD [eq. (B-3-15)] as follows:

= + =u W W W3.23 1.38 2.15q
2 2

D
(B-3-16)

Calculated values for uqD for each experiment are reported in Table B-3.1-1.
A plot of qD versus Ti is presented in Figure B-3.1-1. The range of uqD is included on the plot as uncertainty bars on the

data; however, values of uqD are sufficiently small to be occluded by the symbol.

Table B-3-1
Measured Flow Conditions and Calculated Total Heat Transfer Rate

Example Experiment
Set Point Conditions Results

Ti, °C T∞, °C Q, m3/s ρ, kg /m3 Cp, J/kg°C To, °C qD, W
1 1 70.440 21.660 6.210 E–06 990 4180 67.410 77.870
2 4 73.580 22.140 6.240 E–06 990 4180 69.720 99.670
3 5 75.520 21.990 6.22 0E–06 990 4180 71.360 107.080
4 7 80.570 21.880 6.220 E–06 990 4180 75.710 125.090
5 9 87.530 22.080 6.230 E–06 990 4180 82.020 142.050
6 10 91.900 22.110 6.260 E–06 990 4180 85.830 157.240

Table B-3-2
Random and Systematic Uncertainties for Input Parameters, Xi

Xi

Input Parameter Standard Uncertainties
Random, SXi Systematic, bXi

Ti, °C 0.07% 0.14%
To, °C 0.07% 0.14%
Q, m3/s 0.50% 1.00%
ρ, kg/m3 ... 0.50%
Cp, J/kg°C ... 1.00%
T∞, °C ... 1.00%

kt, W/m°C ... 5.00%
kf, W/m°C ... 5.00%
hi, W/m°C ... 10.00%
hf, W/m°C ... 10.00%
ho, W/m°C ... 10.00%
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Table B-3-3
Calculated Sensitivity Coefficients for the Experiments Reported in Table B-3-1

Experiment
Scaled Sensitivity Coefficients

Ti · ∂qD/∂Ti, W To · ∂qD/∂To, W Q · ∂qD/∂Q, W ρ · ∂qD/∂ρ, W Cp · ∂qD/∂Cp, W
1 1810.18 −1732.32 77.87 77.87 77.87
2 1900.01 −1800.34 99.67 99.67 99.67
3 1943.85 −1836.78 107.08 107.08 107.08
4 2073.84 −1948.75 125.09 125.09 125.09
5 2256.61 −2114.56 142.05 142.05 142.05
6 2380.68 −2223.44 157.24 157.24 157.24

Table B-3.1-1
Random, Systematic, and Total Data Uncertainties for the Experimental Data

Standard Uncertainties

Experiment SqD, W bqD, W
uqD

W %
1 1.80 1.17 2.15 2.76
2 1.90 1.50 2.42 2.43
3 1.95 1.61 2.53 2.36
4 2.09 1.88 2.81 2.25
5 2.28 2.14 3.13 2.20
6 2.41 2.37 3.38 2.15
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Figure B-3.1-1
Experimentally Determined Total Heat Transfer as a Function of Inflow Temperature

B-4 SIMULATION MODEL

The simulation model for the fin-tube heat exchanger is described in para. 7-3.3 of ASME V&V 20-2009. Details are
provided in ASME V&V 20-2009, Mandatory Appendix I. The simulationmodel differs from themodel used to derive the
synthetic data by a modification to the contact conductance at the fin/tube interface, see para. 7-3.5.1 of ASME V&V 20-
2009, introducing a known systematic model error.

B-4.1 Simulation Results

Simulations for the set point conditions of TableB-3-1 areperformed. Simulationparameters, set-point conditions, and
simulation results, qs, are reported in Table B-4.1-1. Simulation results are compared to the experimental data in Figure
B-4.1-1. The simulation results exceed the experimental measurements for Ti≲ 74°F and are less than the experimental
measurements for Ti ≳ 74°F.
ASME V&V20-2009 quantifies the degree of accuracy of a simulation model for a specified validation variable at a

specified validation point (set point condition) using comparison error, E [eq. (1-5-1) of ASME V&V20-2009 , and valida-
tion uncertainty, uval [eq. 1-5-10 of ASME V&V20-2009 ], as the validation metrics. Quantification of comparison error is
discussed in para. B-5.1. Quantification of validation uncertainty is discussed in para. B-5.2.
Themethodof sensitivity coefficients is used to calculate input parameter uncertainties. The sensitivity coefficients for

each parameter Xi of the simulationmodel result qs are computed numerically using central finite-differences. The finite-
difference perturbation size is specified to be the same as the standard uncertainty (deviation) in each parameter to
approximate the gradient in the range of the uncertainty. The calculated sensitivity coefficients are provided in
Table B-4.1-2. Uncertainty due to numerics, unum, is reported to be 0.07W for each of the simulation results.
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Table B-4.1-1
Simulation Parameters, Set-Point Conditions, and Results

Simulation Conditions Results
Simulation

Case Ti, °C T∞, °C Q, m3/s
ρ,

kg/m3
Cp,

J/kg°C To, °C qS, W
kt,

W/m°C
kf,

W/m°C
hi,

W/m°C
hf,

W/m°C
ho,

W/m°C
1 70.44 21.66 6.21 E−06 990 4180 67.41 98.61 386 204 150 6 6
2 73.58 22.14 6.24 E−06 990 4180 69.72 104.00 386 204 150 6 6
3 75.52 21.99 6.22 E−06 990 4180 71.36 108.22 386 204 150 6 6
4 80.57 21.88 6.22 E−06 990 4180 75.71 118.66 386 204 150 6 6
5 87.53 22.08 6.23 E−06 990 4180 82.02 132.31 386 204 150 6 6
6 91.90 22.11 6.26 E−06 990 4180 85.83 141.12 386 204 150 6 6

Figure B-4.1-1
Simulation Results and Experimental Observations for Heat Transfer as Functions of Inflow Temperature
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Table B-4.1-2
Sensitivity Coefficients for the Simulation Result

Scaled Sensitivity Coefficients
Simulation

Case
Ti · ∂qS/
∂Ti, W

T∞ · ∂qS/
∂T∞, W

Q · ∂qS/
∂Q, W

ρ · ∂qS/
∂ρ, W

Cp · ∂qS/
∂Cp, W

kt · ∂qS/
∂kt, W

kf · ∂qS/
∂kf, W

hi · ∂qS/
∂hi, W

hf · ∂qS/
∂hf, W

ho · ∂qS/
∂ho, W

1 141.69 −43.79 3.96 3.96 3.97 1.50 E−02 1.88 E−01 48.55 3.79 41.45
2 148.76 −44.77 4.18 4.18 4.19 1.60 E−02 1.99 E−01 51.59 4.03 44.04
3 152.68 −44.46 4.37 4.37 4.38 1.70 E−02 2.07 E−01 53.67 4.20 45.82
4 162.89 −44.23 4.78 4.78 4.80 1.80 E−02 2.27 E−01 58.85 4.60 50.24
5 176.96 −44.65 5.33 5.33 5.34 2.00 E−02 2.53 E−01 65.62 5.13 56.03
6 185.80 −44.71 5.66 5.66 5.67 2.10 E−02 2.70 E−01 70.01 5.47 59.77

B-5 ASME V&V 20-2009 METRIC

Validation metric defined in ASME V&V 20-2009 is applied in this section. The metric will be computed at each
validation set point. These results will be compared to the multivariate metric that is computed in B-5.1.

B-5.1 Comparison Error, E

The metric in ASME V&V 20-2009 is based on comparison error, E, and the validation uncertainty, uval. Comparison
error, E, is defined in ASME V&V 20-2009. Per eq. (1-5-1) as

=E q qS D (B-5-1)

The comparison error is computedwith qs fromTables B-3-3, B-3.1-1, andB-4.1-1 and qD fromTable B-3-1. Results are
reported in Table B-5.2.2-1.

B-5.2 Validation Uncertainty, uval
The validation uncertainty uval is calculated as the root-sum-square of uncertainty due to numerics, unum, and uncer-

tainty due to uncertain input parameters, uinput+D, which affects both the simulation result and the comparison data; see
ASME V&V 20-2009.

= + +u u u Dval
2

num
2

input
2 (B-5-2)

B-5.2.1 Numerical Uncertainty. For the fin-tube heat exchanger simulations, uncertainty due to numerics, unum, is
estimated with a mesh refinement study using the approach reported in ASME V&V 20-2009. The uncertainty was
estimated to be 0.07W for each of the simulation results, therefore unum is defined in eq. (B-5-3) as follows:

=u W0.07num (B-5-3)

B-5.2.2 Simulation Input Parameter Uncertainty. The variable uinput+D has random, uinput+D (rnd), and systematic,
uinput+D (sys), error sources that combine also as a root-sum-square is defined in eq. (B-5-4).

= ++ + +u u u(rnd) (sys)D D Dinput
2

input
2

input
2 (B-5-4)

The propagation equation for the random uncertainty uinput+D (rnd) is obtained from eq. (B-5-5) as follows:

=+u X X V X X(rnd) ( ) (rnd)( )D S D
T

X S Dinput
2 (B-5-5)
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The sensitivity matrices for XS and XD are defined in eq. (B-5-6).
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(B-5-6)

Usingvalues fromTableB-4.1-2andTableB-3-3, the sensitivity vectors forXSandXDand thedifferencevectorXS−XD for
Experiment 1 are defined in eq. (B-5-7) as follows:
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S D S D (B-5-7)
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VX (rnd) is the covariance matrix for the random uncertainties in the input parameters [eq. (B-5-8)].
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Using values from Table B-3-2, VX (rnd) is defined in eq. (B-5-9).

=V (rnd)

4.90E 7 0 0 0 0 0 0 0 0 0 0
0 4.90E 7 0 0 0 0 0 0 0 0 0
0 0 2.50E 5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

X (B-5-9)

The calculation of +u (rnd)Dinput
2 for Experiment 1 is
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43.79

1.50 E 02
1.88 E 01

48.55
3.79

41.45

2.97

Dinput
2

2 2
(B-5-10)

which yields eq. (B-5-11).

= = =+ +u u W W(rnd) (rnd) 2.97 1.72D Dinput input
2 2 (B-5-11)

Calculated values for uinput+D (rnd) for each experiment are reported in Table B-5.2.2-1.
The propagation equation for the random uncertainty uinput+D (sys) is defined as follows:

=+u X X V X X(sys) ( ) (sys)( )D S D
T

X S Dinput
2 (B-5-12)
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VX (sys) is the covariance matrix for the systematic uncertainties in the input parameters [eq. (B-5-13)].
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Using values from Table B-3-2, VX (sys) is defined in eq. (B-5-14).

=V (sys)X (B-5-14)
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The calculation of +u (sys)Dinput
2 for Experiment 1 yields eq. (B-5-15).

= = =+ +u u W W(sys) (sys) 42.32 6.51D Dinput input
2 2 (B-5-15)

Calculated values for uinput+D (sys) for each experiment are reported in Table B-5.2.2-1.
uinput+D for Experiment 1 is the combined values of uinput+D (rnd) [eq. (B-5-11)] and uinput+D (sys) [eq.(B-5-15)] as

follows:

= + = =+u W W W W2.97 42.32 45.29 6.73Dinput
2 2 2 (B-5-16)

Calculated values for uinput+D for each experiment are shown in Table B-5.2.2-1.

B-5.2.3 Estimated Intervals at EachValidation Set Point.The validation uncertainty,uval , is calculated by combining
unum [eq. (B-5-3)] and uinput+D [eq. (B-5-16)] as a root-sum-square value, [see eq. (B-5-2)] as follows:

= + = + = =+u u u E W W W W4.90 03 45.29 45.29 6.73Dval num
2

input
2 2 2 2 (B-5-17)

Calculated values for uval for each experiment are reported in Table B-5.2.2-1.
Calculated values for E, unum, uinput+D(rnd), uinput+D(sys), uinput+D, and uval are reported in Table B-5.2.2-1. A plot of the

comparison error, E, with uval as uncertainty bars is shown in Figure B-5.2.3-1.
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Table B-5.2.2-1
Comparison Error and Validation Uncertainty Estimated Using the Method of Sensitivity Coefficients

Simulation
Case

Model Comparison Error and Validation Uncertainty

qs,
W

qD,
W

E unum,
W

uinput+D
uval(rnd) (sys) Total

W % W W W W %
1 98.61 77.87 20.74 21.03 0.07 1.72 6.51 6.73 6.73 6.82
2 104.00 99.67 4.33 4.16 0.07 1.82 6.96 7.19 7.19 6.91
3 108.22 107.08 1.14 1.05 0.07 1.87 7.25 7.49 7.49 6.92
4 118.66 125.09 −6.43 −5.42 0.07 2.00 7.97 8.22 8.22 6.93
5 132.31 142.05 −9.74 −7.36 0.07 2.19 8.89 9.16 9.16 6.92
6 141.12 157.24 −16.12 −11.42 0.07 2.32 9.51 9.79 9.79 6.94

Figure B-5.2.3-1
Comparison Error as a Function of Inflow Temperature With Bars Showing the Range of uval
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B-6 MULTIVARIATE METRIC

B-6.1 Multivariate Metric Calculated With Sensitivity Analysis

The multivariate metric, Emv, is defined in eq. (B-6-1). It is the magnitude of the comparison error vector, E, over
multiple validation set points accounting for correlations between the set points.

=E E V Emv
T2

val
1 (B-6-1)

where
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1 1 1
(B-6-2)

=E Emv mv
2 (B-6-3)

E is the array of comparison errors. Vval is the validation covariance matrix.
Because the magnitude of Emv depends on the number of validation set points used to compute it (see section 4), a

reference value,Eref, is used for normalization. Paragraph 4.2.1 providesmethods to calculateEref. The ratio
E
E

mv

ref
removes

thedependence on the number of validation set points and is used in this section as ametric for comparisonof results and
interpretation.

B-6.1.1 Contributions to Validation Covariance Matrix. The validation covariance matrix Vval is a generalization of
uval

2 to multivariate applications. Nonmandatory Appendix A explains that the approach to compute Vval depends on the
following:
(a) whether the validation variable
(1) is directly measured (Case 1 of ASME V&V 20-2009)
(2) is a result defined by a data reduction equationwhere themeasured variables share no error sources (Case 2 of

ASME V&V 20-2009)
(3) is a result definedbyadata reductionequationwhere themeasuredvariables share identical error sources (Case

3 of ASME V&V 20-2009)
(4) comes from measured variables analyzed with a model (Case 4 of ASME V&V 20-2009)

(b) whether there are no common errors between the validation set points or there are shared identical errors
between the validation set points.
This logic flow is depicted graphically in Nonmandatory Appendix A, Figure A-1-1.
Likeuval

2 ,Vval has uncertainty contributions due to numerics,Vnum, input parameters, Vinput, and experimental data, VD,
which are independentwhen the comparison data are directlymeasured.When the comparison data are calculated using
a data reduction equation, like heat flux qD for the fin-tube heat exchanger example, the uncertainties due to uncertain
input parameters and Vinput and VD are calculated together, Vinput+D. Therefore, for the fin-tube heat exchanger example,
Vval is defined in eq. (B-6-4).

= + +V V V Dval num input (B-6-4)

Two approaches are demonstrated for the calculation of the uncertainty due to input parameters, Vinput+D. One
approach uses sensitivity coefficients that are valid for systems with locally linear behavior in the validation space.
The other approach uses sampling that captures nonlinear behaviors. Because a linear model is sufficient to
capture the effects of the systematic error introduced by the change in contact conductance for the fin-tube heat
exchanger example, the results from the sensitivity coefficient approach and from sampling will be similar.

B-6.1.1.1 Numerical Uncertainty, Vnum. Two possibilities for calculation of Vnum are discussed in
Nonmandatory Appendix A, para. A-2.1. For the fin-tube heat exchanger example, uncertainty due to numerics,
unum, is reported to be 0.07W for each of the simulation results and independence is assumed. Therefore, the diagonal
form is used in eq. (B-6-5) for calculating Vnum.
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(B-6-5)

B-6.1.1.2 Input Parameter Uncertainty, Vinput+D. Random and systematic input parameter uncertainties are
reported in Table B-3-2. Because random uncertainties are independent, the covariance array for random uncertainties,
VX(rnd), is diagonal. Systematic uncertainties may share common error sources and, therefore, may be dependent. The
covariance array for systematic uncertainties, VX(sys), will have nonzero off diagonal terms for contributions that share
error sources. Because of the potential differences in array structures, random and systematic uncertainties are
addressed separately in eq. (B-6-6).

= ++ + +V V V(rnd) (sys)D D Dinput input input (B-6-6)

B-6.1.1.2.1 Random Uncertainties

(a) The method to calculate contributions to Vval from random error sources is found by following the flow logic in
Nonmandatory Appendix A, Figure A-1-1 as follows:

(1) Choose from Case 1, Case 2, Case 3, or Case 4.
(2) Because heat flux is not directly measured, Case 1 does not apply.
(3) Because heat flux is a result defined by a data reduction equation, Case 4 does not apply.
(4) Because random uncertainties are independent, Case 3 does not apply.
(5) Therefore, Case 2 applies.
(6) Choose from Case 2A or Case 2B.
(7) Because random error sources are independent, Case 2B does not apply.
(8) Therefore, follow Case 2A.

(b) Case 2A. Vinput+D(rnd) is calculated as follows:
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D
S D

T
x S D

S n D n
T

X n S n D n

input
,1 ,1 ,1 ,1 ,1

, , , , ,

(B-6-7)
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The sensitivity matrices XS,i and XD,i are defined in eq. (B-6-8).
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where qS,i and qD,i are qS and qD for the ith experiment. The covariance matrices, VX,j(rnd), for this example are identical,
Vx,1(rnd) = Vx,2(rnd) = ... = Vx,n(rnd) = Vx(rnd)·Vx(rnd). VX(rnd) is given by eq. (B-5-8).
(-1) Example: Set-Point Experiments 3 and 5. The matrix to be calculated is shown in eq. (B-6-9).
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input

,3 ,3 ,3 ,3 ,3
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(B-6-9)

Using values fromTableB-4.1-1 andTableB-3-3, the sensitivity vectorsXS,3 andXD,3 and thedifference vectorXS,3 −XD,3
for set-point experiment 3 are defined in the following set of equations [eq. (B-6-10)]:
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S D S D,3 ,3 ,3 ,3 (B-6-10)

VX(rnd) is given in eq. (B-5-9). The value of Vinput+D(rnd)[1,1] is

=X X V rnd X X W( ) ( )( ) 3.49S D
T

x S D,3 ,3 ,3 ,3 ,3
2 (B-6-11)

ASME VVUQ 20.1-2024

44

ASMENORMDOC.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ASME VVUQ 20
.1 

20
24

https://asmenormdoc.com/api2/?name=ASME VVUQ 20.1 2024.pdf


Calculations for set-point experiment 5 are similar. The final matrix Vinput+D(rnd) is

=+
Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑV W(rnd) 3.49 0

0 4.78Dinput
2 (B-6-12)

B-6.1.1.2.2 Systematic Uncertainties

(a) The method to calculate contributions to Vinput+D from systematic error sources is found from the flow logic in
Nonmandatory Appendix A, Figure A-1-1 as follows:

(1) Choose from Case 1, Case 2, Case 3, or Case 4.
(2) Because heat flux is not directly measured, Case 1 does not apply.
(3) Because heat flux is a result defined by a data reduction equation, Case 4 does not apply.
(4) Becauseheat flux is computedusing themeasuredvariables inflowtemperature,Ti, outflowtemperature,To, and

volumetric flow rate, Q, where the measured variables Ti and To share common systematic error sources (e.g., measure-
ments in the same facility with the same instruments), Case 2 does not apply.

(5) Therefore, Case 3 applies.
(6) Choose from Case 3A or Case 3B.
(7) Because the validation set points may have common systematic error sources (e.g. measurements in the same

facility with the same instruments), Case 3A does not apply.
(8) Therefore, follow Case 3B.

(b) Case 3B. Vinput+D(sys) is calculated in eq. (B-6-13).

=+V X X V X X( ) ( )D S D
T

x S Dinput (B-6-13)

The sensitivity matrices XS and XD are defined in eq. (B-6-14).
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where qs and qD are vectors of the set point experiments being evaluated. The covariance matrix, Vx(sys) is provided in
eq. (B-5-13).
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(-1) Example: Set-Point Experiments 3 and 5.Using values from Table 5.3-1 and Table 5-3, the sensitivity vectors for XS
and XD and the difference vector XS − XD for set-point experiments 3 and 5 are defined in eq. (B-6-15) as follows:
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S D (B-6-15)

Vx(sys) is given in eq. (B-5-14). The matrix Vinput+D(sys) is obtained in eq. (B-6-16).

= =+
Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑV sys X X V X X W( ) ( ) ( ) 52.55 64.47

64.47 79.12D S D
T

x S Dinput
2 (B-6-16)

B-6.1.2 Calculation of Validation Covariance Matrix. The validation covariance matrix, Vval, is the sum of the covar-
iance matrices for uncertainty due to numerics, Vnum, and uncertainty due to uncertain input parameters, Vinput+D, see
eq. (B-6-4).
For set-point experiments 3 and 5, theVval matrix calculated in eq. (B-6-17) using themethod of sensitivity coefficients

is the sum of eqs. (B-6-4), (B-6-12), and (B-6-16):
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(B-6-17)

The inverse of Vval is defined in eq. (B-6-18):

=
Ä
Ç
ÅÅÅÅÅÅÅ
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1 2 (B-6-18)

The corresponding Vval matrix calculated in eq. (B-6-19) using the sampling method is
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2
(B-6-19)

The inverse of Vval from sampling is defined in eq. (B-6-20):

=
Ä
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑV W1.40 E 01 1.05 E 01

1.05 E 01 8.78 E 02val
1 2 (B-6-20)

NOTE: The inversematrices are provided for checking purposes. When used for calculation of themultivariate metric below, all digits
from the matrix inversion function (e.g., minimum verse using Microsoft Excel, Office 365 ProPlus) are retained.
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B-6.1.3 Multivariate Metric Results. Calculation of the multivariate metric, Emv, and the reference value, Eref, is
demonstrated using the Method of Sensitivity Coefficients. In addition, the effect of neglecting correlations
between the set points is explored. Paragraph B-6.2 shows the results using sampling.
Comparison error E for the validation set points is reported in Table B-5.2.2-1. For set points 3 and 5, as examples, the

vector E is defined in eq. (B-6-21).
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1.14
9.74

3 3
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(B-6-21)

B-6.1.3.1 Accounting for Correlation in the Comparison Errors. The matrix Vval for set points 3 and 5, which is
provided in eq. (B-6-17), is used to obtain eq. (B-6-22).

=
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ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑV W56.04 64.47

64.47 83.90Val
2 (B-6-22)

The inverse matrix Vval
1 , which is provided in eq. (B-6-15) gives eq. (B-6-23).
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ÅÅÅÅÅÅÅ
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1 2 (B-6-23)

Emv
2 is computed via matrix multiplication as follows:

= = [ ] =
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ÅÅÅÅÅÅÅ
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ÑÑÑÑÑÑÑ
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9.74 12.57mv
2 T

val
1 (B-6-24)

The value Emv is obtained by taking the square root of Emv
2 in eq. (B-6-25).

= = =E E 12.57 3.55mv mv
2 (B-6-25)

As discussed in para. B-6.1, the value of Emv is a function of the rank of Vval; therefore, a reference value, Eref, is used to
interpret Emv relative to expected standard uncertainty range on Emv

2 . Setting df (degrees of freedom) to the rank of Vval
(here, df = 2), Eref

2 is calculated using eq. (4-16).

= + = + = + =E df df2 2 2 2 2 2 4ref
2 (B-6-26)

The value of Eref is obtained by taking the square root of Eref
2 :

= = =E E 4 2ref ref
2 (B-6-27)

The ratio Emv/Eref is then an indication of the extent to which the model, represented by Emv, conforms to the expecta-
tion for Emv, Eref, within one standard uncertainty on Emv

2 :

= = 1.78
E
E

3.55
2

mv

ref
(B-6-28)

Thedetermination thatEmv/Eref >1 is an indication that themodel results showasignificant systematic error relative to
theexperimentdue tomissingmodelphysics. For the fin-tubeheat exchangerexampleproblem, themissingphysics is the
modification to the contact conductance at the fin-tube interface.

B-6.1.3.2 Neglecting Correlation in the Comparison Errors. Themodification to the contact conductance in the fin-
tube heat exchanger problem is a common error shared by each of the validation set points. If the validation set points
were treated as independent, Emv is calculated by the following:
Step 1. Use the validation matrix from eq. (B-6-22) setting the off-diagonal entries to zero [eq. (B-6-29)].

=
Ä
Ç
ÅÅÅÅÅÅÅ
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Ö
ÑÑÑÑÑÑÑV W56.04 0

0 83.90val
2 (B-6-29)
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Step 2. Calculate the inverse matrix Vval
1 as defined in eq. (B-6-30).

=
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Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑV W1.78E 02 0

0 1.19E 02val
1 2 (B-6-30)

Step 3. Calculate Emv
2 via matrix multiplication [eq. (B-6-31)].
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T2
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1 (B-6-31)

Step 4. Calculate Emv from the square root of Emv
2 .

= = =E E 1.15 1.07mv mv
2 (B-6-32)

Step 5. Compare to Eref.

= = 0.54
E
E

1.07
2

mv

ref
(B-6-33)

The interpretationofEmv/Eref < 1 is that there is no indication that themodel results showa significant systematic error
relative to the experiment. The significance of themodification to the contact conductance at the fin-tube interfacewould
be missed.

B-6.2 Multivariate Metric Calculated With Sampling

The multivariate metric does not change when sampling is used. The same expression given in eq. (B-6-2) is used to
evaluate themetric for sampling. The sameprocedure is also used to compute the numerical uncertainty. The procedures
to estimate experimental data uncertainty and simulation input uncertainty, i.e., Vinput+D, will use sampling instead of a
sensitivity approach.

B-6.2.1 Input Parameter Uncertainty, Vinput+D. In the sampling to estimate Vinput+D, twenty data points for qSi
and qDi

were constructed for each of set point conditions using the Latin hypercube sampling approach described in ASME V&V
20-2009. The subscript i denotes the sample index. These data are provided in Table B-6.2.1-1.
The choiceof20 samplepoints is basedonprovidinga relatively small data set that canbeusedas apracticeproblemby

copying data out of the printed document. No sensitivity assessment was used to establish convergence of statistics.
Another sample set with 320 sample points was constructed to show the difference in statistics between a small and a
large sample set. Those data are not reported. The sole requirement was that the large sample set have a much greater
number of samples than 20. No justification of 320 is intended based on based concerns for rigorous convergence of
statistics.
Vinput+D is the covariance of the variabilities of the sample comparison errors, Ei, for set-point experiment i about its

mean value Ei. Defining the deviation vector as =E E Ei i i and the matrix of deviation vectors in a multivariate assess-
ment as E′, Vval is given by eq. (B-6-34).

=+V E ED n
T

input
1

1r
(B-6-34)

where nr is the number of samples in the sample set.

ASME VVUQ 20.1-2024

48

ASMENORMDOC.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 ASME VVUQ 20
.1 

20
24

https://asmenormdoc.com/api2/?name=ASME VVUQ 20.1 2024.pdf

