KNURLING REMETERATE TO STANDARY ANSI/ASME B94.6-1984 (REVISION OF ANSI B94.6-1981) AREA COMMITTER TO STANDARY STANDA SPONSORED AND PUBLISHED BY THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 345 East 47th Street New York, N. Y. 10017 United Engineering Center ANSI/ASME B94.6-1984 28 November 1984 SUPERSEDING ANSI B94.6-1981 2 April 1982 ### ACCEPTANCE NOTICE The above non-government standardization document was adopted 28 November 1984 and is approved for use by the DoD. The indicated industry group has furnished the clearances required by existing regulations. Copies of the document are stocked by DoD Single StockPoint, Naval Publications and Forms Center, Philadelphia, PA 19120, for issue DoD activities only. Contractors and industry groups may obtain copies directly from: or The American Society of Mechanical Engineers 345 East 47th Street New York, NY 10017 Title of Document: Knurling Document No.: ANSI/ASME B94.6-1984 Date of Specific Issue Adopted: 28 November 1984 Releasing Industry Group: The American Society of Mechanical Engineers NOTICE: When reaffirmation, amendment, revision or cancellation of this standard is initially proposed, the industry group responsible for this standard shall inform the military coordinating activity of the proposed change and request participation. Custodians: Army - AR; Navy - OS; Air Force - 16 Navy - AS, SH, MC; DLA - IS User Interest: Army - ME; Navy - YD Review Activities: Army - AV, AT, EA The American National Standards Institute 1430 Broadway Military Coordinating Activity: Army - AR (Project Number: DRPR-0265) New York, NY 10018 AREA DRPR Date of Issuance: May 15, 1985 This Standard will be revised when the Society approves the issuance of a new edition. There will be no addenda or written interpretations of the requirements of this Standard issued to this Edition. This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Consensus Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed code or standard was made available for public review and comment which provides an opportunity for additional public input from industry, academia, regulatory agencies, and the public-at-large. ASME does not "approve," "rate," or "endorse" any item, construction, proprietary device, or activity. ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable Letters Patent, nor assume any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this code or standard. ASME accepts responsibility for only those interpretations issued in accordance with governing ASME procedures and policies which preclude the issuance of interpretations by individual volunteers. No part of this document may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. ### **FOREWORD** (This Foreword is not part of ANSI/ASME B94.6-1984.) It has been commonly appreciated that in the production of knurling there were some difficult problems, and it appeared that a solution to many of them could probably be found in developing a knurling tool based on a diametral pitch system, as distinguished from the customary circumferential pitch formulas in use. A diametral pitch system was first given consideration by the Company Member Conference of the American Standards Association. At its meeting of March 20, 1947, the Conference voted to establish a fact-finding Conference Subcommittee to consider the problems involved in knurling and the need for standardization in the field of knurling practice. On November 10, 1947, the Conference Subcommittee presented a report (CMC 50) and concluded that a Technical Committee should give consideration to improving knurling. At its meeting of December 2, 1948, the B5 Sectional Committee reported that the Mechanical Standards Committee of the ASA had requested that consideration be given to the establishment of a project on knurling. This request was approved at that time, and B5 Technical Committee 27 was thereupon organized in June 1949. TC2 held its first meeting in New York City on November 3, 1949. A proposed standard was prepared by TC27, and in September 1952 it was distributed to industry for review and comments. TC27 prepared a new draft, dated March 1953, taking into consideration the comments and suggestions received from the industry review. The proposed standard was approved by the Sectional Committee, the sponsor, and finally by ASA on October 15, 1953. It was designated ASA B5.30-1953. A revision of the standard was approved by ASA on August 18, 1958, and it was published as ASA B5.30-1958. In November 1961, the ASA Mechanical Standards Board approved the request of the B5 Sectional Committee sponsors that a separate project be initiated under ASA Procedure on the topic of cutting tools. As a result of this action, a new project was initiated, and ASME accepted sponsorship. The Committee was designated B94 Cutting Tools, and the activity on cutting tools was removed from the B5 Sectional Committee. The designation numbers of the technical committees were changed to conform with the new sectional committee organization. B5 Technical Committee 27 was changed to B94 Technical Committee 11. As required by ASA procedure, the Committee reviewed the proposal and approved some changes in the recommended tolerance on work blank diameter before knurling, as shown in Table 3. Other changes, of an editorial nature, were made to bring the standard into conformance with the B94 format. The present edition of this Standard was approved as an American National Standard on November 28, 1984. Intentionally left blank ### ASME STANDARDS COMMITTEE B94 Cutting Tools, Holders, Drivers, and Bushings POF OF ASME BOA. 6 198A (The following is the roster of the Committee at the time of approval of this Standard.) ### **OFFICERS** E. J. Czopor, Chairman W. R. Daisak, Secretary ### **COMMITTEE PERSONNEL** ### AMERICAN SOCIETY OF MECHANICAL ENGINEERS, THE - M. E. Merchant, Dr., Metcut Research Associates, Inc., Cincinnati, Ohio - C. F. Wilson, Alternate, General Electric Co., Worthington, Ohio ### CUTTING TOOL MANUFACTURERS OF AMERICA - E. J. Czopor, Falcon Tool Co., Warren, Michigan C. W. Jatho, Alternate, Cutting Tool Manufacturers Association Birmingham, Michigan ### GENERAL SERVICES ADMINISTRATION W. R. Wacker, General Services Administration, Washington, D.C. ### HACK AND BAND SAW MANUFACTURERS ASSOCIATION OF AMERICA - R. D. C. Schrade, Clemson Brothers Inc., Middletown, New York - C. M. Stockinger, Alternate, Hack and Band Saw Manufacturers Association of America, Cleveland, Ohio ## METAL CUTTING TOOL INSTITUTE - W. A. Wagner, Cleveland Twist Drill Co., Cleveland, Ohio - J. G. Thimmig, Alternate, Metal Cutting Tool Institute, Cleveland, Ohio ### NATIONAL MACHINE TOOL BUILDERS ASSOCIATION - J. J. Robinson, The Valeron Corp., Madison Heights, Michigan - A. M. Bratkovich, Afternate, National Machine Tool Builders Association, McLean, Virginia ### SOCIETY OF MANUFACTURING ENGINEERS G. L. Spencer, Ford Motor Co., Detroit, Michigan ### UNITED STATES DEPARTMENT OF THE ARMY D.L. York, Liaison, U.S. Army Armament, Rock Island, Illinois ### INDIVIDUAL MEMBERS - A. Ashburn, McGraw-Hill, Inc., New York, New York - H. Cooper, Water Technology Inc., Troy, Michigan - R. T. Koblesky, Ingersoll Cutting Tool Co., Rockford, Illinois - L. Storrer, Mohawk Tools, Inc., Montpelier, Ohio ### **TECHNICAL COMMITTEE 11 ON KNURLING** - C. L. Johnson, Chairman, IBM Corp., Endicott, New York - C. T. Appleton, Pratt & Whitney Co., Cleveland, Ohio - C. F. Cowan, Eastman Kodak Co., Rochester, New York - P. J. DesJardins, Pratt and Whitney Co., West Hartford, Connecticut - W. J. Johnson, J. H. Williams & Co., Buffalo, New York - J. B. Levy, General Electric Co., Schenectady, New York ASMENORMOC.COM. Click to view the full POF of ASME BOARD ASMEDIA # **CONTENTS** | | eword | iii 🚫 | |-----|---|------------| | Con | Scope and Purpose Terminology Types of Tools Dimensioning | v 6 | | | | Olx, | | 1 | Scope and Purpose | 1 | | 2 | Terminology | 1 | | 3 | Types of Tools | 1 | | 4 | | | | 5 | Marking on Knurls and Dies | 6 | | 6 | Recommended Tolerance on Knurled Outside Diameters | 6 | | 7 | The Tracking Correction Factor Q | 6 | | 8 | Diagonal and Diamond Knurling With Straight Tooth Knurling Tools | 6 | | | No. | | | Fig | Basic Formulas Measured in a Transverse Plane | | | 1 | Basic Formulas Measured in a Transverse Plane | 2 | | 2 | Typical Cylindrical Knurls | 2 | | 3 | Illustrations of Standard Pitch Knurls and Knurling | 2 | | 4 | Typical Flat Reciprocating Knurling Dies Straight Teeth | 3 | | 5 | Typical Flat Stationary Knurling Dies - Straight Teeth | 3 | | 6 | Typical Flat Reciprocating Knurling Dies – Diagonal Teeth | 4 | | 7 | Typical Flat Stationary Knurling Dies — Diagonal Teeth | 4 | | 8 | Flat Knurling Die – Straight Teeth | 5 | | 9 | Drawing Indications for Specifying Knurling | 5 | | 10 | Diagonal and Diamond Knurling | 6 | | | \sim | | | Tab | nles O | | | 1 | | 5 | | 1A | | 5 | | 2 | Specifications for Flat Knurling Dies | 5 | | 3 | · | | | , | Pitch Straight Knurling Tools | 8 | | 4 | | 10 | | 5 | V • · · · · · · · · · · · · · · · · · · | .0 | | | Cylindrical Knurls | 11 | Intentionally left blank ### AN AMERICAN NATIONAL STANDARD ### **KNURLING** ### 1 SCOPE AND PURPOSE This Standard covers knurling tools with standardized diametral pitches and includes dimensional relations with stock in the production of straight, diagonal, and diamond knurling on cylindrical surfaces having teeth of uniform pitch parallel to the axis of the cylinder or at a helix angle not exceeding 45 deg. with axis of work. Such knurling is made by displacement of the material on the surface when rotated under pressure against a knurling tool. These tools and recommendations are equally applicable to general purpose and precision knurling. In brief, the advantage of this method is the provision by which good tracking (the ability of teeth to mesh as the tool penetrates the work blank in successive revolutions) is obtained by tools designed on the basis of diametral pitch instead of tpi (teeth per inch) when used with recommended work blank diameters that are multiples of $\frac{1}{64}$ or $\frac{1}{32}$ in., depending upon the pitch selected. This should improve the uniformity and appearance of knurling, eliminate the costly trial and error methods, reduce the failure of knurling tools and production of defective work, as well as decrease the number of tools required. ### 2 TERMINOLOGY diametral pitch the quotient of the total number of teeth in the circumference of the work divided by the basic blank diameter. In the case of the tool, it would be the total number of teeth in the circumference divided by the nominal diameter. In this Standard, the diametral pitch and number of teeth are always measured in a transverse plane which is perpendicular to the axis of rotation for diagonal as well as straight knurls and knurling. knurl—a tool with teeth on its periphery used to produce an imprint of the teeth on the cylindrical surface of the work knurling – designates the process and the knurled portion of the work work – applies to the finished product work blank – applies to the part prior to knurling ### 3 TYPES OF TOOLS ### 3.1 Cylindrical Type - (a) The cylindrical type knurling tool comprises a holder and one or more knurls. The knurl has a centrally located mounting hole and is provided with straight or diagonal teeth on its periphery. The knurl is used to reproduce, by rolling on the work blank, the pattern on the periphery of the knurl as the work blank and the knurl rotate. - (b) The basic formulas measured in a transverse plane are shown in Fig. 1. - (c) Cylindrical type knurls with letter symbols and formulas are shown in Fig. 2. - (d) The preferred sizes for cylindrical type knurls are given in Table 1. Additional sizes for bench and engine lathe tool holders are shown in Table 1A. - (e) Illustrations of standard pitch knurls and knurling are shown in Fig. 3. ### 3.2 Flat Type - (a) The flat type of tool is a knurling die, commonly used in reciprocating types of rolling machines as illustrated in Figs. 4 through 7. Dies may be made with either single or duplex faces having either straight or diagonal teeth. No preferred sizes are established for flat dies. - (b) An illustration of a flat knurling die having straight teeth, with the letter symbols and formulas, is shown in Fig. 8. - (c) Specifications for flat knurling dies are given in Table 2. - (d) Drawing indications for specifying knurling are shown in Fig. 9. Dow = knurled diameter = D_w + 2a Dw = work blank diameter $= N_w/P$ N_{W} = number of teeth on work $= P \times D_{W}$ P = diametral pitch $= N_W/D_W$ a = addendum of tooth on work $= (D_{OW} - D_W)/2$ h = tooth depth # FIG. 1 BASIC FORMULAS MEASURED IN A TRANSVERSE PLANE FIG. 3 ILLUSTRATIONS OF STANDARD PITCH KNURLS AND KNURLING A = diameter of hole D_{nt} = nominal diameter of cylindrical knurl $= N_t/P$ Dot = major diameter of cylindrical knurl $= D_{nt} - [(N_t Q)/\pi]$ F = face width N_t = number of teeth on cylindrical knurl = P × D_{nt} P = diametral pitch $= N_t/D_{nt}$ P_{nt} = circular pitch on nominal diameter = π/P [Note (1)] Pot = circular pitch on major diameter = $\pi D_{ot}/N_t$ [Note (1)] Q = tracking correction factor applied to circular pitch based on nominal diameter $= P_{ot} - P_{ot}$ [Note (3)] R = radius root h = tooth depth ψ = helix angle of knurl (30 deg. preferred) [Note (2)] ### NOTES: - For diagonal knurls P_{nt} and P_{ot}, cover transverse circular pitch which is measured in the plane perpendicular to the axis of rotation. - (2) Helix angle on cylindrical knurl may be right hand or left hand. Left-hand helix angle shown on knurl produces righthand helix on work. - (3) For description and specifications for tracking correction factor, see Section 7. ### FIG. 2 TYPICAL CYLINDRICAL KNURLS FIG. 4 TYPICAL FLAT RECIPROCATING KNURLING DIES - STRAIGHT TEETH FIG. 5 TYPICAL FLAT STATIONARY KNURLING DIES - STRAIGHT TEETH FIG. 6 TYPICAL FLAT RECIPROCATING KNURLING DIES - DIAGONAL TEETH FIG. 7 TYPICAL FLAT STATIONARY KNURLING DIES - DIAGONAL TEETH D_W = work blank (pitch) diameter $= N_w/P$ Nw = number of teeth of work = P × Dw P = diametral pitch $= N_W/D_W$ P_I = linear pitch on flat die = circular pitch on work pitch diameter, P - Q Q = tracking correction factor applied to linear pitch on die [Note (1)] R = radius at root h = tooth depth ### NOTE: For description and specifications for tracking correction factor, see Section 7. ### FIG. 8 FLAT KNURLING DIE – STRAIGHT TEETH FIG. 9 DRAWING INDICATIONS FOR SPECIFYING KNURLING # TABLE 1 PREFERRED SIZES FOR CYLINDRICAL TYPE KNURLS | Nominal
Outside
Diameter | Width
of
Face, | Diameter
of
Hole, | Num | ber of Teer
Diametra
<i>N_t</i> | l Pitches, | ndard | |--------------------------------|----------------------|-------------------------|--------------------|---|--------------|---------------| | Dnt | F | A | 64 <i>P</i> | 96 <i>P</i> | 128 <i>P</i> | 16 0 P | | 1/2 | 3/16 | 3/16 | 32 | 48 | 64 | 80 | | 5/8 | 1/4 | 1/4 | 40 | 60 | 80 | 100 | | 3/4 | 3/8 | 1/4 | 48 | 72 | 96 | 120 | | 7/8 | 3/8 | 1/4 | 56 | 846 | 112 | 140 | # TABLE 1A ADDITIONAL SIZES FOR BENCH AND ENGINE LATHE TOOL HOLDERS¹ | Nominal
Outside
Diameter, | Width
of
Face, | Diameter
of
Hole, | Numi | per of Teet
Diametral | | ndard | | | | |---------------------------------|----------------------|-------------------------|-------------|--------------------------|--------------|-------|--|--|--| | D _{nt} | FQ | A | 64 <i>P</i> | 96 <i>P</i> | 128 <i>P</i> | 160P | | | | | 5/8 | 5)16 | 7/32 | 40 | 60 | 80 | 100 | | | | | 3/4 🧷 | 5/8 | 1/4 | 48 | 72 | 96 | 120 | | | | | 1 /// | 3/8 | 5/16 | 64 | 96 | 128 | 160 | | | | **GENERAL** NOTE: For simplification of tools it is recommended that preference be given to use of 96P. ### NOTE 64P approximates the circular pitch of 21 tpi, and 96P approximates the circular pitch of 31 tpi. TABLE 2 SPECIFICATIONS FOR FLAT KNURLING DIES | Diametral
Pitch, | Linear
Pitch | Tooth | Radius at
Root, | | | |---------------------|-----------------|----------|--------------------|------------------|--| | Ρ | $P_l(1)$ | Straight | Diagonal | R | | | 64 | 0.0484 | 0.024 | 0.021 | 0.0070
0.0050 | | | 96 | 0.0325 | 0.016 | 0.014 | 0.0060
0.0040 | | | 128 | 0.0244 | 0.012 | 0.010 | 0.0045
0.0030 | | | 160 | 0.0195 | 0.009 | 0.008 | 0.0040
0.0025 | | ### NOTE: (1) The linear pitches shown are theoretical. The exact linear pitch produced by a flat knurling die may vary slightly from those shown depending upon the rolling condition and the material being rolled. ### 3.3 Diagonal and Diamond Knurling An illustration of the terms used in diagonal and diamond knurling is shown in Fig. 10. ### 4 DIMENSIONING To maintain uniform drafting practice, essential dimensioning should include width, outside diameter before and after knurling, selected tolerance, diametral pitch, and style of knurling. ### **5 MARKING ON KNURLS AND DIES** Each knurl and die should be marked as follows: - (a) when straight, to indicate its diametral pitch; - (b) when diagonal, to indicate its diametral pitch, helix angle, and hand of the angle. # 6 RECOMMENDED TOLERANCE ON KNURLED OUTSIDE DIAMETERS¹ Three classes of tolerances are shown in Table 3. These classes and recommended applications are as follows. - (a) Class I Tolerances. This classification may be applied to straight, diagonal, and raised diamond knurling where the knurled outside diameter of the work need not be held to close dimensional tolerances. Such applications include knurling for decorative effect, grip on thumbscrews, and inserts for moldings and castings. - (b) Class II Tolerances. This classification may be applied to straight knurling only and is recommended for applications requiring closer dimensional control of the knurled outside diameter than provided by Class I tolerances. - (c) Class III Tolerances. This classification may be applied to straight knurling only and is recommended for applications requiring closest possible dimensional control of the knurled outside diameter. Such applications include knurling for close fits. ### 7 THE TRACKING CORRECTION FACTOR Q Use of the preferred pitches for cylindrical knurls, shown in Table 4, results in good tracking on all fractional work blank diameters which are multiples of Dw = diameter of work blank N_w = number of teeth produced on work blank (as measured in the transverse plane) P = diametral pitch on tool Pψ = diametral pitch produced on work blank (as measured in the transverse plane) by setting tool axis at an angle ψ with respect to work blank axis ψ = angle between tool axis and work axis ### FIG. 10 DIAGONAL AND DIAMOND KNURLING 1/64 or 1/32 in., depending on the pitch selected. To accomplish this, the work surface must be evenly marked during the first revolution of the work, which requires pitch circles to roll without relative slippage. Therefore, extent of penetration of the work by the knurl during the first revolution must be considered. Because of the many variables involved in knurling practice, such as cam contours, hardness of the material, elasticity of machine tools and tool holders, etc., the method of determining the required correction is necessarily empirical. Accordingly, the tracking correction factor Q has been incorporated in knurl specifications, shown in Table 4, on the basis of experimental work and experience, and has provided good tracking for general knurling conditions. # 8 DIAGONAL AND DIAMOND KNURLING WITH STRAIGHT TOOTH KNURLING TOOLS² Diagonal knurling on work blank may be accomplished by setting the axis of the knurling tool at an angle to the work axis (see Fig. 10). ¹The width of the knurling should not exceed the diameter of the blank, and knurling wider than the knurling tool cannot be produced unless the knurl starts at the end of the work. ²Diamond knurling can be produced by the use of two straight knurls when their axes are swivelled from the work blank axis in accordance with the above formulas. In using straight knurls to produce diagonal and diamond knurling, the transverse diametral pitch and number of teeth on the work will not be the same as that of the tool. For example, if 30 deg. diagonal knurling were to be produced on 1 in, stock with a 160P straight knurl: $$N_w = D_w P \cos \psi = 1.000 \times 160 \times 0.86603 = 138.56$$ Good tracking is theoretically possible by changing the helix angle as follows: $$\psi = \cos^{-1}\left(\frac{N_w}{D_w P}\right) = \cos^{-1}\left(\frac{138}{1 \times 160}\right)$$ $$= \cos^{-1} (0.8625) = 30^{1}/_{2} \text{ deg. approx.}$$ angles of stands. angles of stands. Click to view the full Public of A. Whenever it is more practical to machine the stock, good tracking can be obtained by reducing the work blank diameter as follows: $$D_w = \frac{N_w}{P\cos\psi} = \frac{138}{160 \times 0.866} = 0.996 \text{ in.}$$ then $$P\psi = P \cos \psi$$ and $$N_{\mathbf{w}} = D_{\mathbf{w}} P \cos \psi$$ Theoretical work blank diameters on which standard pitch knurls may be expected to track are shown in Table 5 for the four standard diametral pitch knurling tools and for helix angles of 25, 30, 35, 40, and 45 deg. TABLE 3 KNURLING DATA FOR FRACTIONAL BLANK DIAMETERS USING STANDARD DIAMETRAL PITCH STRAIGHT KNURLING TOOLS | Diametral Pitch Approximate Depth of Tooth or Increase in Knurled Diameter Diameter | | 16 | 50 | 12 | 28 | 9 | 6 | 0.024 | | | | |---|----------------|---------------------|--|---------------------|--|---------------------|--|---------------------|---|--|--| | | | 0.0 | 009 | - 0.0 | 112 | 0.0 | 016 | | | | | | | | Knurled
Diameter | No. of
Teeth in
Knurled
Circumference | Knurled
Diameter | No. of
Teeth in
Knurled
Circumference | Knurled
Diameter | No. of
Teeth in
Knurled
Circumference | Knurled
Diameter | No. of
Teeth in
Knurled
Circumferenc | | | | 3/32 | 0.094 | 0.103 | 15 | | | 40 | | | | | | | 1/8 | 0.125 | 0.134 | 20 | 0.153 | | ··· | | • • • • | • • • • | | | | 9/64
5/32 | 0.141
0.156 | 0.165 | 25 | 0.153
0.168 | 18 20 | • • • • | | | • • • | | | | | | 0.105 | 1 | 1 | | • • • • | | • • • • | | | | | 11/64 | 0.172 | | | 0.184
0.200 | 224 | • • • • | • • • • | | • • • • | | | | 3/16
13/64 | 0.188
0.203 | 0.197 | 30 | 0.200 | 26 | • • • • | • • • | | | | | | 7/32 | 0.203 | 0.228 | 35 | 0.231 | 28 | • • • • | • • • • | | | | | | 15/64 | 0.234 | | | 0.246 | 30 | | | | | | | | 1/4 | 0.250 | 0.259 | 40 | 0.262 | 32 | 0.266 | 24 | | | | | | 17/64 | 0.266 | | | 0.278 | 34 | | | | 1 | | | | 9/32 | 0.281 | 0.290 | 45 | 0.293 | 36 | 0.297 | 27 | | 1 | | | | 19/64 | 0.297 | | 6 | 0.309 | 38 | | | <i>.</i> | | | | | 5/16 | 0.312 | 0.321 | 50 . | 0.324 | 40 | 0.328 | 30 | | | | | | 21/64 | 0.328 | | · 1/3 | 0.340 | 42 | | | | | | | | 11/32 | 0.344 | 0.353 | -Oss. | 0.356 | 44 | 0.360 | 33 | | • • • • | | | | 23/64 | 0.359 | _ | O | 0.371 | 46 | |] | | | | | | 3/8 | 0.375 | 0.384 | 60 | 0.387 | 48 | 0.391 | 36 | 0.399 | 24 | | | | 25/64 | 0.391 | 0 | | 0.403 | 50 | | | 0.414 | 25 | | | | 13/32 | 0.406 | 0.415 | 65 | 0.418 | 52 | 0.422 | 39 | 0.430 | 26 | | | | 27/64 | 0.422 | 021. | | 0.434 | 54 | | | 0.446 | 27 | | | | 7/16 | 0.438 | 0.447 | 70 | 0.450 | 56 | 0.454 | 42 | 0.462 | 28 | | | | 29/64 | 0.453 | | 1 ::: | 0.465 | 58 | | | 0.477 | 29 | | | | 15/32 | 0.469 | 0.478 | 75 | 0.481 | 60 | 0.485 | 45 | 0.493 | 30 | | | | 31/64 | 0.484 | ļ | | 0.496 | 62 | | | 0.508 | 31 | | | | 1/2 | 70.500 | 0.509 | 80 | 0.512 | 64 | 0.516 | 48 | 0.524 | 32 | | | | 33/64 | 0.516 | | | 0.528 | 66 | 0.547 | | 0.540 | 33 | | | | 17/32 | 0.531 | 0.540 | 85 | 0.543 | 68 | 0.547 | 51 | 0.555 | 34 | | | | 35/64 | 0.547 | | | 0.559 | 70 | | | 0.571 | 35 | | | | 9/16 | 0.562 | 0.571 | 90 | 0.574 | 72 | 0.578 | 54 | 0.586 | 36 | | | | 37/64 | 0.578 | | ` | 0.590 | 74 | | | 0.602 | 37 | | | | 19/32 | 0.594 | 0.603 | 95 | 0. 60 6 | 76 | 0.610 | 57 | 0.618 | 38 | | | | 39/64 | 0.609 | | | 0.621 | 78 | | | 0.633 | 39 | | | TABLE 3 KNURLING DATA FOR FRACTIONAL BLANK DIAMETERS USING STANDARD DIAMETRAL PITCH STRAIGHT KNURLING TOOLS (CONT'D) | | | 16 | 50 | 12 | 28 | 9 | 6 | | 64 | |-------------------------|--------------|---------------------|--|---------------------|--|---------------------|--|---------------------|--| | Diametral Pitch | | Knurled
Diameter | No. of
Teeth in
Knurled
Circumference | | 5/8 | 0.625 | 0.634 | 100 | 0.637 | 80 | 0.641 | 60 | 0.649 | 40 | | 41/64 | 0.641 | | | 0.653 | 82 | | • • • | 0.665 | 41 | | 21/32 | 0.656 | 0.665 | 105 | 0.668 | 84 | 0.672 | 63 | 0,680 | 42 | | 43/64 | 0.672 | • • • • | • • • | 0.684 | 86 | | | 0.696 | 43 | | 11/16 | 0.688 | 0.697 | 110 | 0.700 | 88 | 0.704 | 66 | 0.712 | 44 | | 45/64 | 0.703 | | | 0.715 | 90 | | Ch. | 0.727 | 45 | | 23/32 | 0.719 | 0.728 | 115 | 0.731 | 92 | 0.735 | 69 | 0.743 | 46 | | 47/64 | 0.734 | • • • | | 0.746 | 94 | • • • | & X. | 0.758 | 47 | | 3/4 | 0.750 | 0.759 | 120 | 0.762 | 96 | 0.766 | 72 | 0.774 | 48 | | 49/64 | 0.766 | | | 0.778 | 98 | 0 | | 0.790 | 49 | | 25/32 | 0.781 | 0.790 | 125 | 0.793 | 100 | 0.797 | 75 | 0.805 | 50 | | 51/64 | 0.797 | • • • • | | 0.809 | 102 | 111 | | 0.821 | 51 | | 13/16 | 0.812 | 0.821 | 130 | 0.824 | 104 | 0.828 | 78 | 0.836 | 52 | | 53/64 | 0.828 | | | 0.840 | 106 | Ø | l | 0.852 | 53 | | 27/32 | 0.844 | 0.833 | 135 | 0.856 | 108 | 0.860 | 81 | 0.868 | 54 | | 55/64 | 0.859 | | | 0.871 | 110 | | | 0.883 | 55 | | 7/8 | 0.875 | 0.884 | 140 | 0.887 | 1/12 | 0.891 | 84 | 0.899 | 56 | | 7/64 | 0.891 | | | 0.903 | 114 | | | 0.915 | 57 | | 29/32 | 0.906 | 0.915 | 145 | 0.918 | 116 | 0.922 | 87 | 0.930 | 58 | | 59/64 | 0.922 | | | 0.934 | 118 | | | 0.946 | 59 | | 15/16 | 0.938 | 0.947 | 150 | 0.950 | 120 | 0.954 | 90 | 0.962 | 60 | | 61/64 | 0.953 | | | 0.965 | 122 | | | 0.977 | 61 | | 31/32 | 0.969 | 0.978 | 155 | 0.981 | 124 | 0.985 | 93 | 0.993 | 62 | | 6 3/64 | 0.984 | | (| 0.996 | 126 | | | 1.008 | 63 | | 1 | 1.000 | 1.009 | 160 | 1.012 | 128 | 1.016 | 96 | 1.024 | 64 | | Recomm | | Class
I | +0.002 | | +0.003
-0.008 | | +0.004
-0.010 | | +0.005
-0.012 | | Tolerance on
Knurled | | Class | +0.000 | | +0.000 | | +0.000 | | +0.000 | | Outside | | " ~ | -0.006 | | -0.008 | | -0.009 | · · · · | -0.010 | | Diameters | | Class | +0.000 | | +0.000
-0.004 | | +0.000
-0.005 | | +0.000
-0.006 | | Recomm | nended | Classes | | | | | | | | | Tolerand | | 1 & 11 | ±0.0005 | | ±0.0007 | | ±0.0010 | | ±0.0015 | | | ank Diameter | Class | +0.0000 | l | +0.0000 | l | +0.0000 | l | +0.0000 | | Before k | (1) (1) | 111 | -0.0005 | | -0.0007 | | -0.0010 | | -0.0015 | | | | | | | | <u> </u> | | | | ### GENERAL NOTES: ### NOTE: ⁽a) Use of 64P knurl should be avoided as much as possible. For simplification of tools it is recommended that preference be given to use of 96P. ⁽b) For unlisted diameters refer to Fig. 1. ⁽¹⁾ Recommended tolerance on Class I and II work blanks is equal to 6% of the circular pitch on the nominal diameter. Recommended tolerance on Class III work blanks is equal to 3% of the circular pitch on the nominal diameter. | ·
1 | TABLE 4 | SPEC | IFICATI | ons Fol | R STRAI | GHT AND D | OIAGON | AL T001 | rh cyli | NDRICA | O.A. | | |--------------------------------------|-------------------|----------------|---------------------------------------|-----------|---------|-----------------------------------|----------|------------------------|-----------------------|-----------------|--------------------|---------------------------------------| | | Maj | or Diamet | D _{ot}
+ 0.000
- 0.001 |)0
 5 | ırl, | | + | Depth, 7 0.0015 0.0000 | N N N | or S
(Betwee | en Sides
jacent | Max.
Eccen-
tricity of
Teeth | | Diam-
etral
Pitch,
<i>P</i> | 1/2 : | Nor
5/8 in. | ninal Diam D _{nt} 3/4 in. | 7/8 in. | 1 in. | Tracking
Correction
Factor, | Straight | Diagonal | Radius
at
Root, | Straight | Diagonal | (Total
Indicator
Reading) | | 64 | 1/2 in.
0.4932 | 0.6165 | 0.7398 | 0.8631 | 0.9864 | 0.0006676 | 0.024 | 0.021 | 0.0070 | 80 | 80 | 0.002 | | 96 | 0.4960 | 0.6200 | 0.7440 | 0.8680 | 0.9920 | 0.0002618 | 0.016 | 0.014 | 0.0060
0.0040 | 80 | 80 | 0.002 | | 128 | 0.4972 | 0.6215 | 0.7458 | 0.8701 | 0.9944 | 0.0001374 | 0.012 | 0.010 | 0.0045 | 80 | 80 | 0.002 | | 160 | 0.4976 | 0.6220 | 0.7464 | 0.8708 | 0.9952 | 0.00009425 | 0.009 | 0.008 | 0.0040
0.0025 | 80 | 80 | 0.002 | ### **GENERAL NOTES:** (a) Number of teeth = diametral pitch x nominal diameter. (b) The different nominal diameters of knurls are used to meet established requirements of tool holders, machine sizes, and the contour of (c) For simplification of tools it is recommended that preference be given to use of 96P. NOTE: (1) With 30 deg. helix angle. TABLE 5 DIAGONAL AND DIAMOND KNURLING PRODUCED BY STRAIGHT TOOTH CYLINDRICAL KNURLS | No. | | | | | - | Theoretic | cal Blank | Diamete | r on Wh | ich Stand | dard Pitc | h Knurls | May Be | Expected | d to Trac | k (1) | | | | | |-------------|----------------|-------------|--------------|--------------|-------------|-------------|--------------|----------------|----------------|----------------|--------------|--------------|----------------|----------------|--------------|-------|---------|-------------|--------------|----------------------| | of | | | | | | | | An | gle Betw | een Axis | of Work | and Kno | url Axis | | _ | | | | | | | Teeth
on | 25 deg. | | | | | 30 | deg. | | | 35 | deg. | | | 40 | deg. | | 3 | 45 | deg. | | | Work | 64 <i>P</i> | 96 <i>P</i> | 128 <i>P</i> | 160 <i>P</i> | 64 <i>P</i> | 96 <i>P</i> | 128 <i>P</i> | 160 <i>P</i> | 64 <i>P</i> | 96 <i>P</i> | 128 <i>P</i> | 160 <i>P</i> | 64 <i>P</i> | 96 <i>P</i> | 128 <i>P</i> | 1602 | 64P | 96 <i>P</i> | 128 <i>P</i> | 16 0 <i>P</i> | | 15 | | | | 0.103 | | | | 0.108 | | | | 0.114 | 1 | | 0.153 | 0.122 | | | 0.166 | 0.133 | | 16 | | | | 0.110 | | | | 0.115 | | | 0.153 | 0.122 | | | 0.163 | 0.130 | | | 0.177 | 0.141 | | 17 | | | | 0.117 | | | 0.153 | 0.123 | • • • • | | 0.162 | 0.130 | | | 0.173 | V | | | 0.188 | 0.150 | | 18 | | | 0.155 | 0.124 | | 1 | 0.162 | 0.130 | | | 0.172 | 0.137 | | • • • | 0.184 | 0.147 | 0.398 | 0.265 | 0.199 | 0.159 | | 19 | | | 0.164 | 0.131 | | | 0.171 | 0.137 | | | 0.181 | 0.145 | | | 0.194 | 0.155 | 0.420 | 0.280 | 0.210 | 0.168 | | 20 | | | 0.172 | 0138 | | | 0.180 | 0.144 | | | 0.191 | 0.153 | 0.404 | 0.272 | 0.204 | 0.163 | 0.442 | 0.295 | 0.221 | 0.177 | | 21 | | | 0.181 | 0.145 | | | 0.189 | 0.152 | 0.401 | 0.266 | 0.200 | 0.160 | 0.424 | 0.286 | 0.214 | 0.171 | 0.464 | 0.309 | 0.232 | 0.186 | | 22 | | | 0.190 | 0.152 | 0.397 | 0.265 | 0.198 | 0.159 | 0.420 | 0.279 | 0.210 | 0.168 | 0.445 | 0.299 | 0.224 | 0.179 | 0.486 | 0.324 | 0.243 | 0.194 | | 23 | 0.397 | 0.264 | 0.198 | 0.159 | 0,415 | 0.277 | 0.207 | 0.166 | 0.439 | 0.292 | 0.219 | 0.175 | 0.465 | 0.313 | 0.235 | 0.188 | 0.508 | 0.339 | 0.254 | 0.203 | | 24 | 0.414 | 0.276 | 0.207 | 0.165 | 0.433 | 0.289 | 0.217 | 0.173 | 0.458 | 0.304 | 0.229 | 0.183 | 0.485 | 0.326 | 0.245 | 0.196 | 0.530 | 0.353 | 0.265 | 0.212 | | 25 | 0.431 | 0.287 | 0.216 | 0.172 | 0.451 | 0.301 | 0.226 | 0.180 | 0.477 | 0.317 | 0.238 | 0.191 | 0.505 | 0.340 | 0.255 | 0.204 | 0.552 | 0.368 | 0.276 | 0.221 | | 26 | 0.448 | 0.299 | 0.224 | 0.179 | 0.469 | 0.313 | 0.235 | 0.188 | 0.496 | 0.330 | 0.248 | 0.198 | 0.525 | 0.354 | 0.265 | 0.212 | 0.575 | 0.383 | 0.287 | 0.230 | | 27 | 0.465 | 0.310 | 0,233 | 0.186 | 0.487 | 0.325 | 0,244 | 0.195 | 0.515 | 0.343 | 0.258 | 6.206 | 0.546 | 0.367 | 0.275 | 0.220 | 0.597 | 0.398 | 0.298 | 0.239 | | 28 | 0.483 | 0.322 | 0.241 | 0.193 | 0.505 | 0.337 | 0.253 | 0.202 | 0.534 | 0.355 | 0.267 | 0.214 | 0.566 | 0.381 | 0.275 | 0.228 | 0.619 | 0.338 | 0.309 | 0.239 | | 29 | 0.500 | 0.333 | 0.250 | 0.200 | 0.523 | 0.349 | 0.262 | 0.209 | 0.553 | 0.368 | 0.277 | 0.221 | 0.586 | 0.394 | 0.296 | 0.236 | 0.641 | 0.427 | 0.309 | 0.256 | | 30 | 0.517 | 0.345 | 0.259 | 0.207 | 0.541 | 0.361 | 0.271 | 0.217 | 0.572 | 0.381 | 0.286 | 0.229 | 0.606 | 0.408 | 0.306 | 0.245 | 0.663 | 0.442 | 0.331 | 0.265 | | 21 | 0.624 | 0.256 | 0.267 | 0.214 | 0.559 | 0.373 | 0.200 | 0.224 | 0.591 | 0.393 | 0.296 | 0.237 | 0.636 | 0.400 | 0.216 | 0.050 | | | | | | 31
32 | 0.534
0.552 | 0.356 | 0.267 | 0.214 | 0.577 | 0.373 | 0.280 | 0.224 | 0.591 | 0.406 | 0.296 | 0.237 | 0.626
0.647 | 0.422
0.435 | 0.316 | 0.253 | 0.685 | 0.457 | 0.342 | 0.274 | | 33 | 0.569 | 0.308 | 0.276 | 0.228 | 0.595 | 0.397 | 0.298 | 0.238 | 0.629 | 0.419 | 0.303 | 0.252 | 0.667 | 0.433 | 0.326 | 0.261 | 0.707 | 0.471 | 0.354 | 0.283 | | 34 | 0.586 | 0.373 | 0.293 | 0.234 | 0.613 | 0.409 | 0.307 | 0.245 | 0.649 | 0.431 | 0.313 | 0.259 | 0.687 | 0.462 | 0.337 | 0.209 | 0.729 | 0.486 | 0.365 | 0.292 | | - | | | | | | İ | | | \cdot | | | Ì | | | | | | 0.501 | 0.370 | 0.301 | | 35 | 0.603 | 0.402 | 0.302 | 0.241 | 0.631 | 0.421 | 0.316 | 0.253 | 0.668 | 0.444 | 0.334 | 0.267 | 0.707 | 0.476 | 0.357 | 0.286 | 0.773 | 0.515 | 0.387 | 0.309 | | 36 | 0.621 | 0.414 | 0.310 | 0.248 | 0.649 | 0.433 | 0.325 | 0.260 | 0.687 | 0.457 | 0.343 | 0.275 | 0.727 | 0.490 | 0.367 | 0.294 | 0.795 | 0.530 | 0.398 | 0.318 | | 37
38 | 0.638
0.655 | 0.425 | 0.319 | 0.255 | 0.667 | 0.445 | 0.334 | 0.267
0.274 | 0.706
0.725 | 0.469
0.482 | 0.353 | 0.282 | 0.748
0.768 | 0.503
0.517 | 0.377 | 0.302 | 0.818 | 0.545 | 0.409 | 0.327 | | 36 | 0.033 | 0.437 | 0.328 | 0.202 | 0.083 | 0.437 | 0.343 | 0.274 | 0.723 | 0.462 | 0.302 | 0.290 | 0.768 | 0.517 | 0.388 | 0.310 | 0.840 | 0.560 | 0.420 | 0.336 | | 39 | 0.672 | 0.448 | 0.336 | 0.269 | 0.703 | 0.469 | 0.352 | 0.281 | 0.744 | 0.495 | 0.372 | 0.298 | 0.788 | 0.530 | 0.398 | 0.318 | 0.862 | 0.574 | 0.431 | 0.345 | | 40 | 0.690 | 0.460 | 0.345 | 0.276 | 0.721 | 0.481 | 0.361 | 0.289 | 0.763 | 0.507 | 0.382 | 0.305 | 0.808 | 0.544 | 0.408 | 0.326 | 0.884 | 0.589 | 0.442 | 0.354 | | 41 | 0.707 | 0.471 | 0.353 | 0.283 | 0.740 | 0.493 | 0.370 | 0.296 | 0.782 | 0.520 | 0.391 | 0.313 | 0.828 | 0.558 | 0.418 | 0.335 | 0.906 | 0.604 | 0.453 | 0.362 | | 42 | 0.724 | 0.483 | 0.362 | 0.290 | 0.758 | 0.505 | 0.379 | 0.303 | 0.801 | 0.533 | 0.401 | 0.320 | 0.849 | 0.571 | 0.428 | 0.343 | 0.928 | 0.619 | 0.464 | 0.371 | | 43 | 0.741 | 0.494 | 0.371 | 0.297 | 0.776 | 0.517 | 0.388 | 0.310 | 0.820 | 0.546 | 0.410 | 0.328 | 0.868 | 0.585 | 0.439 | 0.351 | 0.950 | 0.633 | 0.475 | 0.380 | | 44 | 0.759 | 0.506 | 0.379 | 0.303 | 0.794 | 0.529 | 0.397 | 0.318 | 0.839 | 0.558 | 0.420 | 0.336 | 0.889 | 0.598 | 0.449 | 0.359 | 0.972 | 0.648 | 0.486 | 0.389 | | 45 | 0.776 | 0.517 | 0.388 | 0.310 | 0.812 | 0.541 | 0.406 | 0.325 | 0.858 | 0.571 | 0.429 | 0.343 | 0.909 | 0.612 | 0.459 | 0.367 | 0.994 | 0,663 | 0.497 | 0.398 | | 46 | 0.793 | 0.529 | 0.397 | 0.31 | 0.830 | 0.553 | 0.415 | 0.332 | 0.877 | 0.584 | 0.439 | 0.351 | 0.930 | 0.626 | 0.469 | 0.375 | 1.017 | 0.677 | 0.508 | 0.407 | | 47 | 0.810 | 0.540 | 0.405 | 0.324 | 0.848 | 0,565 | 0,424 | 0.339 | 0.897 | 0.596 | 0.448 | 0.359 | 0.950 | 0.639 | 0.479 | 0.383 | | 0.692 | 0,519 | 0.415 | | 48 | 0.828 | 0.552 | 0.414 | 0.331 | 0.866 | 0.577 | 0.433 | 0.346 | 0.916 | 0.609 | 0.458 | 0.366 | 0.970 | 0.653 | 0.479 | 0.392 | | 0.692 | 0.530 | 0.415 | | لـــــــ | | | | | | | | | | | | | | 2.233 | 370 | 3.372 | · · · · | 3.707 | 0.530 | 0.424 | (Table 5 continues on next page.) (See Notes on p. 14.)